JPS6391105A - Degassing method - Google Patents
Degassing methodInfo
- Publication number
- JPS6391105A JPS6391105A JP23618086A JP23618086A JPS6391105A JP S6391105 A JPS6391105 A JP S6391105A JP 23618086 A JP23618086 A JP 23618086A JP 23618086 A JP23618086 A JP 23618086A JP S6391105 A JPS6391105 A JP S6391105A
- Authority
- JP
- Japan
- Prior art keywords
- tube
- liquid
- liq
- dissolved
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D19/00—Degasification of liquids
- B01D19/0031—Degasification of liquids by filtration
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Degasification And Air Bubble Elimination (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、液体中に含まれる溶存気体を脱気する方法に
関し、さらに詳しくは気体を溶存する液体が多孔性高分
子膜よりなる管を通過する間に、該液体中の溶存気体を
効率的に脱気する方法に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for degassing dissolved gas contained in a liquid, and more specifically, the present invention relates to a method for degassing dissolved gas contained in a liquid, and more specifically, the present invention relates to a method for degassing dissolved gas contained in a liquid. It relates to a method for efficiently degassing dissolved gases in the liquid during its passage.
液体中に溶存する気体を脱気する時、脱気される量の程
度を表す言葉として「脱気塵」を定義し、脱気される溶
存気体が多い時は脱気塵が高いと呼び、少ない時は脱気
塵が低いと呼ぶことにする。When gas dissolved in a liquid is degassed, "degassed dust" is defined as a term that expresses the amount of gas removed, and when a large amount of dissolved gas is degassed, it is said that the amount of degassed dust is high. When the amount of dust is low, it is said that the deaerated dust is low.
一般に多孔性高分子膜管を用いた脱気装置Aは第1図に
そのフローシートを示すように、スパイラル型の多孔性
高分子膜管1が内臓された減圧室2と、この真空度を圧
力センサ5によって検出して制御回路3によって作動あ
るいは停止させる真空ポンプ4とによって構成されてい
る。In general, a deaerator A using a porous polymer membrane tube has a decompression chamber 2 containing a spiral-shaped porous polymer membrane tube 1, and a vacuum chamber 2, as shown in the flow sheet of Fig. 1. The vacuum pump 4 is detected by a pressure sensor 5 and activated or stopped by a control circuit 3.
上記脱気装置Aによって液体6に溶存する気体を除去す
る場合には、減圧室2の圧力を所定の範囲の減圧状態に
保持しながら液体6をポンプ7を用い多孔性高分子膜管
1 (以下チューブという)内を所定速度で通過させる
。When removing gas dissolved in the liquid 6 using the deaerator A, the liquid 6 is pumped into the porous polymer membrane tube 1 ( (hereinafter referred to as a tube) at a predetermined speed.
脱気塵は脱気ずべき液体を通過させるチューブの材質、
肉厚、内径、および該液体との接触面積、減圧室内の直
空度、脱気ずべき液体の温度+’a、量。Deaerating dust depends on the material of the tube through which the liquid that should be deaerated passes,
Wall thickness, inner diameter, contact area with the liquid, straightness in the vacuum chamber, temperature +'a, and amount of the liquid to be degassed.
および粘度等に影響される。and viscosity.
脱気塵に影響を及ぼす要因のうちチューブについて言え
ば、内径はより小さく、肉厚はより薄く。Among the factors that affect the degassing dust, when it comes to tubes, the inner diameter is smaller and the wall thickness is thinner.
液体の接触面積はより大きい方が脱気されやすいが、現
在のチューブ成形技術上限界があり、多孔性高分子膜を
成形出来るポリ四フフ化エチレン樹脂を用いた場合、内
径1.8u+、肉厚0.2+amが限度である。The larger the contact area of the liquid, the easier it is to degas, but there is a limit due to current tube forming technology. The thickness is limited to 0.2+am.
