JPS6386832A - Manufacturing method of rare earth sintered alloy permanent magnet - Google Patents
Manufacturing method of rare earth sintered alloy permanent magnetInfo
- Publication number
- JPS6386832A JPS6386832A JP23047386A JP23047386A JPS6386832A JP S6386832 A JPS6386832 A JP S6386832A JP 23047386 A JP23047386 A JP 23047386A JP 23047386 A JP23047386 A JP 23047386A JP S6386832 A JPS6386832 A JP S6386832A
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- sintering
- atmosphere
- earth sintered
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052761 rare earth metal Inorganic materials 0.000 title claims description 27
- 150000002910 rare earth metals Chemical class 0.000 title claims description 26
- 229910045601 alloy Inorganic materials 0.000 title claims description 8
- 239000000956 alloy Substances 0.000 title claims description 8
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 238000005245 sintering Methods 0.000 claims description 23
- 239000000843 powder Substances 0.000 claims description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 12
- 239000007789 gas Substances 0.000 claims description 9
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 239000013078 crystal Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 206010011878 Deafness Diseases 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 231100000895 deafness Toxicity 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 208000016354 hearing loss disease Diseases 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Powder Metallurgy (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、粒成長や残留ボアが著しく少なく、かつ結
晶配向の乱nや変形のほとんどない、磁気特注の丁ぐれ
た希土類焼結合金製永久磁石C以下焼結希土類磁石とい
う〕の製造法に閣下るものである。[Detailed Description of the Invention] [Industrial Application Field] This invention is a magnetically custom-made finely arranged rare earth sintered alloy that has significantly less grain growth and residual bore, and has almost no disorder of crystal orientation or deformation. We are proud of the manufacturing method for permanent magnets (hereinafter referred to as sintered rare earth magnets).
Sm − Co系やNd−Fe−B系などの焼結希土類
磁石は、その高磁石特性が評価さnて、近年著しく開発
が進み、広く実用に供さnている。Sintered rare earth magnets such as Sm--Co and Nd--Fe--B have been highly evaluated for their high magnetic properties, have been significantly developed in recent years, and are now in widespread practical use.
一般に、こnら焼結希土類磁石は、希土類合金微粉本エ
リ、磁場中あるいは無磁場中でプレス成形した圧粉体を
、真空中あるいは非酸化性ガス雰囲気中で、例えば10
00〜1250’Cの焼結温度に30〜60分間保持の
条件で焼結下ることによって製造さnている。In general, these sintered rare earth magnets are made by press-molding fine powder of rare earth alloy in a magnetic field or in no magnetic field, and press-forming it in a vacuum or in a non-oxidizing gas atmosphere, for example, for 10 min.
It is manufactured by sintering at a sintering temperature of 00 to 1250'C and held for 30 to 60 minutes.
しかし、上記の従来焼結希土類磁石の製造において、焼
結゛雰囲気?真空として固相完結7行なつ几場台には、
結晶粒の成長が避けらnず、でた同じく真空雰囲気とし
て液相焼結2行なりt場合には、粒成長のほかに、結晶
配向の乱g ? 7形が発生し、さらに焼結雰囲気を非
酸化性ガスとしfc場台には、固相および液相焼にのい
ず几でも焼精体中にボアが残留下るようンてなるもので
あり、こ牡らの粒成長、結晶配向の乱n1および残留ボ
アはいずILも磁気W注低下の原因となるものである。However, in the production of the conventional sintered rare earth magnets mentioned above, the sintering atmosphere? The solid state completes as a vacuum in the 7-line Natsu Kōbadai,
If crystal grain growth is unavoidable and liquid-phase sintering is carried out in a vacuum atmosphere, in addition to grain growth, disturbances in crystal orientation may occur. Type 7 is generated, and if the sintering atmosphere is set to a non-oxidizing gas, a bore will remain in the sintered body in both solid phase and liquid phase sintering. , grain growth of grains, disordered crystal orientation n1, and residual bores, both IL, are causes of a decrease in magnetic W note.
