[go: up one dir, main page]

JPS6389079A - Oscillatory-wave motor - Google Patents

Oscillatory-wave motor

Info

Publication number
JPS6389079A
JPS6389079A JP61232664A JP23266486A JPS6389079A JP S6389079 A JPS6389079 A JP S6389079A JP 61232664 A JP61232664 A JP 61232664A JP 23266486 A JP23266486 A JP 23266486A JP S6389079 A JPS6389079 A JP S6389079A
Authority
JP
Japan
Prior art keywords
ring
shaped
vibrator
elastic body
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61232664A
Other languages
Japanese (ja)
Inventor
Hitoshi Mukojima
仁 向島
Ichiro Okumura
一郎 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61232664A priority Critical patent/JPS6389079A/en
Publication of JPS6389079A publication Critical patent/JPS6389079A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To stabilize the pressurization of a vibrator, and to increase an output and improve efficiency by constituting the shape, size and material of the vibrator for a progressive wave type oscillatory-wave motor under specific conditions. CONSTITUTION:An oscillatory-wave motor is organized of a ring-shaped piezoelectric element 1, a ring-shaped elastic body 2, a cylindrical moving body 3, a ring-shaped fixing body 4, a circular pan-shaped connecting member 5, etc. The ring-shaped elastic body 2 is constructed of a main vibrating section 2a, an auxiliary vibrator 2b and a fixing section 2c, the mode of Vibrations of the elastic body 2 is an expansion mode, and the mode of vibrations is selected as shown in formula when width in the axial direction of the vibrator is represented by (h) (where R represents the central radius of the vibrator, (b) the radial width of the vibrator, nu a Poisson's ratio, K wave number and thetathe angle of thread). Accordingly, the pressurization of the vibrator can be stabilized, and an output can be increased and efficiency improved.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は、リング状振動体に発生させた進行性振動波に
より該リング状振動体に加圧接触している穆動体を摩擦
回転駆励するタイプの進行波型振動波モータに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application of the Invention) The present invention uses progressive vibration waves generated in a ring-shaped vibrating body to frictionally and rotationally drive a mobile body that is in pressurized contact with the ring-shaped vibrating body. This invention relates to a type of traveling wave vibration wave motor.

(発明の背景) 振動波モータは、圧電素子、電歪素子または磁歪素子等
の電気−機械エネルギー変換素子(以下、圧電素子で代
表する)に周波電圧を印加した時に振動体に生じる振動
運動を穆動体の駆動に利用するもので、従来の1磁モー
タに比べて巻線を必要としない為、構造が簡単で小型と
なり、低速回転時にも高トルクが得られるという利点が
あり、近年注目されている。その中で、リング状の進行
波型振励波モータと称されるものは、リング状の振動体
に位置的に位相が90°ずれた定在波を時間的に90”
ずらして発生させ、これらの定在波の重ね合せにより該
振動体の周方向に進む進行波を発生させ、これに加圧接
触しているり動体を該進行波によフて(実際は波の進行
方向と逆の方向に>かすものである。
(Background of the Invention) A vibration wave motor uses vibrational motion that occurs in a vibrating body when a frequency voltage is applied to an electro-mechanical energy conversion element (hereinafter referred to as a piezoelectric element) such as a piezoelectric element, an electrostrictive element, or a magnetostrictive element. It is used to drive moving bodies, and compared to conventional single-magnetic motors, it does not require windings, so it has the advantage of being simpler and smaller in structure, and can obtain high torque even when rotating at low speeds, and has attracted attention in recent years. ing. Among them, what is called a ring-shaped traveling wave vibration excitation wave motor generates a standing wave whose phase is shifted by 90 degrees in a ring-shaped vibrating body in terms of time by 90".
The superposition of these standing waves generates a traveling wave that travels in the circumferential direction of the vibrating body, and a moving body that is in pressure contact with this is caused by the traveling wave (actually, the traveling wave It's something that grazes in the opposite direction.

