JPS639009B2 - - Google Patents
Info
- Publication number
- JPS639009B2 JPS639009B2 JP55185754A JP18575480A JPS639009B2 JP S639009 B2 JPS639009 B2 JP S639009B2 JP 55185754 A JP55185754 A JP 55185754A JP 18575480 A JP18575480 A JP 18575480A JP S639009 B2 JPS639009 B2 JP S639009B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- boron nitride
- cubic boron
- volume
- sintered body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910052582 BN Inorganic materials 0.000 claims description 31
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 31
- 239000000843 powder Substances 0.000 claims description 28
- 239000002245 particle Substances 0.000 claims description 22
- 239000011812 mixed powder Substances 0.000 claims description 7
- 150000001875 compounds Chemical class 0.000 claims description 6
- 150000004767 nitrides Chemical class 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 239000006104 solid solution Substances 0.000 claims description 3
- 229910052735 hafnium Inorganic materials 0.000 claims 1
- 229910052759 nickel Inorganic materials 0.000 claims 1
- 229910052715 tantalum Inorganic materials 0.000 claims 1
- 229910052719 titanium Inorganic materials 0.000 claims 1
- 229910052726 zirconium Inorganic materials 0.000 claims 1
- 239000011159 matrix material Substances 0.000 description 17
- 239000000919 ceramic Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 238000005245 sintering Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000035939 shock Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Description
立方晶系窒化硼素は物質中ダイヤモンドに次い
で高硬度で、しかも良好な熱伝導性を有し、かつ
ダイヤモンドが問題としている鉄系金属との親和
性をもたず化学的にも非常に安定しているために
鉄系難削材の切削工具としての応用が期待されて
いる。
なお、近年超高圧焼結技術の進歩によつて立方
晶系窒化硼素粉末に金属またはセラミツクスを添
加して焼結した立方晶窒化硼素が工具に応用され
着実にその使用も増加しつゝあるが、金属で結合
した該焼結体の問題点は刃先部が高温にさらされ
るような切削条件下では結合金属の軟化による刃
先強度の低下によつて、その性能が著しく劣化す
ることなどが指摘されている。
他方、セラミツクスで結合したセラミツクスマ
トリツクスの立方晶系窒化硼素焼結体の工具は上
記した金属で結合した該焼結体工具にみられた不
具合はほゞ解決はしたものゝ立方晶系窒化硼素の
粒子とセラミツクス粒子との結合力が充分でない
ために切削中に立方晶系窒化硼素粒子が脱落して
しまう危険性があり、しかもセラミツクスの組成
によつては立方晶系窒化硼素焼結体が脆くなつて
しまう危険性もある。
本発明は以上のような問題点の解決を計るため
になしたもので、実際に工具を使用するにあたつ
ては耐摩耗性、耐熱性もさることながら、耐欠損
性にも優れていることが重大な条件となり、特に
立方晶系窒化硼素焼結体工具が生産性を重点にし
た自動運転機械に使用されたような場合にも突発
的な刃先の欠損を生じない工具を提供することを
目的とするものである。
本発明は立方晶系窒化硼素のマトリツクスとし
てTi.Zr.Hf.Ta.Siの窒化物系のセラミツクスの1
種または2種以上の混合粉末および相互固溶体粉
末または相互化合物粉末にAlN粉末を加え、さ
らにAl.Fe.Co.Niの1種または2種以上の混合粉
末および相互化合物粉末を添加し、マトリツクス
部のセラミツクスを全て窒化物系セラミツクスで
焼結した耐摩耗性、耐熱性、耐欠損性に優れた切
削用の立方晶系窒化硼素焼結体の工具である。
以上の如く、Ti.Zr.Hf.Ta.Siの窒化物の粉末に
AlN粉末を添加、さらに、Al.Fe.Co.Niの粉末を
添加したものを立方晶系窒化硼素のマトリツクス
として用いた主たる理由は、高硬度な難削材料
(HRC50以上)の切削時において刃先の温度は
1200℃近辺まで上昇することもあり、また高硬度
材料を断続切削する場合、工具には大きな機械的
衝撃応力が繰り返し加わるが、このような過酷な
条件下での立方晶系窒化硼素焼結体の工具として
の性能はマトリツクスの組成に大きく依存され
る。
従つて、マトリツクスの組成に要求される特性
は、耐摩耗性、耐熱性は勿論必要であるが、上記
した様な断続切削に工具をもちいる場合は特に耐
熱衝撃性と耐欠損性に優れ、かつマトリツクス成
分の各粒子が強固に立方晶系窒化硼素粒子と結合
して該立方晶系窒化硼素粒子を強固に保持してい
ることが必要である。
以上の様な観点にたち、種々の供試材料を用い
て多数の試験研究の結果、マトリツクス成分の特
性を満足し得るマトリツクス素材として、Ti.Zr.