そこで、本発明者等は、上述のような観点から、粒成長
や結晶配向の乱れ、さらに残留ボアのない焼結希土類磁
石全製造下べく研究を行1つ友結果、焼結温度での保持
時間の前半の雰囲気乞、減圧、常圧、あるいは加圧状態
の水素ガスとすると、この水素ガスには結晶粒の成長を
著しく抑制し、かつ液相焼結の場合にも結晶配向の乱れ
や変形を抑制する作用があるので、こ九らの粒成長や結
晶配向の乱れ、さらに!形のほとんどない一次焼結体が
形成さnるようになり、−万この一次焼結体には、その
表面部にオープンボアは存在しないが、内部に水素ガス
によるクローズドボアが存在するものであり、この状態
から引続いての後半な高圧の非酸化法ガス雰囲気に切り
換えて焼結を行なうと、水素ガスには上記作用のほかに
、−次焼結体中Y容易に拡散する作用があるので、粒成
長や結晶配向の乱nが抑制さnfc状態で、晶出雰囲気
と含まって、残留ボアを形成下る水素ガス力;拡W!、
放出さnるよつになることから、粒成長やダ聾留7i<
アが著しく少なく、かつ結晶配向の乱7’Lや変形のi
%とんどlい、磁石特性の丁ぐnた暁結希土順磁石が得
られろようになるという知見を得たのである、つこの発
明は、上記知見にもとづいてなさ71 fr−ものであ
って、希土類会社微粉末よりブレス成形した圧粉体な、
焼結温度での保持時間の前半を減圧、常圧、あるいは加
圧の水素ガス雰囲気とし、その後半を高圧の非酸化性ガ
ス雰囲気とした条件で焼結することによって磁石特性の
丁ぐ′nた焼結名土類磁石を製造する方法に特徴を有す
るちθ〕である。Therefore, from the above-mentioned viewpoint, the present inventors conducted research to fully manufacture sintered rare earth magnets that are free from grain growth, disturbance of crystal orientation, and residual bores, and found that they can be maintained at the sintering temperature. If hydrogen gas is used in the atmosphere during the first half of the time, under reduced pressure, normal pressure, or pressurized state, this hydrogen gas will significantly suppress the growth of crystal grains, and will also cause disturbances in crystal orientation in the case of liquid phase sintering. It has the effect of suppressing deformation, so it can prevent grain growth and crystal orientation disturbances. A primary sintered body with almost no shape is formed, and although there is no open bore on the surface of the primary sintered body, there is a closed bore inside due to hydrogen gas. When sintering is carried out by switching from this state to a high-pressure non-oxidizing gas atmosphere in the latter half of the process, in addition to the above-mentioned effects, hydrogen gas also has the effect of easily diffusing Y into the secondary sintered body. Therefore, grain growth and disturbance of crystal orientation are suppressed in the NFC state, which is included in the crystallization atmosphere and forms residual bores under the downward hydrogen gas force; expansion W! ,
Because it becomes emitted, it causes grain growth and deafness.
7'L and deformation i.
This invention was based on the above-mentioned knowledge. It is a pressed powder body made from rare earth company fine powder.
The magnetic properties can be improved by sintering in a reduced pressure, normal pressure, or pressurized hydrogen gas atmosphere for the first half of the holding time at the sintering temperature, and in a high pressure non-oxidizing gas atmosphere for the second half. The method for producing sintered famous earthen magnets is characterized by θ].
つぎに、この発明の万伝を実施例により具体臼′Jに説
明する。Next, the tenacity of this invention will be explained with reference to examples.
実施例 1
通常の真空アーク溶解炉!用い、Nd、、 Fe、TB
、の組成をもった希土類合蛍な溶製し、250gのボタ
ン塊に鋳造し、このボタン塊を、Ar気流中、スタンプ
ミルセ用いて一28メソシュの粗粉末とした後、こ:n
K膜脱気フロン中て、振動ボールミルを用い、5時間の
粉砕を施して平均粒径:4.3μmt有する希土類@金
微粉末を調製し、ついでボール全分離し、真空乾燥して
フロンを除去した後、この乾燥微粉末t、15KOeの
磁場tかけ几金型内で配向させた状態で、1.5 to
n 7cm の圧力でプレス成形して10)IIIX
10mx×10m+aの寸法?もった圧粉体を成形し
、この圧粉体セ、加圧焼結炉に装入し、1ず室温にて1
0 mxHgの真空とし、ついでこれに10 mmHg
の減圧状態で高純度水素ガスを流しながら、温度:10
60°Cに加熱し、この温度に30分間保持した後、水
素ガス全排気して雰囲気Y I Oxx Hgとした状
態で、Arc導入して、その雰囲気を50気圧として2
0分間保持し、引続いて620℃壕で急冷し、この温度
:で2時間保持後、室温でで急冷下ることKよって本発
明法1¥災施し、本発明焼結希土類磁石1を製造し之。Example 1 Ordinary vacuum arc melting furnace! Used, Nd, Fe, TB
A rare earth metal with the composition was melted and cast into a 250 g button mass, and this button mass was made into a coarse powder of 128 mesosh by using a stamp mill in an Ar air flow.
