[go: up one dir, main page]

JPS6388304A - Piston speed controlling method of air cylinder and control valve thereof - Google Patents

Piston speed controlling method of air cylinder and control valve thereof

Info

Publication number
JPS6388304A
JPS6388304A JP23207686A JP23207686A JPS6388304A JP S6388304 A JPS6388304 A JP S6388304A JP 23207686 A JP23207686 A JP 23207686A JP 23207686 A JP23207686 A JP 23207686A JP S6388304 A JPS6388304 A JP S6388304A
Authority
JP
Japan
Prior art keywords
piston
valve
air cylinder
needle valve
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23207686A
Other languages
Japanese (ja)
Inventor
Shigemi Yoshikawa
吉川 成美
Hikari Tanaka
光 田中
Michiya Kato
道哉 加藤
Satoru Okada
悟 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pacific Industrial Co Ltd
Original Assignee
Pacific Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacific Industrial Co Ltd filed Critical Pacific Industrial Co Ltd
Priority to JP23207686A priority Critical patent/JPS6388304A/en
Publication of JPS6388304A publication Critical patent/JPS6388304A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To allow the smooth stop of a piston even if the inertia of a load is large by combining an air cylinder with air flow control valves and a controller which automatically controls sensors and the openings of air flow control valves. CONSTITUTION:Air flow control valves 20 and 20a are constructed such that the passage of needle valve 21 whose opening is manually adjusted and the passage of needle valve 23 whose opening is adjusted with a piezoelectric element 22 are respectively and independently provided to one inflow port 26. On a double acting air cylinder 3 are installed sensors 30-35, which sense the position of a piston 2, and whose signals are inputted to a controller 24. An output from the controller 24 controls the voltage to be given to the piezoelectric element 22. Since this constitution makes it possible to decrease a pressurizing force before the piston 2 reaches the end of the air cylinder 3 and to decelerate the piston 2, it is possible to make a smooth stop even if the inertia of a load is large.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は産業用機械の駆動部品として多用されているエ
アシリンダのピストン動作速度を、ピストンの作動始め
と終わりの位置において、任意な速度に減速して制御す
る方法およびこれに使用する制御弁に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention is capable of adjusting the piston operating speed of an air cylinder, which is often used as a driving part of industrial machinery, to an arbitrary speed at the start and end positions of the piston. The present invention relates to a method of deceleration and control and a control valve used therefor.

[従来の技術] 複動エアシリンダの基本的な方向制御の方法としては、
第4図に示すごとくピストンロッド■とピストン■を有
するエアシリンダ■、逆止弁■と手動針状弁■を有する
流量調整弁■■aおよびスプール[相]の操作により切
換え可能なエアの入口■■aと出口■■aと排気口■■
aを有する4方向制御弁■とからなる制御回路が使用さ
れている。
[Prior art] The basic directional control method for double-acting air cylinders is as follows:
As shown in Figure 4, an air cylinder ■ having a piston rod ■ and a piston ■, a flow rate regulating valve ■■a having a check valve ■ and a manual needle valve ■, and an air inlet that can be switched by operating the spool [phase] ■■a and outlet■■a and exhaust port■■
A control circuit is used consisting of a four-way control valve (1) with a.

尚、図面中0.[相]はエアシリンダ■の空気流出入口
である。
In addition, 0. [Phase] is the air inlet and outlet of the air cylinder ■.

また、第5図は前記流ffi調整弁■■aの縦断面図で
ある。
Further, FIG. 5 is a longitudinal cross-sectional view of the flow ffi adjusting valve (■■a).