リング状の進行波型振動波モータには、振動体と8動体
がモータの回転@(リング状振動体の中心軸線)に対し
て垂直な面で接触するいわゆる面対向型、および、振動
体とび動体がモータの回転軸まわりの内・外径の円筒面
で接触するいわゆる周対向型があるが、従来、前者が主
流であった。その理由は、後者の場合、円筒面の接触で
ある為、均一に振動体と移動体を加圧させる事が難しく
、構造が複雑で高加工精度が必要となり、更に、所望の
振動を励振するのに円柱型の圧電素子が必要であり、加
工が非常に難しいからである。
Ring-shaped traveling wave vibration wave motors include the so-called surface-facing type, in which the vibrating body and the 8-moving body are in contact with each other in a plane perpendicular to the rotation of the motor (center axis of the ring-shaped vibrating body), and the vibrating body skipping type. There is a so-called circumferentially opposed type in which the moving body contacts the inner and outer cylindrical surfaces of the motor around its rotation axis, but the former has been the mainstream in the past. The reason for this is that in the latter case, since the cylindrical surfaces are in contact, it is difficult to pressurize the vibrating body and the moving body uniformly, the structure is complex and high machining accuracy is required, and furthermore, it is difficult to excite the desired vibration. This is because a cylindrical piezoelectric element is required, which is extremely difficult to process.

また周対向型で振動体と移動体がネジ嵌合している振動
波モータが提案されているが、効率を上げるのに最適な
ネジ山角度や振動体の軸方内申が良く分っていなかフた
Furthermore, a vibration wave motor of the circumferentially opposed type in which the vibrating body and the movable body are screw-fitted has been proposed, but the optimum screw thread angle and axial direction of the vibrating body to increase efficiency are not well understood. Futa.

(発明の目的) 本発明は、周対向型の進行波型振動波モータにおいて上
述従来例の欠点を除去すると同時に、より出力及び効率
を高めることを目的とするる。
(Objective of the Invention) An object of the present invention is to eliminate the drawbacks of the above-mentioned conventional example in a circumferentially opposed traveling wave type vibration wave motor, and at the same time, to further increase output and efficiency.

(発明の概要) 本発明の振動波モータは内側または外側にネジを有する
リング状弾性体と、該リング状弾性体に周方向に進む進
行性振動波を発生させる手段と、該リング状弾性体にネ
ジ嵌合関係にあり、上記リング状弾性体に生じた進行性
振動波により駆動される移動体とを備え、上記リング状
振動体に励振される振動モードが伸縮モードであり、前
記リング状振動体の軸方向の巾りをとしたことを特徴と
する。
(Summary of the Invention) A vibration wave motor of the present invention includes a ring-shaped elastic body having a thread on the inside or outside, a means for generating a progressive vibration wave that travels in the circumferential direction in the ring-shaped elastic body, and and a movable body that is in a screw-fitting relationship with the ring-shaped elastic body and is driven by progressive vibration waves generated in the ring-shaped elastic body, and the vibration mode excited in the ring-shaped vibrating body is a stretching mode, and the ring-shaped It is characterized by the width of the vibrating body in the axial direction.

(但し、Rはリング状振動体の中心半径、bはその半径
方向中、νはポアソン比、Kはリング状振動体の全周に
乗る波数、θは前記ネジのネジ山角である。) (発明の実施例) 第1図は本発明の実施例のモータユニットの構成の右半
部を断面とした立面図で、1はリング板状の圧電素子、
2は金属製のリング状弾性体、3は円筒状の移動体、4
はリング状の固定体、5は円皿状の連結部材、7はリー
ド線、8.9.10は固定ビス、11.12は導電性ペ
ースト及び接着剤、6はリード線押えである。
(However, R is the central radius of the ring-shaped vibrating body, b is the radius in its radial direction, ν is Poisson's ratio, K is the number of waves riding on the entire circumference of the ring-shaped vibrating body, and θ is the thread angle of the screw.) (Embodiment of the Invention) FIG. 1 is an elevational view of the right half of the structure of a motor unit according to an embodiment of the present invention, in which 1 is a ring plate-shaped piezoelectric element;
2 is a metal ring-shaped elastic body, 3 is a cylindrical moving body, 4 is
5 is a ring-shaped fixing body, 5 is a disk-shaped connecting member, 7 is a lead wire, 8.9.10 is a fixing screw, 11.12 is a conductive paste and adhesive, and 6 is a lead wire holder.