A rare earth @ gold fine powder having an average particle size of 4.3 μm was prepared by pulverization for 5 hours using a vibrating ball mill in a K-membrane deaerated fluorocarbon, and then the balls were completely separated and dried under vacuum to remove the fluorocarbon. After that, this dry fine powder was oriented in a mold by applying a magnetic field of 15 KOe to 1.5 to
Press molding with a pressure of n 7 cm 10) IIIX
Dimensions of 10mx x 10m+a? The obtained green compact is molded, charged into a pressure sintering furnace, and heated at room temperature.
0 mxHg vacuum, then 10 mmHg
While flowing high-purity hydrogen gas under reduced pressure, temperature: 10
After heating to 60°C and keeping at this temperature for 30 minutes, all hydrogen gas was exhausted to create an atmosphere of Y I Oxx Hg, and then Arc was introduced and the atmosphere was set to 50 atm and heated to 2
The magnet was held at 620°C for 0 minutes, then rapidly cooled in a trench at 620°C, held at this temperature for 2 hours, and then rapidly cooled at room temperature.The method 1 of the present invention was then applied to produce the sintered rare earth magnet 1 of the present invention. this.
また、比較の目的で、焼猜雰囲気?常圧のArガス流と
する以外は、上記本発明法1こ同一の条件で従来法13
行ない、従来焼結希土類磁石lt災造したo
実施例 2
通常の高周波溶解炉を用い、Ar昼間気宇にて、Sni
(coo、65゜Cuo、o?5 Feo、、。Zr
o、。H)T、sの組成をもった希土類合霊ヒ溶製し、
2.2 Kyのインコ゛ノドVこ鋳造し、このインゴッ
トの一部:250夕をノ\r気流中、スタンプミルな用
いて一28メツ・/ユの粗粉床とし几後、これに脱気フ
ロン中にて、振動号蒐゛−ルミルを用い、4時間の粉砕
ビ施して平均粒径:5゜6μmの希土類合蛍微粉末tル
d製し、ついでホ゛−ルを分離し、真空乾燥してフロン
!除去した後、この乾燥微粉末を、15KOeの磁場を
かけt余型内で配向させた状態で、1.5 ton /
32の圧力でフ゛レス成形して110mX10+冨×1
01罵の寸法をもつt圧粉体に成形し、この圧粉体を、
加圧・焼結炉1c装入し、まず室温にてI O−5*w
、 Hgの真空とし、ついでこnに高純度水素ガス乞導
入して昇温し、1200’Cの焼結温度1で昇温し、こ
の焼結♂度での保持時間の前半の30分間の雰囲気を3
気圧の水素ガス雰囲気とし、′またその後半の20分間
を3気圧のAr雰囲気とした条件で焼結し、焼結後、1
180℃に冷却し、この温度に1時間保持して溶体化処
理を行ない、引続いて800“′Cに7時間保持の条件
で時効処理を行ない、最終的に1゜5℃/分の冷却速度
で4UO°Cまで冷却し、以後急冷することによって本
発明法2を実施し、本発明焼結希土類磁石2を製造した
。Also, for the purpose of comparison, the shioki atmosphere? Conventional method 13 was carried out under the same conditions as the method 1 of the present invention except that the Ar gas flow was at normal pressure.
Example 2: Using a conventional high-frequency melting furnace and daytime Ar gas, Sni
(coo, 65°Cuo, o?5 Feo,...Zr
o. H) Made from rare earth metal alloy with the composition of T and s,
2.2 A part of this ingot was cast into a coarse powder bed of 128 m/y using a stamp mill in an air stream for 250 m, and then degassed with freon. Inside, using a vibrating mill, the powder was pulverized for 4 hours to produce rare earth phosphor fine powder with an average particle size of 5.6 μm.Then, the balls were separated and vacuum dried. Freon! After removal, this dry fine powder was oriented in a t-shape by applying a magnetic field of 15 KOe, and was heated at 1.5 ton/min.
110m x 10 + depth x 1 by resin molding at 32 pressure
Formed into a green compact with dimensions of 01, and this green compact is
Charge the pressurizing/sintering furnace 1c, and first heat the IO-5*w at room temperature.
, create a Hg vacuum, then introduce high-purity hydrogen gas to raise the temperature, raise the temperature to a sintering temperature of 1200'C, and hold it at this sintering temperature for the first half of 30 minutes. Atmosphere 3
Sintering was carried out under the conditions of a hydrogen gas atmosphere at atmospheric pressure and an Ar atmosphere at 3 atm for the latter half of 20 minutes.