今、エアシリンダ[3]のピストン■を第4図上で右方
向へ移動させるときには、エアが4方向制御弁0の入ロ
■→出ロ■→流量調葺弁■の逆止弁■と手動針状弁■を
並列的に通り→エアシリンダの空気流出入口@へと供給
され、図中二点鎖線で示す位置まで移動する。この時に
ピストン■の右側のエアはエアシリンダの空気流出入口
0から流量調整弁■の手動針状弁■を通り、4方向制御
弁[21]の排気口■から大気中に排気される。
Now, when moving the piston ■ of the air cylinder [3] to the right in Fig. 4, air flows through the inlet ■→outlet of the four-way control valve 0→the check valve ■of the flow rate adjustment valve■. The air passes through the manual needle valve (■) in parallel and is supplied to the air inlet (@) of the air cylinder, and moves to the position indicated by the two-dot chain line in the figure. At this time, the air on the right side of the piston (2) passes from the air inflow/outlet port 0 of the air cylinder to the manual needle valve (2) of the flow rate adjustment valve (2), and is exhausted to the atmosphere from the exhaust port (2) of the four-way control valve [21].

尚、ピストン■を左側へ移動させるときには、4方向制
御弁[21]のスプール[相]の切換え操作により入口
■aと出口■aと排気口■aとが左に移動してエアは逆
方向に流れる。
When moving the piston ■ to the left, the inlet ■a, outlet ■a, and exhaust port ■a move to the left by switching the spool [phase] of the four-way control valve [21], and the air flows in the opposite direction. flows to

このような構成においては、前記手動針状弁■■の弁開
度に応じて排出空気の流れる量を規制するものであるか
ら、ピストン■の移動速度はピストンの作動始めの加速
域を除き任意の一定した速さに設定できるようになって
いる。
In such a configuration, the flow rate of the exhaust air is regulated according to the opening degree of the manual needle valve ■■, so the moving speed of the piston ■ can be set arbitrarily, except in the acceleration range at the beginning of piston operation. The speed can be set to a constant speed.

[発明が解決しようとする問題点] 第4図に示した構成において、たとえば、ピストン■を
エアシリンダ[3]の左端位置から右方向へ移動させよ
うとする場合、空気圧がピストン■の′左面に作用して
、ピストン■、ピストンロッド■およびそれに接続され
た負荷(図示しない)の慣性抵抗と負荷抵抗に対抗して
右方向へ移動させる力を与え、それによってピストン■
の移動速度が一定速度になるまで加速される。またピス
トン■がエアシリンダ[3]の右端近くに達した時にお
いても、ピストン■の左面に作用する空気圧は変らない
ので、ピストン■がエアシリンダ[3]の右端にはげし
く衝突するという問題があった。このような従来の場合
のピストン位置とピストン速度の関係を、第3図に破線
で示している。
[Problems to be Solved by the Invention] In the configuration shown in FIG. acts on the piston ■, the piston rod ■, and the load (not shown) connected to it to exert a force to move it in the right direction against the inertial resistance and load resistance, thereby causing the piston ■
is accelerated until its movement speed reaches a constant speed. Furthermore, even when the piston ■ reaches near the right end of the air cylinder [3], the air pressure acting on the left side of the piston ■ does not change, so there is a problem that the piston ■ violently collides with the right end of the air cylinder [3]. Ta. The relationship between the piston position and piston speed in such a conventional case is shown by a broken line in FIG.

従来、ピストン■がエアシリンダ[3]の左端および右
端に衝突する直前のところには、いろいろな方式のクッ
ションが設けられていて衝撃力を緩和するようにされて
はいるが、負荷の慣性が大きい場合は円滑な停止ができ
なかった。
Conventionally, cushions of various types have been installed just before the piston ■ collides with the left and right ends of the air cylinder [3] to alleviate the impact force, but the inertia of the load If it was too large, it would not be possible to stop smoothly.

[問題点を解決するための手段] 本発明は、第1図に示すようにエアシリンダ■に、第2
図に示すごとき空気流量制御弁[相][相]aと、セン
サ[相]〜@および前記空気流量制御弁[相][相]a
の開度を自動制御させる制御装置のを組合わせて使用す
ることによって従来の問題点を解決するものである。
[Means for solving the problems] As shown in FIG.
Air flow control valve [phase] [phase] a as shown in the figure, sensors [phase] to @ and the air flow control valve [phase] [phase] a
The conventional problems are solved by using a control device that automatically controls the opening degree of the valve.