第2図は弾性体2の斜視図である。弾性体2は3つの部
分2a、2b、2cからなり、2aが主振動部、2bが
補助振乃子、2cが固定部である。主振動部2aはその
端面で圧電素子1と接着されており、いわゆる振動体の
本体ともいうべぎもので、ここに進行波が発生し、内径
111に設けられた台形ネジ部2dに伝達される。
FIG. 2 is a perspective view of the elastic body 2. FIG. The elastic body 2 consists of three parts 2a, 2b, and 2c, where 2a is a main vibrating part, 2b is an auxiliary pendulum, and 2c is a fixed part. The main vibrating part 2a is bonded to the piezoelectric element 1 at its end face, and is also what is called the main body of the vibrating body, in which a traveling wave is generated and transmitted to the trapezoidal screw part 2d provided on the inner diameter 111. .

補助系コ子2bは径方向厚みが主振動部 2aの径方向
厚みに比べて薄く、主振動部2aの中立軸位コから軸方
向から軸方向にのびており、本実施例においては等ピッ
チの3本(波数と同じ数)であり、固定部2Cと連結し
ている。
The auxiliary system element 2b has a radial thickness that is thinner than that of the main vibration part 2a, and extends from the neutral axis position of the main vibration part 2a in the axial direction. There are three (same number as the wave number), and they are connected to the fixed part 2C.

圧電素子1はBsよりなる弾性体2の主S励部2aの端
面に接着されて、振動体を構成している。弾性体2はそ
の固定部2cで固定体4にビス10を用いて固定される
。弾性体2の主振動部2aの内径面には台形ネジ2d(
ピッチ0.5 mn+)が切ってあり、ネジ表面はNi
メッキ処理で硬化しである。
The piezoelectric element 1 is adhered to the end face of the main S excitation part 2a of the elastic body 2 made of Bs, thereby forming a vibrating body. The elastic body 2 is fixed to the fixed body 4 at its fixing portion 2c using screws 10. A trapezoidal screw 2d (
The pitch is 0.5 mm+), and the screw surface is made of Ni.
It is hardened by plating.

移動体3は外径面に台形ネジ3dが設けられており、弾
性体2の前記台形ネジ2dと係合する。移動体3はAI
Wであり、そのネジ部3dは表面に硬質アルマイト処理
を施しである。移動体3は円皿状の連結部材5にビス9
で固定されており、連結部材5からモータの出力を取り
出せる。動作原理は簡単にいうと、圧電素子1により進
行性振動波を弾性体2の主振動部2aの台形ネジ部2d
上に発生させ、ネジ部の接触により移動体3を回転させ
ると同時に回転@Oの方向に移動させるものである。
The movable body 3 is provided with a trapezoidal screw 3d on its outer diameter surface, and engages with the trapezoidal screw 2d of the elastic body 2. Mobile object 3 is AI
W, and the surface of the threaded portion 3d is hard alumite treated. The movable body 3 has screws 9 attached to the disc-shaped connecting member 5.
The output of the motor can be taken out from the connecting member 5. Simply put, the principle of operation is that the piezoelectric element 1 transmits progressive vibration waves to the trapezoidal threaded portion 2d of the main vibrating portion 2a of the elastic body 2.
The movable body 3 is rotated by the contact of the screw portion and simultaneously moved in the direction of rotation @O.