Hf.Ta.Siの窒化物の単体または複合したセラミ
ツクスにAlNを添加した場合において特にマト
リツクス特性の改良に効果を有することが判明し
た。
なお、前記したセラミツクスの1種または2種
以上の混合粉末あるいは相互化合物粉末または相
互固溶体粉末の立方晶系窒化硼素焼結体に占める
割合は、体積比で69〜15%の範囲内で決定すべき
で、これが69体積%を超えると立方晶系窒化硼素
焼結体の硬度の低下すなわち立方晶系窒化硼素焼
結体工具として耐摩耗性が低下するし、逆に15体
積%を下回ると立方晶系窒化硼素の粒子間へのセ
ラミツクスの分散が不均一なものとなり、該焼結
体の靭性は著しく劣化する。
また、AlNを添加する理由としてはAlNは焼
結時に立方晶系窒化硼素粒子と上記セラミツクス
の結合を強固にするための焼結助材的な役目を果
たすもので、AlNを添加した場合、立方晶系窒
化硼素焼結体は非常に緻密で靭性を備えたものに
なる。このAlNの添加量は体積で1〜20%の範
囲が良好な焼結体が得られるが、1%以下になる
と立方晶系窒化硼素粒子とマトリツクスのセラミ
ツクス粒子との結合度が不充分となり、20%以上
になると立方晶系窒化硼素粒子とマトリツクスで
あるセラミツク粒子の結合度は充分であるがマト
リツクス部の強度が低下するので好ましくない。
ちなみに、マトリツクス中にAl.Fe.Ni.Coの1
種または2種以上の混合粉末、および相互化合物
粉末を体積で1〜15%添加した狙いは後述する焼
結条件下において、これら溶融金属が立方晶系窒
化硼素粒子間あるいは立方晶系窒化硼素粒子−マ
トリツクス粒子間およびマトリツクス粒子−マト
リツクス粒子間に溶浸されて静水圧性を保障する
と同時に立方晶系窒化硼素の逆変換防止材として
作用させ緻密で良好な焼結体を得ることに寄与せ
しめることにある。
但し、これら金属粉末の添加量は該焼結体中に
体積で1%を下回ると焼結性が劣化しポアが多発
し良好な焼結体が得られなくなり、また、該粉末
の添加量が体積で15%を超えると焼結性は良好な
ものとなるが、該焼結体の耐摩耗性、耐熱性に悪
影響を与えるので好ましくない。
以下、本発明に関し具体例を挙げて説明する。
本発明の立方晶系窒化硼素焼結体工具を焼結す
るに際して用いた超電圧高温発生装置は、ベルト
型装置を使用したが、所望の圧力、温度の発生に
耐え得る装置であれば、その種類などは問うもの
ではない。
立方晶系窒化硼素粉末の粒子間に充填する材料
としては前述のセラミツクス系マトリツクス材料
と金属粉末を加えた後ボールミルで充分に混合し
たものを原料粉末として使用する。
このようにあらかじめ準備した原料を反応容器
中に充填し、超高圧高温下での焼結反応をおこな
う。この焼結反応は約1300〜1500℃の温度と40〜
60キロバールの圧力を少なくとも15分以上保持し
ておこなつた。
その結果得られた焼結体は緻密で高硬度を有
し、耐欠損性、耐熱衝撃性、耐摩耗性に富む立方
晶系窒化硼素焼結体であつた。この焼結体を用い
てスローアウエイチツプを作り、この試料を基に
各種の切削テストを試みた結果、きわめて優れた
成績であつた。
以下実施例を述べる。
実施例 1
平均粒径5μの立方晶系窒化硼素粉末を60体積
%と平均粒径2μのTiN粉末10体積%、平均粒径
2μのTaN粉末10体積%、平均粒径2μのAlN粉末
10体積%、350メツシユ以下のAl粉末7体積%、
350メツシユ以下のCo粉末3体積%からなる混合
粉末をボールミルで約50時間混合撹拌し、原料粉
末とした。反応容器内に該原料粉末を充填し、そ
の後55キロバール.1400℃の圧力温度条件下に、
約20分間保持し、その後冷却と同時に圧力の除去
をおこなつた。
これによつてマイクロビツカース硬度3100Kg/
mm2の硬度を有する硬質で、かつ緻密な焼結体を得
た。
この焼結体を使つてSNG433のスローアウエイ
チツプを作成し、すり割溝を形成したSKD11
(JISG4404合金鋼鋼材D11種、HRc60)の被削材
を切削速度70m/min、切り込み0.5mm、1回転
当りの送り0.15mmの条件で湿式旋削による断続切
削試験をおこなつた。
その結果、上記テストを10回それぞれ10分間ず
つ切削したが、いずれのチツプもカケ、チツピン
グ等の不具合は発生せず正常な摩耗であつた。
実施例 2
表−1に示した原料粉末を同表のとおりの割合
で試料1から試料7までの供試品を同表に示した
条件で超高圧高温発生装置を用いて焼結した。な
お、同表に各供試焼結体の硬度を示した。
Cubic boron nitride has the second highest hardness among materials after diamond, and also has good thermal conductivity.It also has no affinity with iron-based metals, which is the problem with diamond, and is extremely stable chemically. Therefore, it is expected to be used as a cutting tool for difficult-to-cut iron-based materials. In addition, with recent advances in ultra-high pressure sintering technology, cubic boron nitride, which is made by adding metal or ceramics to cubic boron nitride powder and sintering it, has been applied to tools, and its use is steadily increasing. It has been pointed out that the problem with this metal-bonded sintered compact is that under cutting conditions where the cutting edge is exposed to high temperatures, the strength of the cutting edge decreases due to the softening of