すなわち、空気流全制御弁[相][相]aは第2図に示
すように、1つの流入口[相]に対し、手動により開度
を調節する針状弁[21]の流路と圧電素子C等により
開度を調節する針状弁0の流路とを各々独立的に設けた
ものであり、このような空気流量制御弁[相]@laを
第1図に示すように、ピストン■の外周部に永久磁石の
を設けた複動エアシリンダ[3]の左右端の空気流出入
口0■にそれぞれ対称的に取付け、一方、前記複動エア
シリンダ■には、左端部にピストン■の位置を検知する
センサ[相]〜0を設けろと共に右端部にピストン■の
位置を検出するセンサ■〜Qを設け、これら左右端部の
センサはそれぞれ両端部に位置する程針状弁を大きくふ
さぐようにして、これら各センサから送られる信号によ
りて、制御装置のが空気流量制御弁[相][相]aの圧
電素子0に加える電圧を制御して針状弁0の開度を調節
するごとく構成して、ピストン■の作動始めと終わりの
位置で移動速度を任意なスピードに減速制御できるよう
にしたものである。
In other words, as shown in Fig. 2, the air flow total control valve [phase] [phase] a is a flow path of a needle valve [21] whose opening degree is manually adjusted for one inlet [phase]. A needle valve 0 whose opening degree is adjusted by a piezoelectric element C or the like is provided independently, and such an air flow control valve [phase] @la is shown in Fig. 1. The double-acting air cylinder [3] has a permanent magnet on its outer periphery, and is installed symmetrically at the air outlet 0■ at the left and right ends of the double-acting air cylinder [3]. A sensor [phase] ~0 is provided to detect the position of piston ■, and a sensor ~Q is provided at the right end to detect the position of piston ■. The control device controls the voltage applied to the piezoelectric element 0 of the air flow control valve [phase] [phase] a to control the opening degree of the needle valve 0, using the signals sent from these sensors. It is configured to be adjustable so that the moving speed can be controlled to be reduced to an arbitrary speed at the start and end positions of the piston (2).

なお、センサ[相]〜■には、たとえば磁気に感応する
リードスイッチが使用され、ピストン■に取付られた永
久磁石@が近づいた時にスイッチが開閉動作するように
なされており、センサ[相]〜■から得られた信号は、
トランジスタ方式の電子式あるいはマイクロコンピュー
タ式の制御装置のへ伝えられ、そこで直流電圧に変換さ
れて、制御弁の圧電素子Ooに供給される。圧電素子O
oは一般的なものであるので図示しないが、供給された
電圧に比例して縦方向に長さが伸び、これを適宜な増幅
手段により針状弁■[21]の開度を変える働きをして
いる。■は公知の4方向制御井である。
For the sensors [phase] to ■, for example, reed switches that are sensitive to magnetism are used, and the switches open and close when the permanent magnet @ attached to the piston ■ approaches, and the sensors [phase] The signal obtained from ~■ is
The voltage is transmitted to a transistor-type electronic or microcomputer-type control device, where it is converted into a DC voltage and supplied to the piezoelectric element Oo of the control valve. Piezoelectric element O
o is not shown because it is a general type, but its length extends in the vertical direction in proportion to the supplied voltage, and this serves to change the opening degree of the needle valve ■ [21] using appropriate amplification means. are doing. (2) is a known four-way control well.

上記説明において、針状弁[21]の開度を変える働き
をする圧電素子0は、セラミックに電圧を印加した時に
歪を生ずる性質を有するものを指しているが、たとえば
、コイルと鉄心を組み合わせて電圧をかけた時に鉄心が
移動するソレノイド形式のものであっても電圧をかけて
から鉄心が移動するまでの時間が短いものであれば、セ
ラミック圧電素子と同じ効果を得ることができる。
In the above explanation, the piezoelectric element 0 that functions to change the opening degree of the needle valve [21] refers to a ceramic element that has the property of causing distortion when a voltage is applied to it. Even with a solenoid type device in which the core moves when voltage is applied, the same effect as a ceramic piezoelectric element can be obtained as long as the time from application of voltage to the core movement is short.