第3図は圧電素子1の平面図で、同図(a)が外側の面
(表)、同図(b)が弾性体2の主振動部2aとの接着
面(裏)である。表・裏面はともにNiスパッタにより
図中の斜線で示す電極が形成されており、扇状のパター
ンをしている。裏面(b)の(+)、  (−)は表面
(a)に対してそれぞれ予め+、−の直流電圧を加えて
分極処理している事を示している。(+)の分極処理を
施した区域と(−)の分極処理を施した区域とでは同一
極性の電圧を印加したとき、その周方向における伸縮が
互いに逆になる。電極1aはいわゆるA相と称する1つ
の定在波を発生させる脂肪用電極で、波長λに対して長
さλ/2の扇状電極が(+)  (−)交互に複数枚で
構成される。リング状弾性体2の主振動部2aの周長は
定在波の波長λの整数(K)倍であるように作られてい
るや波数(リング状弾性体2の主振動部2aの全周に乗
る定在波の波数)をKとするとAa駆動用電極1aは長
さくK−1)λ/2の扇状電極群をなす。第3図では波
数3の例である為、A相駆動用電極1aはλ分の扇状電
極群となっている。同様に電極1bはいわゆるB相と称
する他の定在波を発生させる駆動用電極であり、A相駆
動用電極1aと同様に(K−1)λ/2の扇状電極群と
なっている。A相及びB相駆動用電極群1a、Ibは空
間的な位相で90゛即ちλ/4ずれており、その間に電
極1eが存在している。電極1eは直接モータ駆動に関
係しないが圧電素子全体での分極処理時の歪の影響を減
らす為、分極処理を行っである。
FIG. 3 is a plan view of the piezoelectric element 1, in which (a) is the outer surface (front) and FIG. 3 (b) is the adhesive surface (back) of the elastic body 2 with the main vibrating portion 2a. Electrodes indicated by diagonal lines in the figure are formed on both the front and back surfaces by Ni sputtering, forming a fan-shaped pattern. The (+) and (-) marks on the back side (b) indicate that the polarization process has been performed by applying + and - DC voltages to the front side (a) in advance, respectively. When a voltage of the same polarity is applied to a region subjected to (+) polarization treatment and a region subjected to (−) polarization treatment, the expansion and contraction in the circumferential direction are opposite to each other. The electrode 1a is a fat electrode that generates one standing wave called so-called A phase, and is composed of a plurality of (+) and (-) fan-shaped electrodes each having a length λ/2 with respect to the wavelength λ (+) and (-). The circumference of the main vibrating part 2a of the ring-shaped elastic body 2 is made to be an integral number (K) times the wavelength λ of the standing wave. If K is the wave number of the standing wave riding on the Aa drive electrode 1a, the Aa drive electrode 1a forms a fan-shaped electrode group with a length of K-1)λ/2. In FIG. 3, since the wave number is 3, the A-phase drive electrode 1a is a fan-shaped electrode group corresponding to λ. Similarly, the electrode 1b is a driving electrode that generates another standing wave called the so-called B phase, and is a fan-shaped electrode group of (K-1)λ/2 like the A-phase driving electrode 1a. The A-phase and B-phase driving electrode groups 1a and Ib are spatially out of phase by 90°, that is, λ/4, and the electrode 1e exists between them. Although the electrode 1e is not directly related to motor drive, it is polarized in order to reduce the influence of distortion during the polarization process on the entire piezoelectric element.

電極1cはいわゆるS相という振動検知用の電極で、振
動による逆圧電効果による変位電圧をとり出しA−B相
電極の印加電圧や駆動周波数にフィードバック制御をか
けたり、振動のモニター用として利用される。
The electrode 1c is a so-called S-phase vibration detection electrode, and is used to take out the displacement voltage due to the inverse piezoelectric effect caused by vibration, apply feedback control to the voltage applied to the A-B phase electrode and drive frequency, and use it to monitor vibration. Ru.