一方、減圧室内の真空度は高いほど脱気されやすいが、
チューブの孔径、空孔率によっては液体が透過する場合
がある。この場合、液体の表面張力が高いほど、チュー
ブの孔径、空孔率から言うと孔径は小さいほど空孔率も
低いほど、液体の透過は起りにくい。従ってチューブか
らの液体透過は、チューブの材質、孔径および空孔率が
決まればチューブ内外の圧力差、液体の表面張力と密接
な関係がある。On the other hand, the higher the degree of vacuum in the decompression chamber, the easier it is to degas.
Liquid may permeate depending on the pore size and porosity of the tube. In this case, the higher the surface tension of the liquid, the smaller the pore diameter and the lower the porosity of the tube in terms of pore size and porosity, the less likely liquid permeation will occur. Therefore, once the material, pore diameter and porosity of the tube are determined, liquid permeation through the tube is closely related to the pressure difference inside and outside the tube and the surface tension of the liquid.
液体がチューブを透過しない範囲で、チューブの材質、
内径、肉厚を同じにした場合、脱気塵はチューブの長さ
と、脱気すべき液体の流量、粘度で決定される。しかし
ながらチューブは長いほど、脱気塵は高くなるが、逆に
脱気ずべき液体のチューブ内での圧力損失が大きくなる
ので所望の流量が得られない。そこで所望の流量を得る
ために、脱気ずべき液体をチューブにポンプ等を用いて
圧送すればよいが、この場合、ポンプ等の設備がコスト
アップとなるだけでなく、液体を圧送する時の圧力によ
りチューブから液体が透過したり、はなはだしい時には
チューブが破裂するということが起こる。従って液体に
加える圧力にも自ずと限界がある。The material of the tube, as long as the liquid does not pass through the tube.
When the inner diameter and wall thickness are the same, the amount of degassed dust is determined by the length of the tube and the flow rate and viscosity of the liquid to be degassed. However, the longer the tube, the higher the amount of degassed dust, but conversely the pressure loss of the liquid to be degassed within the tube increases, making it impossible to obtain the desired flow rate. Therefore, in order to obtain the desired flow rate, the liquid to be degassed can be pumped through a tube using a pump, etc., but in this case, not only does the cost of pumps and other equipment increase, but also The pressure can cause liquid to permeate through the tube, or in severe cases, cause the tube to burst. Therefore, there is naturally a limit to the pressure that can be applied to a liquid.
結局、ある一定の脱気塵を確保しながら得られる最大流
量はチューブの材質、内径、肉厚が決まれば、チューブ
の長さ、脱気すべき液体の粘度によって決定される。After all, once the material, inner diameter, and wall thickness of the tube are determined, the maximum flow rate that can be obtained while ensuring a certain level of deaerated dust is determined by the length of the tube and the viscosity of the liquid to be deaerated.
次に脱気ずべき液体について言えば液体の温度は高いほ
ど脱気されやすい。これば気体の液体中への溶解度は液
体の温度が高いほど小さいことからも理解出来る。また
液体の流量は少いほど脱気されやすい。これは液体のチ
ューブ内での滞留時間が長いほど脱気されやすいという
ことから理解出来る。また液体の粘度は低い方が脱気さ
れやすい。これは、チューブ壁で液体より溶存気体が脱
気されると、チューブ内の中心部の液体よりチューブ壁
に向っても溶存気体が拡散するが、この時、チューブ内
の液体の粘度によって溶存気体の拡散速度が異なり、液
体の粘度が低いほど、拡散しやすいためと考えられる。Next, regarding the liquid that should be degassed, the higher the temperature of the liquid, the easier it is to be degassed. This can be understood from the fact that the higher the temperature of the liquid, the lower the solubility of a gas in a liquid. Also, the lower the flow rate of the liquid, the easier it is to be degassed. This can be understood from the fact that the longer the liquid stays in the tube, the more easily it is degassed. Also, the lower the viscosity of the liquid, the easier it is to degas. This is because when dissolved gas is degassed from the liquid at the tube wall, the dissolved gas also diffuses from the liquid in the center of the tube toward the tube wall, but at this time, depending on the viscosity of the liquid in the tube, the dissolved gas This is thought to be because the diffusion rates of the liquids are different, and the lower the viscosity of the liquid, the easier it is to diffuse.