the bonded metal, resulting in a significant deterioration in its performance. ing. On the other hand, when using a tool made of a cubic boron nitride sintered body of a ceramic matrix bonded with ceramics, the defects observed in the above-mentioned sintered body tool bonded with a metal were almost solved. There is a risk that the cubic boron nitride particles will fall off during cutting because the bonding force between the particles and the ceramic particles is not sufficient, and depending on the composition of the ceramic, the cubic boron nitride sintered body may There is also the risk of it becoming brittle. The present invention was made to solve the above problems, and when the tool is actually used, it has excellent wear resistance, heat resistance, and chipping resistance. This is an important condition, and the purpose of the present invention is to provide a tool that does not cause sudden breakage of the cutting edge, especially when the cubic boron nitride sintered tool is used in an automatic operation machine that emphasizes productivity. The purpose is to The present invention uses a Ti.Zr.Hf.Ta.Si nitride ceramic as a matrix of cubic boron nitride.
AlN powder is added to a seed or a mixed powder of two or more kinds, a mutual solid solution powder, or a mutual compound powder, and further a mixed powder of one or more kinds of Al.Fe.Co.Ni and a mutual compound powder are added to form a matrix part. This is a cubic boron nitride sintered tool for cutting that is made entirely of nitride-based ceramics and has excellent wear resistance, heat resistance, and chipping resistance. As mentioned above, Ti.Zr.Hf.Ta.Si nitride powder
The main reason for using a cubic boron nitride matrix containing AlN powder and Al.Fe.Co.Ni powder is when cutting highly hard and difficult-to-cut materials (H R C50 or higher). The temperature of the cutting edge is
The temperature may rise to around 1200℃, and when cutting high-hardness materials intermittently, large mechanical shock stress is repeatedly applied to the tool. The performance of the tool as a tool is highly dependent on the composition of the matrix. Therefore, the characteristics required for the matrix composition are of course wear resistance and heat resistance, but when using tools for interrupted cutting as described above, particularly excellent thermal shock resistance and chipping resistance are required. It is also necessary that each particle of the matrix component is strongly bonded to the cubic boron nitride particles to firmly hold the cubic boron nitride particles. Based on the above points of view, as a result of numerous tests and studies using various test materials, Ti.Zr was found to be a matrix material that satisfies the characteristics of matrix components.