[作用] 第1図において、センサ[相]〜@により得られるピス
トン位置情報によフて、第2図に示す空気流量制御弁[
相]@1aの針状弁[21]の開度を制御する例を第1
表に示し、また、その時のピストン移動速度線図を第3
図に示す。第3図中に実線で示したものは本発明の結果
得られた特性であり、破線で示したものは、第4図で説
明した従来の方法の特性を示す。
[Function] In FIG. 1, based on the piston position information obtained by the sensors [phase] to @, the air flow control valve [ shown in FIG.
The first example shows an example of controlling the opening degree of the needle valve [21] of phase] @1a.
Table 3 shows the piston movement speed diagram at that time.
As shown in the figure. What is shown by a solid line in FIG. 3 is the characteristic obtained as a result of the present invention, and what is shown by a broken line is the characteristic of the conventional method explained in FIG.

第1表 ピストンが右側へ8動する時の針状弁0の開度
(%)の例第1表および第3図の動作状態を説明すると
、ピストン■がエアシリンダ[3]の左端にある時には
、センサ[相]がその信号を電子制御装置0へ送り、空
気流量制御弁0および[相]aの針状弁0は100%開
度(全開)している。この際両制御弁[相][相]aの
針状弁■■は所定の開度に設定されている。
Table 1 Example of opening degree (%) of needle valve 0 when the piston moves 8 to the right At times, the sensor [phase] sends its signal to the electronic control unit 0, and the air flow control valve 0 and the needle valve 0 of [phase] a are 100% open (fully open). At this time, the needle valves of both control valves [phase] [phase] a are set to predetermined opening degrees.

したがってエアシリンダ■内のピストン■の左側へは最
大量の圧縮空気が送られ、第3図グラフの左端部のカー
ブ(図中aで示す)のスタート時に示されるようにピス
トン■は急加速される。
Therefore, the maximum amount of compressed air is sent to the left side of the piston ■ in the air cylinder ■, and the piston ■ is rapidly accelerated as shown at the start of the curve at the left end of the graph in Figure 3 (indicated by a in the figure). Ru.

ピストン■がセンサ■の位置まで移動した時には、空気
流量制御弁[相]は100%開度のままであるが、空気
流量制御弁[相]aの針状弁のは、センサ[21]の信
号により制御装置0を介して50%開度に変るので、ピ
ストン■への加圧力はやや減少し、第3図では急上昇の
直線と低速度の直線で示される間のカーブしている曲線
(図中すて示す)のようになる。
When the piston ■ moves to the position of the sensor ■, the air flow control valve [phase] remains at 100% opening, but the needle valve of the air flow control valve [phase] a is closed to the sensor [21]. Since the opening degree is changed to 50% via the control device 0 in response to the signal, the pressurizing force on the piston (■) decreases slightly, and in Fig. 3, the curve that curves between the straight line of rapid increase and the straight line of low speed ( (not shown in the figure).

ピストン■がセンサ@の位置まで移動した時には、セン
サ@の信号により空気流量制御弁[相]の針状弁Φ開度
は100%のままで、空気流量制御弁[相]aの針状弁
のは0%(全閉)に変えられるので、センサ0からQの
区間では空気流量制御弁[相]@laO中の予め設定さ
れた手動針状弁[21]の開度で規制された等速度移動
(図中Cで示す)を行う。
When the piston ■ moves to the position of the sensor @, the needle valve Φ of the air flow control valve [phase] remains at 100% due to the signal of the sensor @, and the needle valve of the air flow control valve [phase] a can be changed to 0% (fully closed), so in the section from sensor 0 to Q, the opening degree of the preset manual needle valve [21] in the air flow control valve [phase] @laO is regulated. Perform speed movement (indicated by C in the figure).

ピストン■がセンサ■の位置まで移動した時には、空気
流量制御弁[相]の針状弁@の開度は50%に変り、空
気流量制御弁[相]aの針状弁はO%開度のままなので
、ピストン■への加圧力はやや減少する。
When the piston ■ moves to the position of the sensor ■, the opening degree of the needle valve @ of the air flow control valve [phase] changes to 50%, and the opening degree of the needle valve @ of the air flow control valve [phase] A changes to 0% opening. As it remains the same, the pressure applied to the piston ■ decreases slightly.