以上述べたことから例えばポリ四フッ化エチレン樹脂で
成形した前記内径1.8mm、肉厚0. 211の一定
長さのチューブを用い、液体中に溶存する気体を脱気す
る場合、脱気塵を高くするには、流量を少なくしなけれ
ばならす、また流量を多くすると、脱気塵は低くなる。From the above, for example, the inner diameter 1.8 mm and the wall thickness 0. When degassing gas dissolved in a liquid using a 211 tube of a certain length, the flow rate must be lower to increase the amount of degassed dust, and the higher the flow rate, the lower the amount of degassed dust. Become.
チューブでの脱気されるべき液体の圧力損失を小さくし
、所望の流量を得るためにただ単にチューブの内径を大
きくする方法は、チューブ壁と液体量の接触面積が相対
的に小さくなると共に、バルク液中の溶存気体のチュー
ブ壁への拡散時間が、チューブでの滞留時間以上に長く
かかるので所望の脱気塵は得られない。In order to reduce the pressure loss of the liquid to be degassed in the tube and to obtain the desired flow rate, the method of simply increasing the inner diameter of the tube is to reduce the contact area between the tube wall and the liquid volume, and to Since the diffusion time of the dissolved gas in the bulk liquid to the tube wall is longer than the residence time in the tube, the desired degassed dust cannot be obtained.
すなわち、従来の脱気方法では、チューブの材質、内径
、肉厚、長さおよび脱気されるべき液体が決まれば、こ
れを用い液体の脱気塵を高くすることと、流量を多くす
るということは相反することであり、流量を多くしても
脱気塵を低下させないような脱気方法が望まれてきた。In other words, in conventional degassing methods, once the material, inner diameter, wall thickness, and length of the tube and the liquid to be degassed are determined, these are used to increase the amount of degassed dust in the liquid and to increase the flow rate. This is contradictory, and there has been a desire for a degassing method that does not reduce the amount of deaerated dust even if the flow rate is increased.
所望のある脱気塵を確保しつつ、流量を多くする方法と
して特開昭59−216606号公報。JP-A-59-216606 discloses a method of increasing the flow rate while ensuring the desired amount of deaerated dust.
特開昭6(1−25514号公報には所望の脱気塵を有
する液体を大量に得るため、チューブの材質、内径およ
び肉厚を決定し、所望の脱気塵および流量を満足するチ
ューブ1本当りの長さを求めチューブを並列に配置した
多管モジュールを作製するのに必要な本数を決定する方
法が述べられている。Japanese Unexamined Patent Publication No. 1-25514 discloses that in order to obtain a large amount of liquid with desired deaerated dust, the material, inner diameter and wall thickness of the tube are determined, and a tube 1 that satisfies the desired deaerated dust and flow rate is disclosed. A method is described for finding the true length and determining the number of tubes required to fabricate a multi-tube module in which tubes are arranged in parallel.
〔発明が解決しようとする問題点)
しかしながら、これらの方法は、チューブの脱気効率を
本質的に高める方法ではない。[Problems to be Solved by the Invention] However, these methods do not essentially improve the degassing efficiency of the tube.
本発明の目的は、多孔性高分子膜よりなるチューブの中
を、気体を溶存する液体か通過する間に、該チューブ内
の静圧より、該チューブ外の圧力を低くして、該液体中
の溶存気体を除去する脱気方法において、チューブの材
質、内径、肉厚を決定し、該チューブの長さを一定にし
た場合に、流量を多くしても該液体の脱気効率を高める
方法を提供することにある。An object of the present invention is to reduce the pressure outside the tube to be lower than the static pressure inside the tube while a liquid containing gas dissolved therein passes through the tube made of a porous polymer membrane. A method for increasing the degassing efficiency of a liquid even when the flow rate is increased, when the material, inner diameter, and wall thickness of the tube are determined, and the length of the tube is constant, in a deaeration method for removing dissolved gas in the liquid. Our goal is to provide the following.