電極1dは電極1eと同様に分極処理時の歪の減少の為
に分g!処理されているが、ここではいわゆるC相とい
うコモン電極として利用している。圧電素子1の裏面(
b)は弾性体2の端面に高圧で接着しており、マクロ的
にみて弾性体2と裏面電極の全ては電気的に接触してい
て電気的に一体の導体となっている。弾性体2と表面(
a)の電極1dはAg等の導電性のペースト11で側面
から電気的に結合してC相のコモン電極となる。表面(
a)では、電極1a。
Similar to electrode 1e, electrode 1d is designed to reduce strain during polarization treatment. Although it has been processed, it is used here as a so-called C-phase common electrode. The back side of piezoelectric element 1 (
b) is bonded to the end face of the elastic body 2 under high pressure, and from a macroscopic perspective, the elastic body 2 and the back electrode are all in electrical contact and form an electrically integrated conductor. Elastic body 2 and surface (
The electrode 1d in a) is electrically coupled from the side with a conductive paste 11 such as Ag, and becomes a C-phase common electrode. surface(
In a), electrode 1a.

lb、Id、Icはリード線20a、20b。lb, Id, and Ic are lead wires 20a and 20b.

20d、20cと導電性の接着剤22で結合され、それ
ぞれA相、B相、C相、S相の電極として役割をはたす
。リード線20a〜20dは外部駆動回路(不図示)と
結合している。
20d and 20c with a conductive adhesive 22, and serve as A-phase, B-phase, C-phase, and S-phase electrodes, respectively. Lead wires 20a-20d are coupled to an external drive circuit (not shown).

外部電源(不図示)によって、C相電極に対してA相駆
動用電極1aにはV=V。sinωtの交番電圧が印加
され、B相駆動用電柵1bにはV = V、sin (
ωt±−)の交番電圧が印加されると、空間的にλ/4
だけ相互にずれ且つ時間的にπ/2だけ相互にずれたA
相定在彼およびB相定在波の合成の結果、弾性体2の主
振動部2aにはその周方向に進む波長λの進行波が生じ
、その進行の向きは両定在波の時間的位相差である上記
の士−の正負によって切換わり、とわでモータの正逆転
が行われる。
By an external power supply (not shown), V=V is applied to the A-phase drive electrode 1a with respect to the C-phase electrode. An alternating voltage of sinωt is applied, and V = V, sin (
When an alternating voltage of ωt±-) is applied, spatially λ/4
A that is mutually offset by π/2 and temporally offset from each other by π/2
As a result of the synthesis of the phase standing wave and the B-phase standing wave, a traveling wave with a wavelength λ that travels in the circumferential direction is generated in the main vibration part 2a of the elastic body 2, and the direction of the traveling wave is the same as the temporal direction of both standing waves. Switching is performed depending on the positive or negative of the above-mentioned phase difference, and the motor is rotated in the forward or reverse direction.