Cool to 180°C, hold at this temperature for 1 hour for solution treatment, then age at 800°C for 7 hours, and finally cool at 1°5°C/min. Method 2 of the present invention was carried out by cooling at a speed of 4 UO°C and then rapid cooling to produce sintered rare earth magnet 2 of the present invention.
また、比較の目的で、焼結雰囲気を常圧のArガス流と
する以外は、上記本発明法2と同一の条件で従来法27
行ない、従来・慝結希土類磁石2を製造した。For the purpose of comparison, the conventional method 27 was also prepared under the same conditions as the method 2 of the present invention, except that the sintering atmosphere was a normal pressure Ar gas flow.
A conventional rare earth magnet 2 was manufactured.
実施例 3
希土類合金の組成’i S m C84,1sとすると
共に、粗粉末の粉砕時間を8時間として、得らnる希土
類合金微粉末の平均粒径を45μmとし、かつ圧粉体の
成形圧力’e 2. l ton/二2と下るほか、焼
結温度My l 120 ’Cとし、この焼結温度での
保持時間の前半30分の雰囲気t、常圧の高紳度水素ガ
ス流とし、−万その後半の20分を150気圧のArガ
ス雰囲気とし、さらに焼結後の冷却F、(,800°C
まで1°C/分の冷却速度で徐冷し、以後室温前で急冷
と下る以外は、実施例2におけると同一の条件で本発明
法3を実施し、本発明焼結希土類磁石3に製造したo
また、比較の目的で、焼結雰囲気を、lo+amHgの
真空と下る以外は、上記本発明法3と同一の条件で従来
焼結希土類磁石3を製造した。Example 3 The composition of the rare earth alloy was set to 'i S m C84,1s, the grinding time of the coarse powder was set to 8 hours, the average particle size of the obtained rare earth alloy fine powder was set to 45 μm, and the compacting of the compact was carried out. Pressure 'e 2. In addition, the sintering temperature was 120'C, the atmosphere was 30 minutes for the first half of the holding time at this sintering temperature, and the atmosphere was a high-strength hydrogen gas flow at normal pressure. for 20 minutes in an Ar gas atmosphere of 150 atm, and then cooled to F, (,800°C) after sintering.
The method 3 of the present invention was carried out under the same conditions as in Example 2 except that the temperature was slowly cooled at a cooling rate of 1°C/min until the temperature reached 1° C. For the purpose of comparison, a conventional sintered rare earth magnet 3 was manufactured under the same conditions as the method 3 of the present invention, except that the sintering atmosphere was changed to a vacuum of lo+amHg.
ついで、この結果得らnた不発明焼結希土類磁石1〜3
および従来焼結希土類磁石1〜3について、結晶粒の平
均粒径、理論密度比、および磁石特注?測定した。これ
らの測定結果を第1衣に示した。Next, the uninvented sintered rare earth magnets 1 to 3 obtained as a result
And for conventional sintered rare earth magnets 1 to 3, average crystal grain size, theoretical density ratio, and magnet customization? It was measured. These measurement results are shown in the first garment.
第1表に示さnる結果から、本発明法1〜3によって製
造さ′nた本発明焼結希土類磁石1〜3に、いずれも結
晶粒の成長がほとんどなく、相対的に微粒で、かつクロ
ーズドボアがほとんど存在しないので高い理論密度比を
示し、こnらの結果として丁ぐ′n定磁石特性を示すの
に対して、従来法1〜3で製造された従来焼結希土類磁
石1〜3においては、粒成長が原因で相対的に高い結晶
粒径を示すほか、クローズドボアの残留もあって、本発
明焼結希土類磁石1〜3して比して相対的に劣る磁石特
住暑示すことが明らかである。From the results shown in Table 1, it can be seen that the sintered rare earth magnets 1 to 3 of the present invention manufactured by the methods 1 to 3 of the present invention had almost no growth of crystal grains, had relatively fine grains, and Since there are almost no closed bores, they exhibit a high theoretical density ratio, and as a result, exhibit constant magnetic characteristics, whereas conventional sintered rare earth magnets 1 to 3 manufactured by conventional methods 1 to 3 In addition to exhibiting a relatively high crystal grain size due to grain growth, magnet No. 3 is relatively inferior to the sintered rare earth magnets No. 1 to No. 3 of the present invention due to residual closed bores. It is clear to show.