かかる本発明の目的は、多孔性高分子膜よりなる管の中
を、気体を溶存する液体が通過する間に、該多孔性高分
子膜管内の静圧より該管外圧力を低くして該多孔性高分
子膜管壁を通して該液体中の溶存気体を除去する脱気方
法において、該多孔性高分子膜管内の該液体を攪拌する
ことを特徴とする脱気方法によって達成される。An object of the present invention is to reduce the pressure outside the tube by lowering the static pressure inside the porous polymer membrane tube while a liquid containing dissolved gas passes through the tube made of a porous polymer membrane. This is accomplished by a deaeration method in which dissolved gas in the liquid is removed through the wall of a porous polymer membrane tube, which is characterized by stirring the liquid within the porous polymer membrane tube.
本発明における多孔性高分子膜管内の該液体を攪拌する
方法としては、回転攪拌機を管の内部に設置する方法も
可能であるが、簡単にして効果的な方法としては該管内
に静止型混合器を設ける方法が好ましい。As a method of stirring the liquid in the porous polymer membrane tube in the present invention, it is possible to install a rotary stirrer inside the tube, but a simple and effective method is to use a static mixer inside the tube. The method of providing a container is preferred.
液体中の溶存気体は該チューブ内壁より脱気されるが、
この時該チューブ内壁近傍においては該液体中の溶存気
体濃度が低下し、該チューブの中心部の液体からは溶存
気体が拡散によって該チューブ内壁へと移動する。従っ
て溶存気体の脱気速度は溶存気体の拡散速度が律速とな
る。Dissolved gas in the liquid is degassed from the inner wall of the tube,
At this time, the concentration of dissolved gas in the liquid decreases near the inner wall of the tube, and the dissolved gas moves from the liquid in the center of the tube to the inner wall of the tube by diffusion. Therefore, the degassing rate of the dissolved gas is determined by the diffusion rate of the dissolved gas.
本発明においては該チューブ内に静止型混合器等を設置
し、該液体を攪拌することによって、液体中心部の溶存
気体の該チューブ内壁側への拡散を強制的に促進させる
ことが出来るのである。In the present invention, by installing a static mixer or the like in the tube and stirring the liquid, it is possible to forcibly promote the diffusion of the dissolved gas in the center of the liquid toward the inner wall of the tube. .
実施例1
減圧室2内に内径12鶴、肉厚0.6mm、長さ6mの
チューブ状ポリ四フフ化エチレン膜を設け、減圧室2内
を圧力60Torrにし20℃において充分攪拌し、溶
存空気を飽和させたエチレングリコールモノメチルエー
テルを流量を変えて通過させ、通過したエチレングリコ
ールモノメチルエーテルの脱気度を溶存酸素濃度計で測
定した。次に上記デユープ状ポリ四フッ化エチレン膜の
中に第2図に示すような静止型混合器(4エレメントよ
り成る)を等間隔に5個設置し同様に脱気度を測定した
。Example 1 A tubular polytetrafluoroethylene membrane with an inner diameter of 12 mm, a wall thickness of 0.6 mm, and a length of 6 m was provided in the vacuum chamber 2, and the pressure inside the vacuum chamber 2 was set to 60 Torr, and the membrane was sufficiently stirred at 20°C to remove dissolved air. Ethylene glycol monomethyl ether saturated with ethylene glycol monomethyl ether was passed through the tube at varying flow rates, and the degree of deaeration of the passed ethylene glycol monomethyl ether was measured using a dissolved oxygen concentration meter. Next, five static mixers (consisting of four elements) as shown in FIG. 2 were installed at equal intervals in the duplex polytetrafluoroethylene membrane, and the degree of deaeration was similarly measured.
