JPS6384213A - Streo coding and decoding device - Google Patents
Streo coding and decoding deviceInfo
- Publication number
- JPS6384213A JPS6384213A JP22829486A JP22829486A JPS6384213A JP S6384213 A JPS6384213 A JP S6384213A JP 22829486 A JP22829486 A JP 22829486A JP 22829486 A JP22829486 A JP 22829486A JP S6384213 A JPS6384213 A JP S6384213A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- power
- channel
- time difference
- difference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001228 spectrum Methods 0.000 claims abstract description 6
- 238000000926 separation method Methods 0.000 claims description 4
- 238000012937 correction Methods 0.000 claims description 2
- 238000007493 shaping process Methods 0.000 claims 1
- 238000000034 method Methods 0.000 description 10
- 230000004807 localization Effects 0.000 description 5
- 230000003595 spectral effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000013139 quantization Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005314 correlation function Methods 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Stereo-Broadcasting Methods (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、2チャネルのステレオ信号を1チャネル分の
伝送速度で高能率に符号・復号する装置に閃するもので
ある。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is directed to an apparatus for highly efficiently encoding and decoding two-channel stereo signals at a transmission rate equivalent to one channel.
ステレオ符号化に関する技術として、従来、文献〔林地
、[適応予測を用いた高品質音響信号の高能率符号化」
、信学論(A) 、 vol。As a technology related to stereo encoding, there is a conventional literature such as [Rinji, [High-efficiency encoding of high-quality acoustic signals using adaptive prediction]
, Theory of Faith (A), vol.
J67−A 、No、4 .1984] による、
2チャネルの信号を直交変換することによって相関を除
去し、直交変換後の2チャネル信号を独立に符号・復号
化した信号を直交逆変換してステレオ出力信号を得る第
1の方式と、文献〔南、[疑似ステレオ音声を用いたテ
レコン7Tレンスシステムの音声系」信学技報CAS8
6− 29) による、2チャネル信号の電力差と時
間差を抽出し、2チャネル信号の和信号を符号化した信
号に、電力差と時間差を補助情報として送り、この補助
情報を利用して1チャネルの信号から2チャネルの疑似
ステレオ信号を得るtlS2の方式との二通りの方式が
知られている。J67-A, No. 4. 1984],
A first method of removing correlation by orthogonally transforming two-channel signals, and obtaining a stereo output signal by orthogonally inversely transforming a signal obtained by independently encoding and decoding the two-channel signals after the orthogonal transform, and the literature [ Minami, [Sound system of teleconverter 7T lens system using pseudo-stereo sound] IEICE Technical Report CAS8
6-29), extracts the power difference and time difference between two channel signals, sends the power difference and time difference as auxiliary information to a signal that encodes the sum signal of the two channel signals, and uses this auxiliary information to Two methods are known: the tlS2 method, which obtains a two-channel pseudo-stereo signal from the signal.
上述した従来のステレオ符号化に関する技術の内、前者
のtlSlの方式においては、ステレオ出力信号が疑似
的ではないため、左右チャネル信号の分離度は高いが、
符号化ビットを2チャネルの符号器に1!49振るため
、量子化雑音による品質劣化が問題となる。Among the conventional stereo encoding techniques mentioned above, in the former tlSl method, the stereo output signal is not pseudo, so the degree of separation between the left and right channel signals is high;
Since the encoded bits are distributed by 1!49 to the two-channel encoder, quality deterioration due to quantization noise becomes a problem.