ここで上記のようにして弾性体2の主振動部2aに生ぜ
しめられる振動モードを第6図(a)、(b)で説明す
る。本実施例においては伸縮モードを用いている。この
モードは質点の変位がリング状弾性体2の主振動部2a
の周方向に生ずるような縦振動と半径方向に生ずるよう
な横振動が合成されたもので、あたかも棒状の振動体に
生じる縦振動モードをリング状に結合したようなモード
である。第6図(a)に示すリング断面の変位座標にお
いて半径方向変位Uおよび周方向変位Wは u=Acos(にθ+ψ1)cos(ωt+ψ2)  
−・・  0w = KAcos (Kθ+ψ、)co
s(ωt+ψ2)…  ■と表わされる。ここにAは振
巾、Kは波数、θはリング断面角度位置、ωは印加交番
電圧の周波数、ψ1 ・ψ2は位相ずれである。第6図
(b)はリング状弾性体2の主振動部2aのU、Wの変
位を表わしており24aが振動体の主振動部2aの内径
、24bが中心線、24cが外径のそれである。半径方
向の変位Uと周方向変位Wがあり、伸縮によるポアソン
変形によりリング断面の形状がわずかに変化する。同図
(b)では説明の為ポアソン変形分を極端に大きく表現
しである。25は第3動体3の接触面(ネジ部3a)を
表わすものでこのように波数がKの場合に個の点の接触
部をもち、これが進行波に伴って周方向に移動し回転す
る。従ってネジ部2d、3dを介さなければ移動体3は
回転運動のみ行うが、ネジ部を設けた為、ネジの送り方
向にスクリュー運動しながら移動する。
Here, the vibration mode generated in the main vibrating portion 2a of the elastic body 2 as described above will be explained with reference to FIGS. 6(a) and 6(b). In this embodiment, the expansion/contraction mode is used. In this mode, the displacement of the mass point is the main vibration part 2a of the ring-shaped elastic body 2.
It is a combination of longitudinal vibrations that occur in the circumferential direction and lateral vibrations that occur in the radial direction, and is like a ring-shaped combination of longitudinal vibration modes that occur in a rod-shaped vibrating body. In the displacement coordinates of the ring cross section shown in Fig. 6(a), the radial displacement U and the circumferential displacement W are u = Acos (to θ + ψ1) cos (ωt + ψ2)
−・・ 0w = KAcos (Kθ+ψ,)co
It is expressed as s(ωt+ψ2)...■. Here, A is the amplitude, K is the wave number, θ is the angular position of the ring cross section, ω is the frequency of the applied alternating voltage, and ψ1 and ψ2 are the phase shifts. FIG. 6(b) shows the displacements of U and W of the main vibrating part 2a of the ring-shaped elastic body 2, where 24a is the inner diameter of the main vibrating part 2a of the vibrating body, 24b is the center line, and 24c is the outer diameter. be. There is a radial displacement U and a circumferential displacement W, and the cross-sectional shape of the ring changes slightly due to Poisson deformation due to expansion and contraction. In FIG. 4(b), the Poisson deformation is shown extremely large for the sake of explanation. Reference numeral 25 represents the contact surface (threaded portion 3a) of the third moving body 3, which has a contact portion of several points when the wave number is K, and this moves and rotates in the circumferential direction along with the traveling wave. Therefore, if the threaded portions 2d and 3d were not used, the movable body 3 would perform only rotational motion, but since the threaded portion is provided, it moves while making a screw movement in the screw feeding direction.

第4図は、伸縮モードのときの振動体断面の模式図であ
る。18は振動体であり前記主振動部2aに相当する。
FIG. 4 is a schematic diagram of a cross section of the vibrating body in the expansion/contraction mode. 18 is a vibrating body and corresponds to the main vibrating section 2a.

振動体18は半径がR1径方向巾がb、軸方向中がhと
する。
The vibrating body 18 has a radius of R, a radial width of b, and an axial width of h.

伸縮モードの振動状態を説明する為に、■。In order to explain the vibration state of the expansion and contraction mode, ■.

■式において、簡単の為、ψ1=ψ2=0゜1=0とす
ると u =Acos Kφ 、  w = KAcosKφ
 □ ■振動体18の角部の′8動体との接触点pにお
ける径方向変位をΔU、軸方向変位Δ・lとすると、ポ
アソン変形を考慮して □  ■ ここに、νはポアソン比である。
■In the formula, for simplicity, if we set ψ1=ψ2=0゜1=0, then u = Acos Kφ, w = KAcosKφ
□ ■If the radial displacement at the contact point p of the corner of the vibrating body 18 with the moving body is ΔU, and the axial displacement Δ・l, taking Poisson deformation into consideration, □ ■ Here, ν is Poisson's ratio. .

従って、θをリング面と移動体の加圧方向W側のネジ山
とのなす角度とすると、pの変位方向(角度)ψは □ ■ と表わされる事から、次の関係が望まれる。
Therefore, if θ is the angle between the ring surface and the screw thread on the pressing direction W side of the movable body, the displacement direction (angle) ψ of p is expressed as □ ■, and the following relationship is desired.