その結果は第3図に示すように、本発明によって相対溶
存空気量が従来に比して約5%引さげられることが判る
。As shown in FIG. 3, the results show that the present invention reduces the relative amount of dissolved air by about 5% compared to the conventional method.
相対溶存空気量100%とはある温度(この場合は20
℃)で脱気すべき液体を充分攪拌して、溶存空気を飽和
させ、溶存酸素濃度を溶存酸素濃度針で測定した時に、
それが示す値を言い、脱気された液体の溶存空気量につ
いては、該脱気液体を脱気される前の飽和溶存空気含有
の液体と同じ温度(この場合は20℃)にし、同様に溶
存酸素濃度を溶存酸素濃度針で測定し、この時の値を相
対溶存空気量と呼びパーセントで表示する。従って相対
溶存空気量が小さいほど脱気度は高いと言える。100% relative dissolved air content means a certain temperature (in this case, 20%).
When the liquid to be degassed is sufficiently stirred at ℃) to saturate the dissolved air, and the dissolved oxygen concentration is measured with a dissolved oxygen concentration needle,
Regarding the amount of dissolved air in the degassed liquid, the degassed liquid is brought to the same temperature as the liquid containing saturated dissolved air before being degassed (20°C in this case), and the same temperature is measured. The dissolved oxygen concentration is measured with a dissolved oxygen concentration needle, and this value is called the relative dissolved air amount and is expressed as a percentage. Therefore, it can be said that the smaller the relative amount of dissolved air, the higher the degree of deaeration.
実施例2
実施例1におけるエチレングリコールモノメチルエーテ
ルの代りにメチルエチルケトンを用い、他は実施例1と
同様な条件で、脱気度を測定した。Example 2 The degree of deaeration was measured under the same conditions as in Example 1 except that methyl ethyl ketone was used instead of ethylene glycol monomethyl ether in Example 1.
結果を第4図に示すように本発明によって相対溶存空気
量が従来に比して届5%引き下げられることが判る。As shown in the results in FIG. 4, it can be seen that the present invention reduces the relative amount of dissolved air by 5% compared to the conventional method.
実施例3
実施例1におけるエチレングリコールモノメチルエーテ
ルの代りに第1表に示す組成の感光性塗布液を用い、他
は実施例1と同様な条件で、脱気度を測定した。Example 3 The degree of deaeration was measured under the same conditions as in Example 1 except that a photosensitive coating liquid having the composition shown in Table 1 was used in place of ethylene glycol monomethyl ether in Example 1.
結果を第5図に示すように本発明によって相対溶存空気
量が従来に比して約5%引きさげられることが判る。As shown in the results in FIG. 5, it can be seen that the present invention reduces the relative amount of dissolved air by about 5% compared to the conventional method.
第 1 表
ナフトキノン−(L2) −ジアジド
−(2)−5〜スルホン酸クロリド
とポリーP−ヒト′ロキシエチレン
のエステル化合物 0.7重量部ノボラ
ック型フェノール樹脂 2.0 〃メチルエチルケ
トン 15.0 〃メチルセロソルブアセ
テート 25.O〃〔発明の効果〕
以上述べたように本発明に係わる脱気方法は、多孔性高
分子膜よりなる脱気用管の中に攪拌器例えば静止型混合
器等の攪拌器を設置し、該チューブ内の液体を攪拌する
ことにより、大幅に液体の脱気効率を高めることが出来
るので、流量が少なくとも所望の脱気度を得たい場合に
はチューブの長さを短くしたり、一定の長さのチューブ
の場合は所望の脱気度を確保しつつ流量を増加させるこ
とが出来る。また攪拌によって液体中心部の溶存気体の
該チューブ内壁への拡散を強制的に促進させることが出
来るのでチューブの内径は小さく、肉厚はより薄くとい
った従来の考え方に束縛されることなくチューブ内径を
大きくまた肉厚も厚くして効率的に脱気することが可能
になり、脱気装置の形式および処理能力を大[IJに変
革することが出来た。従ってチューブを並列に配置した
多管モジュールからなる脱気装置を製作する場合、コン