上述のように、この発明の方法によnば、粒成長や残留
ボア、さらに結晶配向の乱れや変形のほとんどない、磁
石特注の丁ぐれた焼結希土類礎石を製造下ることができ
るのである。As mentioned above, according to the method of the present invention, it is possible to produce a well-defined sintered rare earth foundation stone for a magnet, which has almost no grain growth, no residual bore, and no disturbance or deformation of crystal orientation.
Claims (1)
温度での保持時間の前半を減圧、常圧、あるいは加圧状
態の水素ガス雰囲気とし、その後半を高圧の非酸化性ガ
ス雰囲気とした条件で焼結することを特徴とする磁気特
性のすぐれた希土類焼結合金製永久磁石の製造法。A green compact press-formed from rare earth alloy fine powder is held at the sintering temperature in a reduced pressure, normal pressure, or pressurized hydrogen gas atmosphere for the first half of the time, and a high-pressure non-oxidizing gas atmosphere for the second half. A method for producing permanent magnets made of rare earth sintered alloys with excellent magnetic properties characterized by sintering under certain conditions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23047386A JPS6386832A (en) | 1986-09-29 | 1986-09-29 | Manufacturing method of rare earth sintered alloy permanent magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23047386A JPS6386832A (en) | 1986-09-29 | 1986-09-29 | Manufacturing method of rare earth sintered alloy permanent magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6386832A true JPS6386832A (en) | 1988-04-18 |
Family
ID=16908368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23047386A Pending JPS6386832A (en) | 1986-09-29 | 1986-09-29 | Manufacturing method of rare earth sintered alloy permanent magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6386832A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995021452A1 (en) * | 1994-02-04 | 1995-08-10 | Ybm Technologies, Inc. | Rare earth element-metal-hydrogen-boron permanent magnet and method of production |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60238463A (en) * | 1984-02-13 | 1985-11-27 | シエリツト・ゴ−ドン・マインズ・リミテツド | Manufacture of sm2c017 alloy |
-
1986
- 1986-09-29 JP JP23047386A patent/JPS6386832A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60238463A (en) * | 1984-02-13 | 1985-11-27 | シエリツト・ゴ−ドン・マインズ・リミテツド | Manufacture of sm2c017 alloy |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995021452A1 (en) * | 1994-02-04 | 1995-08-10 | Ybm Technologies, Inc. | Rare earth element-metal-hydrogen-boron permanent magnet and method of production |
US5454998A (en) * | 1994-02-04 | 1995-10-03 | Ybm Technologies, Inc. | Method for producing permanent magnet |
US5567891A (en) * | 1994-02-04 | 1996-10-22 | Ybm Technologies, Inc. | Rare earth element-metal-hydrogen-boron permanent magnet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62291904A (en) | Mafufacture of permanent magnet | |
JPS6063304A (en) | Production of alloy powder for rare earth-boron-iron permanent magnet | |
JPH0345885B2 (en) | ||
JPH0345883B2 (en) | ||
JPS6386832A (en) | Manufacturing method of rare earth sintered alloy permanent magnet | |
JPH0680608B2 (en) | Rare earth magnet manufacturing method | |
JPS6350444A (en) | Manufacture of nd-fe-b sintered alloy magnet | |
JPS6181607A (en) | Preparation of rare earth magnet | |
JPH0345884B2 (en) | ||
JPS62173704A (en) | Manufacture of permanent magnet | |
JPS60159152A (en) | Permanent magnet alloy | |
JPS6181604A (en) | Preparation of rare earth magnet | |
JPS5923803A (en) | Production of magnet consisting of rare earth element | |
JPH0796694B2 (en) | Method of manufacturing permanent magnet material | |
JPS63137136A (en) | Manufacture of rare earth-iron group sintered permanent magnet material | |
JPS61147504A (en) | Rare earth magnet | |
JPS5853055B2 (en) | Manufacturing method of permanent magnet material | |
JPS60255941A (en) | Manufacture of rare earth element-transition metal element-semimetal alloy magnet | |
JPH0475303B2 (en) | ||
JPS594107A (en) | Manufacture of rare earth and cobalt group magnetic material | |
JPS62170454A (en) | Permanent magnet alloy and its manufacture | |
JPS58125804A (en) | Powder as raw material for permanent magnet and its manufacture | |
JPS61143553A (en) | Production of material for permanent magnet | |
JPS62274002A (en) | Rare earth element-iron-boron type magnetic powder and its production | |
JPS6316603A (en) | Manufacture of sintered rare-earth magnet |