□  ■ ■式はpの変位16が、加圧W17のネジ面に垂直方向
の成分17aと一致するまで(■式の等号が成立する時
)θを傾ければ十分であるという事である。■式から 0式は振動体の径方向中の限界を与えるものであり、0
式の条件を満足する振動体の形状・寸法・材質であれば
良好な出力が得られる事になる。
□ ■■Formula means that it is sufficient to tilt θ until the displacement 16 of p matches the component 17a in the direction perpendicular to the screw surface of pressurization W17 (when the equality sign in formula ■ holds true). . ■From the formula, formula 0 gives the limit in the radial direction of the vibrating body, and 0
Good output can be obtained if the shape, dimensions, and material of the vibrating body satisfy the conditions of the formula.

第5図は第1図の構成による本発明実施例に係る試作機
の人出力特性実測データである。横軸は軸方向の荷重、
縦軸はカーブ13aが軸方向の移動体3の8勤速度、カ
ーブ13bがその時の入力電力(消費電力)である。
FIG. 5 shows actual measured data on human output characteristics of a prototype machine according to an embodiment of the present invention having the configuration shown in FIG. The horizontal axis is the axial load,
On the vertical axis, a curve 13a represents the 8th shift speed of the moving body 3 in the axial direction, and a curve 13b represents the input power (power consumption) at that time.

以上において、ネジの形状は台形ネジに限らず三角ネジ
でもよく、ネジ山の数・ピッチ・条数・長さなどは必要
に応じ適宜設計で定めればよい。また、振動体の外径側
にネジを設はリング状署多動体の内径側にネジを設けて
両者を係合してもよく、またリング状fHL”J体の内
・外径側にネジを設けて、これらを該振動体の内側に在
る移動体および外側に在るリング状移動体とネジ結合し
た実施例も可能である。
In the above, the shape of the screw is not limited to a trapezoidal screw, but may be a triangular screw, and the number, pitch, number of threads, length, etc. of the screw threads may be appropriately determined as necessary. In addition, a screw may be provided on the outer diameter side of the vibrating body, a screw may be provided on the inner diameter side of the ring-shaped hyperactive body to engage the two, and a screw may be provided on the inner and outer diameter sides of the ring-shaped fHL"J body. It is also possible to provide an embodiment in which these are screwed to a moving body located inside the vibrating body and a ring-shaped moving body located outside the vibrating body.

また、上記実施例は補助振動子により支持された振動体
を用いるものであるが、フェルト等の吸振体で支持され
たタイプにも本発明は適用可能である。
Further, although the above embodiment uses a vibrating body supported by an auxiliary vibrator, the present invention is also applicable to a type supported by a vibration absorber such as felt.

(発明の効果) 以上説明したように、本発明によれば進行波型の振動波
モータの振動体の形状・寸法・材質を特定の条件のもの
とする事によって振動体の加圧を安定化でき、出力・効
率を高める事が可能となり、更に、モータ構成部品数も
少なく低コストでしかもコンパクトになし得る。
(Effects of the Invention) As explained above, according to the present invention, the shape, dimensions, and material of the vibrating body of a traveling wave type vibration wave motor are made to meet specific conditions, thereby stabilizing the pressurization of the vibrating body. This makes it possible to increase output and efficiency, and furthermore, the number of motor components is small, making it low cost and compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例のモータユニット構成断面図、 第2図は第1図における弾性体の斜視図、第3図(a)
、(b)は上記実施例における圧T4素子の平面図、 第4図は振動体断面の模式図、 第5図は本発明実施例の入出力特性の実測グラフ、 第6図(a)、(b)は伸縮モードの動作説明図である
。 1は圧電素子、2は弾性体、3は移動体、4は固定体、
2aは主振動部、2bは補助振動子、2cは固定部 ・帛1図 伺 重 〔9f〕 第6図 (b)
Fig. 1 is a sectional view of the motor unit configuration according to an embodiment of the present invention, Fig. 2 is a perspective view of the elastic body in Fig. 1, and Fig. 3 (a).
, (b) is a plan view of the pressure T4 element in the above embodiment, Fig. 4 is a schematic diagram of a cross section of the vibrating body, Fig. 5 is a measured graph of input/output characteristics of the embodiment of the present invention, Fig. 6 (a), (b) is an explanatory diagram of the operation in the expansion/contraction mode. 1 is a piezoelectric element, 2 is an elastic body, 3 is a moving body, 4 is a fixed body,
2a is the main vibrating part, 2b is the auxiliary vibrator, 2c is the fixed part. [9f] Figure 6(b)