パクトな装置にすることが出来る。Table 1 Naphthoquinone-(L2)-diazide-(2)-5 ~ Ester compound of sulfonic acid chloride and polyP-human'roxyethylene 0.7 parts by weight Novolak type phenol resin 2.0 〃Methyl ethyl ketone 15.0 〃Methyl Cellosolve acetate 25. O [Effects of the Invention] As described above, the degassing method according to the present invention includes installing a stirrer such as a static mixer in a degassing tube made of a porous polymer membrane, By stirring the liquid in the tube, the deaeration efficiency of the liquid can be greatly increased, so if you want to obtain at least the desired degree of deaeration, the length of the tube may be shortened or the flow rate may be adjusted to a certain level. In the case of long tubes, the flow rate can be increased while ensuring the desired degree of deaeration. In addition, stirring can forcefully promote the diffusion of dissolved gas in the center of the liquid to the inner wall of the tube, so the inner diameter of the tube can be reduced without being constrained by the conventional concept of having a smaller inner diameter and thinner wall thickness. It became possible to make it larger and thicker for efficient deaeration, and it was possible to change the type and processing capacity of the deaerator to a large IJ. Therefore, when manufacturing a deaerator consisting of a multi-tube module in which tubes are arranged in parallel, the device can be made compact.
第1図は本発明にかかわる脱気装置の一般的なフローを
示す回路図、第2図は本発明に使用される静止型混合器
の1例を示す図、第3図、第4図および第5図はそれぞ
れ液体がエチレングリコールモノメヂルエーテル、メチ
ルエチルケトン、および感光性塗布液の場合、本脱気方
法の実施例における液体通過量と相対溶存空気量との関
係を示すグラフである。
1・・・多孔性高分子膜管(チューブ)2・・・減圧室
3・・・制御回路4・・・真空ポンプ 5・・
・圧力センサー6・・・液体 7・・・ポンプ
第 1 図
第 2 図
第3図
□通匝t(’吟〕
第4図
メ手ルエ今ルすトソ(zO”C)
一色@量(007分)
第 5 図
手続補正書
1、J1牛の耘
昭和61年特許願第236180号
2、発明の名称
脱気方法
3、補正をする者
事件との関係:特許出願人
名称 (520)富士写真フィルム株式会社さ
貨\
(1) 明細書第3頁、第12行目の[孔径は小さい
ほど」の後K「、」を挿入する。
(2) 同 第4頁、第16行目の「高い」を「低
い」と訂正する。
(3) 同 第4負、第16行目から同第18行目
の「これは気体の・・・・・・理解出来る。」を削除す
る。FIG. 1 is a circuit diagram showing the general flow of the degassing device according to the present invention, FIG. 2 is a diagram showing an example of a static mixer used in the present invention, FIGS. 3, 4, and FIG. 5 is a graph showing the relationship between the amount of liquid passing through and the relative amount of dissolved air in an example of the present degassing method when the liquids are ethylene glycol monomethyl ether, methyl ethyl ketone, and a photosensitive coating liquid. 1... Porous polymer membrane tube (tube) 2... Decompression chamber 3... Control circuit 4... Vacuum pump 5...
・Pressure sensor 6...Liquid 7...Pump Fig. 1 Fig. 2 Fig. 3 □Tsukant ('gin) Fig. 4 Mete Rue Konrusu Toso (zO”C) Isshiki @Quantity (007 Figure 5 Procedural amendment 1, J1 Cattle 1986 Patent Application No. 236180 2, Name of the invention Degassing method 3, Person making the amendment Relationship to the case: Name of patent applicant (520) Fuji Photo Film Co., Ltd. (1) Insert K "," after "The smaller the pore size" on page 3, line 12 of the specification. (2) Insert "," on page 4, line 16 of the same specification. (3) Delete ``This is a gas...'' from lines 16 to 18 in the 4th negative line of the same sentence.