It has been found that adding AlN to ceramics containing Hf.Ta.Si nitride alone or in combination is particularly effective in improving matrix properties. The proportion of one or more of the above-mentioned ceramics mixed powder, mutual compound powder, or mutual solid solution powder in the cubic boron nitride sintered body is determined within the range of 69 to 15% by volume. If it exceeds 69 volume%, the hardness of the cubic boron nitride sintered body will decrease, that is, the wear resistance of the cubic boron nitride sintered body will decrease, and conversely, if it is less than 15 volume%, the cubic boron nitride sintered body will have a lower hardness. The dispersion of ceramics between crystalline boron nitride particles becomes non-uniform, and the toughness of the sintered body is significantly deteriorated. The reason for adding AlN is that AlN acts as a sintering aid to strengthen the bond between the cubic boron nitride particles and the above-mentioned ceramics during sintering. The crystalline boron nitride sintered body is extremely dense and has toughness. A good sintered body can be obtained when the amount of AlN added is in the range of 1 to 20% by volume, but if it is less than 1%, the degree of bonding between the cubic boron nitride particles and the ceramic particles of the matrix becomes insufficient. If it exceeds 20%, the degree of bonding between the cubic boron nitride particles and the ceramic particles serving as the matrix is sufficient, but the strength of the matrix portion decreases, which is not preferable. By the way, there is 1 of Al.Fe.Ni.Co in the matrix.
The purpose of adding seeds or mixed powders of two or more types, and mutual compound powders in an amount of 1 to 15% by volume is that under the sintering conditions described below, these molten metals will be mixed between cubic boron nitride particles or cubic boron nitride particles. - It is infiltrated between matrix particles and between matrix particles to ensure hydrostatic properties, and at the same time acts as a back conversion prevention material for cubic boron nitride, contributing to obtaining a dense and good sintered body. It is in. However, if the amount of these metal powders added is less than 1% by volume in the sintered body, the sinterability will deteriorate and pores will occur frequently, making it impossible to obtain a good sintered body. If it exceeds 15% by volume, the sinterability will be good, but it is not preferable because it will adversely affect the wear resistance and heat resistance of the sintered body. Hereinafter, the present invention will be explained by giving specific examples. Although a belt type device was used as the ultravoltage high temperature generator used to sinter the cubic boron nitride sintered tool of the present invention, any device that can withstand the generation of the desired pressure and temperature may be used. The type does not matter. As the material to be filled between the particles of the cubic boron nitride powder, the above-mentioned ceramic matrix material and metal powder are added and thoroughly mixed in a ball mill, and then used as a raw material powder. The raw materials prepared in advance in this way are filled into a reaction vessel, and a sintering reaction is carried out under ultra-high pressure and high temperature. This sintering reaction takes place at a temperature of about 1300-1500℃ and
A pressure of 60 kilobar was maintained for at least 15 minutes. The resulting sintered body was a cubic boron nitride sintered body that was dense, had high hardness, and was rich in chipping resistance, thermal shock resistance, and wear resistance. A throw-away chip was made using this sintered body, and various cutting tests were conducted using this sample, and the results were extremely excellent. Examples will be described below. Example 1 60% by volume of cubic boron nitride powder with an average particle size of 5μ and 10% by volume of TiN powder with an average particle size of 2μ, average particle size
10% by volume of TaN powder with 2μ, AlN powder with average particle size of 2μ
10% by volume, 7% by volume of Al powder of 350 mesh or less,
A mixed powder consisting of 3% by volume of Co powder of 350 mesh or less was mixed and stirred in a ball mill for about 50 hours to obtain a raw material powder. The raw material powder was filled into a reaction vessel and then heated to 55 kilobar. Under pressure and temperature conditions of 1400℃,
It was held for about 20 minutes, and then the pressure was removed simultaneously with cooling. This results in a microvits hardness of 3100Kg/
A hard and dense sintered body having a hardness of mm 2 was obtained. Using this sintered body, we created an SNG433 throw-away chip and created a slotted groove for SKD11.
An interrupted cutting test was conducted on a workpiece material (JISG4404 alloy steel D11 class, H R c60) by wet turning at a cutting speed of 70 m/min, depth of cut of 0.5 mm, and feed per revolution of 0.15 mm. As a result, the above test was carried out 10 times for 10 minutes each, and none of the chips showed any defects such as chipping or chipping, and the wear was normal. Example 2 Samples from sample 1 to sample 7 were sintered using the raw material powders shown in Table 1 in the proportions shown in the table using an ultra-high pressure and high temperature generator under the conditions shown in the table. In addition, the hardness of each sample sintered body is shown in the same table.