Claims (1)

【特許請求の範囲】 1、内側または外側にネジを有するリング状弾性体と、
該リング状弾性体に周方向に進む進行性振動波を発生さ
せる手段と、該リング状弾性体にネジ嵌合関係にあり、
上記リング状弾性体に生じた進行性振動波により駆動さ
れる移動体とを備え、上記リング状振動体に励振される
振動モードが伸縮モードであり、該リング状振動体の軸
方向の巾hを h≦{(2πR)/(νK)+b}tan(π/2−θ
) としたことを特徴とする振動波モータ。 (但し、Rはリング状振動体の中心半径、bはその半径
方向巾、νはポアソン比、Kはリング状振動体の全周に
乗る波数、θは前記ネジのネジ山角である。)
[Claims] 1. A ring-shaped elastic body having a thread on the inside or outside;
a means for generating a progressive vibration wave that propagates in the circumferential direction in the ring-shaped elastic body;
a moving body driven by progressive vibration waves generated in the ring-shaped elastic body, the vibration mode excited in the ring-shaped vibrating body is a stretching mode, and the width h in the axial direction of the ring-shaped vibrating body is h≦{(2πR)/(νK)+b}tan(π/2−θ
) A vibration wave motor characterized by the following. (However, R is the center radius of the ring-shaped vibrating body, b is its radial width, ν is Poisson's ratio, K is the number of waves riding on the entire circumference of the ring-shaped vibrating body, and θ is the thread angle of the screw.)
JP61232664A 1986-09-30 1986-09-30 Oscillatory-wave motor Pending JPS6389079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61232664A JPS6389079A (en) 1986-09-30 1986-09-30 Oscillatory-wave motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61232664A JPS6389079A (en) 1986-09-30 1986-09-30 Oscillatory-wave motor

Publications (1)

Publication Number Publication Date
JPS6389079A true JPS6389079A (en) 1988-04-20

Family

ID=16942855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61232664A Pending JPS6389079A (en) 1986-09-30 1986-09-30 Oscillatory-wave motor

Country Status (1)

Country Link
JP (1) JPS6389079A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7805811B2 (en) 2001-02-06 2010-10-05 Multimatic Advanced Technologies, Inc. Vehicle door hinge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7805811B2 (en) 2001-02-06 2010-10-05 Multimatic Advanced Technologies, Inc. Vehicle door hinge

Similar Documents

Publication Publication Date Title
JPS59110389A (en) Vibration wave motor
JPH05949B2 (en)
JPH0117353B2 (en)
JPH03289375A (en) Cylindrical ultrasonic wave motor
JP4328412B2 (en) Vibration type actuator and vibration type drive device
JP4119903B2 (en) Flat plate piezoelectric ultrasonic motor
US4779019A (en) Electrostriction motor
JPS6389079A (en) Oscillatory-wave motor
JPS6389076A (en) Oscillatory-wave motor
JPS62260567A (en) Oscillatory wave motor
JPS6389077A (en) Oscillatory-wave motor
JPS6389078A (en) Osclllatory-wave motor
JPS62247770A (en) Ultrasonic motor
JPS6389082A (en) Oscillatory-wave motor
JPH0332377A (en) Ultrasonic motor
JPS6389080A (en) Oscillatory-wave motor
JPS60183981A (en) Supersonic wave motor
JPH0491677A (en) ultrasonic motor
JP2003164171A (en) Oscillatory wave drive unit
JPS62201072A (en) Oscillatory wave motor
JPH0150196B2 (en)
CN115224974B (en) A rotary piezoelectric ultrasonic motor and a driving method thereof
JPH05344759A (en) Ultrasonic motor
JPS60226781A (en) Supersonic wave motor
JPS63110973A (en) Piezoelectric driver