Claims (2)
る液体が通過する間に、該多孔性高分子膜管内の静圧よ
り該管外圧力を低くして該多孔性高分子膜管壁を通して
該液体中の溶存気体を除去する脱気方法において、該多
孔性高分子膜管内の該液体を攪拌することを特徴とする
脱気方法。(1) While a gas-dissolved liquid passes through a tube made of a porous polymer membrane, the pressure outside the tube is lower than the static pressure inside the porous polymer membrane tube, and the porous polymer membrane A degassing method for removing dissolved gas in the liquid through a membrane tube wall, the degassing method comprising stirring the liquid in the porous polymer membrane tube.
徴とする特許請求の範囲第1項記載の脱気方法。(2) The deaeration method according to claim 1, characterized in that a static mixer is provided in the tube for stirring.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23618086A JPS6391105A (en) | 1986-10-06 | 1986-10-06 | Degassing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23618086A JPS6391105A (en) | 1986-10-06 | 1986-10-06 | Degassing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6391105A true JPS6391105A (en) | 1988-04-21 |
Family
ID=16996955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23618086A Pending JPS6391105A (en) | 1986-10-06 | 1986-10-06 | Degassing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6391105A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5626769A (en) * | 1993-08-06 | 1997-05-06 | Permelec Electrode Ltd. | Ozone water treatment method and apparatus |
US6033475A (en) * | 1994-12-27 | 2000-03-07 | Tokyo Electron Limited | Resist processing apparatus |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5128261A (en) * | 1974-09-03 | 1976-03-10 | Takuzo Ichihara | DATSUKISOCHI |
JPS54123785A (en) * | 1978-02-24 | 1979-09-26 | Du Pont | Deaerator |
-
1986
- 1986-10-06 JP JP23618086A patent/JPS6391105A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5128261A (en) * | 1974-09-03 | 1976-03-10 | Takuzo Ichihara | DATSUKISOCHI |
JPS54123785A (en) * | 1978-02-24 | 1979-09-26 | Du Pont | Deaerator |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5626769A (en) * | 1993-08-06 | 1997-05-06 | Permelec Electrode Ltd. | Ozone water treatment method and apparatus |
US6033475A (en) * | 1994-12-27 | 2000-03-07 | Tokyo Electron Limited | Resist processing apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7427312B2 (en) | Integrated degassing and debubbling apparatus | |
CN1688879A (en) | Inorganic carbon removal | |
JPS6391105A (en) | Degassing method | |
JPH0151778B2 (en) | ||
US5059997A (en) | Apparatus for processing photosensitive material | |
JP2003094086A (en) | Immersion-type membrane separation activating sludge treating equipment | |
JPS6242708A (en) | Defoamer | |
JP2000275229A (en) | Deaerating device | |
JP2521494B2 (en) | Degassing mechanism | |
US9370734B2 (en) | Fluid degassing module with helical membrane | |
US4917776A (en) | Flow through voltammetric analyzer and method using deoxygenator | |
US2139224A (en) | Method of developing motion picture films | |
JP2010155754A (en) | Apparatus and method of manufacturing ozone water | |
GB1436594A (en) | Apparatus for processing photographic amterial | |
JPH11333206A (en) | Deaeration device | |
JPS63130107A (en) | Automatic deaerator | |
US5541700A (en) | Separation of liquids | |
JPS63177134A (en) | Processing method for developing solution | |
JP2000065710A (en) | Method and apparatus for measuring dissolved gas concentration in liquid | |
EP0197200A2 (en) | Apparatus for adjusting concentration of solution | |
US5093678A (en) | Processor with laminar fluid flow wick | |
JP2000068197A (en) | Bubble generation prevention / bubble removal device | |
Skelland et al. | Transient drop size in agitated liquid-liquid systems, as influenced by the direction of mass transfer and surfactant concentration | |
JPS60255120A (en) | Deaeration apparatus | |
JP3967458B2 (en) | Deaerator |