【表】
上表により焼結した各組成の立方晶系窒化硼素
焼結体によりスローアウエイチツプを作り、実施
例1と同様のテストをおこなつたが、いずれの試
料(スローアウエチツプ)もカケ、チツピング等
の不具合は発生せず正常な摩耗を示す好結果を得
た。[Table] Throw-away chips were made from cubic boron nitride sintered bodies of various compositions according to the table above, and the same tests as in Example 1 were conducted, but all samples (throw-away chips) failed. Good results were obtained, showing normal wear and no problems such as chipping.
Claims (1)
を30〜70体積%含有し、その残部がTi、Zr、Hf、
Ta、Siの窒化物の1種または2種以上の混合粉
末および相互固溶体粉末あるいは相互化合物粉末
と1〜20体積%のAlNの粉末を69〜15体積%と、
体積で1〜15%のAl、Fe、Co、Niの内の1種ま
たは2種以上の混合粉末および相互化合物粉末を
添加して焼結した切削工具用の立方晶系窒化硼素
焼結体。1 Contains 30 to 70% by volume of cubic boron nitride powder with an average particle size of 20μ or less, the remainder being Ti, Zr, Hf,
Mixed powder of one or more kinds of Ta, Si nitrides, mutual solid solution powder or mutual compound powder and 1 to 20 volume % of AlN powder at 69 to 15 volume %,
A cubic boron nitride sintered body for cutting tools, which is sintered by adding 1 to 15% by volume of a mixed powder of one or more of Al, Fe, Co, and Ni and a mutual compound powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55185754A JPS57110648A (en) | 1980-12-26 | 1980-12-26 | Sintered body of cubic system boron nitride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55185754A JPS57110648A (en) | 1980-12-26 | 1980-12-26 | Sintered body of cubic system boron nitride |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57110648A JPS57110648A (en) | 1982-07-09 |
JPS639009B2 true JPS639009B2 (en) | 1988-02-25 |
Family
ID=16176274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55185754A Granted JPS57110648A (en) | 1980-12-26 | 1980-12-26 | Sintered body of cubic system boron nitride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57110648A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0378607U (en) * | 1989-12-04 | 1991-08-09 | ||
KR20220023288A (en) | 2020-08-20 | 2022-03-02 | 주식회사 히타치하이테크 | Charged particle beam device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61201751A (en) * | 1985-03-04 | 1986-09-06 | Nippon Oil & Fats Co Ltd | High hardness sintered body and its manufacture |
-
1980
- 1980-12-26 JP JP55185754A patent/JPS57110648A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0378607U (en) * | 1989-12-04 | 1991-08-09 | ||
KR20220023288A (en) | 2020-08-20 | 2022-03-02 | 주식회사 히타치하이테크 | Charged particle beam device |
Also Published As
Publication number | Publication date |
---|---|
JPS57110648A (en) | 1982-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100823760B1 (en) | Method for producing abrasive product containing cubic boron nitride | |
JP5680567B2 (en) | Sintered body | |
KR20040002685A (en) | Sintered compact for use in machining chemically reactive materials | |
WO2002011876A2 (en) | Method of producing an abrasive product containing diamond | |
EP0816304B1 (en) | Ceramic bonded cubic boron nitride compact | |
KR100502585B1 (en) | Sintering body having high hardness for cutting cast iron and The producing method the same | |
JPS627149B2 (en) | ||
JPS6132275B2 (en) | ||
EP0256829B1 (en) | Abrasive and wear resistant material | |
JPS639009B2 (en) | ||
JPS644988B2 (en) | ||
JPS5861254A (en) | High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools | |
JPS6319585B2 (en) | ||
JPH0215515B2 (en) | ||
JPS6137221B2 (en) | ||
KR860002131B1 (en) | High hardness sintered body for tool and its manufacturing method | |
RU2296041C2 (en) | Metallic bond for manufacture of the segments on the basis of the superhard materials for production of the cutting tools and the method of the cutting tools manufacture | |
JPS6270268A (en) | Sintered body for high hardness tools | |
JPH0377151B2 (en) | ||
JPS644987B2 (en) | ||
JPH0463607A (en) | Cutting tool having cutting edge part formed of cubic boron nitride sintered substance | |
JPH075381B2 (en) | Method for producing cubic boron nitride-based ultra-high pressure sintered body for cutting tool | |
JPH0776130B2 (en) | Manufacturing method of cubic boron nitride based ultra high pressure sintered body for cutting tool | |
JPS6242989B2 (en) | ||
JPS6060977A (en) | Sintered body for high hardness tool |