ピストン■がセンサ0の位置まて移動した時には、空気
流量制御弁[相]の針状弁00開度は0%(全開)に変
り、空気流量制御弁[相]aの針状弁は0%開度のまま
なので、ピストン■への加圧力はさらに減少する。その
結果センサ位置0から@の間てはピストン■の移動速度
が針状弁[21]の開度にのみ規制されて小さくなり、
ピストン■がエアシリンダ[3]の右端へ衝突する衝撃
力を緩和するのに役立っている。
When the piston ■ moves to the position of sensor 0, the needle valve 00 opening degree of the air flow control valve [phase] changes to 0% (fully open), and the needle valve of the air flow control valve [phase] a changes to 0% (fully open). Since the opening remains at %, the pressure applied to the piston (■) further decreases. As a result, between the sensor position 0 and @, the moving speed of the piston ■ is limited only by the opening degree of the needle valve [21] and becomes small.
The piston ■ serves to reduce the impact force that collides with the right end of the air cylinder [3].

ピストン■が前記と逆にエアシリンダ[3]の右から左
へ移動する時には、第1表のセンサが左右に、また空気
流量制御弁が、上下入れ変った動作をするようになフて
いる。従ってピストン速度も第3図の左右がいれ変わっ
た状態となる。
When the piston ■ moves from the right to the left of the air cylinder [3] in the opposite way to the above, the sensors listed in Table 1 operate left and right, and the air flow control valve operates in reverse order. . Therefore, the piston speed also changes from left to right in FIG.

[発明の効果] 本発明では、ピストン■がエアシリンダ[3]の端部に
到達する前に加圧力を減少させて減速しているので、円
滑な停止が可能になった。
[Effects of the Invention] In the present invention, since the pressing force is reduced and the piston (3) is decelerated before reaching the end of the air cylinder [3], it is possible to stop the piston smoothly.

また、第3図であきらかなように、ピストン■がエアシ
リンダ[3]の端部から動き始める時の加速がゆるやか
なので、起動衝撃力が小さく、機械の動きがスムーズに
なるという利点がある。
Furthermore, as is clear from Fig. 3, since the acceleration when the piston (2) starts moving from the end of the air cylinder [3] is gradual, there is an advantage that the starting impact force is small and the movement of the machine is smooth.

さらに、本発明の空気流量制御弁[相]には従来と同じ
手動調節針状弁■が針状弁0と共に併置されているので
、定速度域(第1図のセンサ@〜Qの間)における微妙
な速度調整を手動により行うようにしてあり、経験と直
感を重視する熟練技能者は、この手動弁の操作を従来通
りの手法で行えるので、心理的な抵抗が少ない。
Furthermore, in the air flow control valve [phase] of the present invention, the same manual adjustment needle valve ■ as the conventional one is placed together with the needle valve 0, so that the air flow rate control valve [phase] is located in the constant speed range (between sensor @ and Q in Fig. 1). Delicate speed adjustments are made manually, and experienced technicians who place importance on experience and intuition can operate this manual valve in the conventional manner, so there is little psychological resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る空気流量制御弁をエアシリンダと
組合わせてピストン速度を制御する方法を説明する系統
図。第2図は本発明に係る空気流量制御弁の縦断面図。 第3図はピストンのストロークと移動速度の関係を示す
グラフ。第4図は従来のエアシリンダのピストン速度を
制御する方法を説明する系統図。第5図は従来の流量調
整弁の縦断面図。 ■・・・ピストンロッド、■・・・ピストン、■・・・
エアシリンダ、■・・・逆止弁、■・・・手動針状弁、
■■a・・・流量調整弁、■■a・・・入口、■■a・
・・出口、■■a・・・排気口、[相]スプール、■・
・・4方向制御弁、@■・・・空気流出入口、[相][
相]a・・・空気流量制御弁、■・・・手動操作の針状
弁、■・・・圧電素子、■・・・圧電素子により作動す
る針状弁、■・・・制御装置、@・・・永久磁石、[株
]・・・流入口、0@・・・連通口、0・・・流出口、
[相]〜■はセンサ。
FIG. 1 is a system diagram illustrating a method for controlling piston speed by combining an air flow control valve according to the present invention with an air cylinder. FIG. 2 is a longitudinal sectional view of the air flow control valve according to the present invention. FIG. 3 is a graph showing the relationship between piston stroke and moving speed. FIG. 4 is a system diagram illustrating a conventional method for controlling the piston speed of an air cylinder. FIG. 5 is a longitudinal sectional view of a conventional flow rate regulating valve. ■...Piston rod, ■...Piston, ■...
Air cylinder, ■...Check valve, ■...Manual needle valve,
■■a...Flow rate adjustment valve, ■■a...Inlet, ■■a・
・・Outlet, ■■a...Exhaust port, [phase] spool, ■・
・・4-way control valve, @■・・・Air inlet/outlet, [phase] [
Phase] a... Air flow rate control valve, ■... Manually operated needle valve, ■... Piezoelectric element, ■... Needle valve operated by piezoelectric element, ■... Control device, @ ...Permanent magnet, [Stock]...Inlet, 0@...Communication port, 0...Outlet,
[Phase]~■ is a sensor.

Claims (2)

【特許請求の範囲】[Claims] (1)1つの流入口[26]に対し、手動により開度を
調節する針状弁[21]の流路と圧電素子[22]等に
より開度を調節する針状弁[23]の流路とを各々独立
的に設けた空気流量制御弁[20][20]aを、複動
エアシリンダ[3]の両端の空気流出入口[12]およ
び[13]に対称的に取付けると共に両空気流量制御弁
[20][20]aの間に4方向制御弁[11]を設け
、エアシリンダ[3]内のピストン[2]の左右の端部
近傍にピストン位置を検出する複数のセンサ[30]〜
[35]を設け、ピストンの移動によりこれら各センサ
から送られてくる信号によって、制御装置[24]を介
して空気流量制御弁[20][20]aの圧電素子[2
2][22]に加える電圧を制御して針状弁[23][
23]の開度を調節することによりピストン[2]の作
動始めと終わりの方をゆるやかに移動させることを特徴
とするエアシリンダのピストン速度制御方法。
(1) For one inlet [26], the flow path of the needle valve [21] whose opening degree is adjusted manually and the flow path of the needle valve [23] whose opening degree is adjusted by a piezoelectric element [22] etc. Air flow control valves [20] and [20]a, each having an independent channel, are installed symmetrically to the air inlets and inlets [12] and [13] at both ends of the double-acting air cylinder [3]. A four-way control valve [11] is provided between the flow control valves [20] and [20]a, and a plurality of sensors [11] for detecting the piston position are provided near the left and right ends of the piston [2] in the air cylinder [3]. 30]~
[35] is provided, and the piezoelectric element [2
2] By controlling the voltage applied to [22], the needle valve [23][
23] A piston speed control method for an air cylinder, characterized in that the piston [2] is gradually moved from the beginning to the end of its operation by adjusting the opening degree of the piston [2].
(2)1つの流入口[28]に対して2つの独立した連
通口[27][28]を形成し、該連通口[27][2
8]の出口に弁座を形成すると共に前記両連通口[27
][28]に連通する1つの流出口[29]を設け、前
記の一方の弁座側には手動により開度を調節する針状弁
[21]を、また他方の弁座側には圧電素子[22]に
より開度を調節する針状弁[23]を設けたことを特徴
とする制御弁。
(2) Two independent communication ports [27] [28] are formed for one inflow port [28], and the communication ports [27] [2
A valve seat is formed at the outlet of [8], and both communication ports [27
] [28] is provided, a needle valve [21] whose opening degree is manually adjusted is provided on one valve seat side, and a piezoelectric valve is provided on the other valve seat side. A control valve characterized by being provided with a needle valve [23] whose opening degree is adjusted by an element [22].
JP23207686A 1986-09-29 1986-09-29 Piston speed controlling method of air cylinder and control valve thereof Pending JPS6388304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23207686A JPS6388304A (en) 1986-09-29 1986-09-29 Piston speed controlling method of air cylinder and control valve thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23207686A JPS6388304A (en) 1986-09-29 1986-09-29 Piston speed controlling method of air cylinder and control valve thereof

Publications (1)

Publication Number Publication Date
JPS6388304A true JPS6388304A (en) 1988-04-19

Family

ID=16933614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23207686A Pending JPS6388304A (en) 1986-09-29 1986-09-29 Piston speed controlling method of air cylinder and control valve thereof

Country Status (1)

Country Link
JP (1) JPS6388304A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127404U (en) * 1991-05-13 1992-11-19 隆 木村 Pneumatic switching valve control device
JPH05106605A (en) * 1991-10-14 1993-04-27 Honda Motor Co Ltd Fluid circuit for driving cylinder
WO2004085854A1 (en) * 2003-03-26 2004-10-07 Kayaba Industry Co., Ltd. Control device for hydraulic cylinder
KR100675987B1 (en) 2003-06-17 2007-01-29 가부시기가이샤 다이신 Hydraulic actuator
JP2014055631A (en) * 2012-09-12 2014-03-27 Nippon Pisuko:Kk Speed controller

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127404U (en) * 1991-05-13 1992-11-19 隆 木村 Pneumatic switching valve control device
JPH05106605A (en) * 1991-10-14 1993-04-27 Honda Motor Co Ltd Fluid circuit for driving cylinder
WO2004085854A1 (en) * 2003-03-26 2004-10-07 Kayaba Industry Co., Ltd. Control device for hydraulic cylinder
GB2413862A (en) * 2003-03-26 2005-11-09 Kayaba Industry Co Ltd Control device for hydraulic cylinder
GB2413862B (en) * 2003-03-26 2006-06-21 Kayaba Industry Co Ltd Control apparatus for hydraulic cylinder
US7387061B2 (en) 2003-03-26 2008-06-17 Husco International, Inc. Control apparatus for hydraulic cylinder
KR100675987B1 (en) 2003-06-17 2007-01-29 가부시기가이샤 다이신 Hydraulic actuator
JP2014055631A (en) * 2012-09-12 2014-03-27 Nippon Pisuko:Kk Speed controller

Similar Documents

Publication Publication Date Title
US4136600A (en) Arrangement for controlling the speed of a hydraulic motor
US4883091A (en) Multi-port self-regulating proportional pressure control valve
US3938282A (en) Sliding door operator
JPS6388304A (en) Piston speed controlling method of air cylinder and control valve thereof
KR20210139160A (en) Valve device, system and method
JPH08189502A (en) Pilot operation hydraulic circuit for main change-over valve
US5129421A (en) Two-position and three-way valve
JPH08270605A (en) Positioning device for air cylinder
US3835751A (en) Fluid operated system
US3948148A (en) Devices for controlling pneumatic actuators
US3332322A (en) Pneumatic system and parts therefor or the like
JPS63275802A (en) Method and apparatus for decelerating hydraulic cylinder
JPH09133107A (en) Electromagnetic proportional servo valve
JPS62256417A (en) Dc magnet apparatus
JPH09303307A (en) Control device of hydraulic cylinder
Pu et al. Steady state analysis of pneumatic servo drives
JPS58225202A (en) Speed control system
DE3806969A1 (en) Electrohydraulic adjusting mechanism for actuation of the inlet and exhaust valves in internal combustion engines
JP2597362Y2 (en) Pneumatic cylinder speed control device
JPS58131406A (en) Control device of compressed air operating actuator
JP2567378B2 (en) Drive cylinder servo controller
JPH038851Y2 (en)
JPS6221830Y2 (en)
JPH0658307A (en) Changeover controller of direction control valve
JPH07158602A (en) Reciprocating inversion driving system