これに対し、第2の方式は、2チャネル信号の和信号を
求め、1チャネルで符号化するため、左右チャネル信号
の分離度は多少劣るが、第1の方式の欠点であった量子
化雑音による品質劣化の問題が解決される。このような
+Q似スステレオ符号化方式、音信を忠実に再現するこ
とが重要であり、電力差と時間差が音像定位の主要因と
考えられているが、一方で2チャネル信号の周波数特性
の差が定位位置に影響を与えることも知られている(山
越他、[左右のf時差による音像定位の変化についてJ
、音響学会講論、昭和55 )、事実、会議室等にお
いて音源が片方のマイクロフォンに近い場合には、音の
反響特性が左右対称であるために左右チャネル間で周波
数特性の差が現われる。そのため、第2の方式のように
電力差と時間差の因子だけを用いてmuステレオ信号を
再生する方式では、音像の定位位置を忠実に再現できな
いという欠、αがあった。On the other hand, in the second method, the sum signal of two channel signals is obtained and encoded in one channel, so the degree of separation of left and right channel signals is somewhat inferior, but the quantization noise, which was a drawback of the first method, is reduced. This solves the problem of quality deterioration due to In such a +Q-like stereo encoding system, it is important to faithfully reproduce the sound signal, and the power difference and time difference are considered to be the main factors for sound image localization, but on the other hand, the difference in frequency characteristics of the two channel signals It is also known that the sound image localization affects the localization position (Yamakoshi et al., [On changes in sound image localization due to the left and right f time difference, J
In fact, when a sound source is close to one of the microphones in a conference room or the like, a difference in frequency characteristics appears between the left and right channels because the sound reverberation characteristics are symmetrical. Therefore, the method of reproducing the mu stereo signal using only the power difference and time difference factors, such as the second method, has the drawback that the localized position of the sound image cannot be faithfully reproduced.
本発明は、このような従来の欠点を解決するため1チャ
ネル分の伝送速度を用いて2チャネルのステレオ信号を
高品質に符号化し、しかも音像を忠実に定位させること
ができる疑似ステレオ符号・復号器を提供することを目
的としている。In order to solve these conventional drawbacks, the present invention provides pseudo-stereo encoding and decoding that can encode two-channel stereo signals with high quality using the transmission speed of one channel, and can localize sound images faithfully. The purpose is to provide equipment.
本発明によれば上述の目的は前記特許請求の範囲に記載
した手段により達成される。According to the invention, the above-mentioned objects are achieved by the means specified in the claims.
すなわち、本発明は、送信側においで2チャネルのステ
レオ信号のうち信号電力の大きい方のチャネル信号のみ
を符号化し、信号電力の小さい方のチャネル信号は予測
係数を分析して送出し、受信側においで、信号電力の小
さい方のチャネル信号は復号信号の予測係数と受信され
た予測係数を用いて信号電力の大きい方のチャネル信号
の復号値のスペクトルの形を修正することによって求め
る手段を備えていることを最も主要なW像とするもので
あって、疑似ステレオ符号化方式に周波数特性の差を補
正する機能を取り入れたことが従来の技術と異なる。That is, the present invention encodes only the channel signal with higher signal power of the two channel stereo signals on the transmitting side, analyzes the prediction coefficients of the channel signal with lower signal power, and sends it out. and means for determining the channel signal with the smaller signal power by modifying the shape of the spectrum of the decoded value of the channel signal with the larger signal power using the prediction coefficient of the decoded signal and the received prediction coefficient. The present invention differs from conventional techniques in that it incorporates a function to correct differences in frequency characteristics into the pseudo-stereo encoding method.
第1図は、本発明の一叉施例を示すブロック図である。 FIG. 1 is a block diagram showing one embodiment of the present invention.
第1図において、送信側に左チャネル入力信号XLと右
チャネル入力信号XHの電力差と時間差を算出する電力
差・時間差算出litと、XLとXRのうち信号電力の
大きい方の信号をXl、信号電力の小さい方の信号をX
2とする切換器2と、切換器の出力信号X1を符号化し
て符号化出力Iを得る符号化部3と、切換器の出力信号
X2の予測係数A2を求める分析器4と、前記符号化信
号■に電力差・時間差を表わす信号Sと、いずれのチャ
ネルの信号を符号化したかを示す信号Cの補助情報を配
列して出力する多重化回路5とを備えている。In FIG. 1, there is a power difference/time difference calculation lit on the transmitting side that calculates the power difference and time difference between the left channel input signal XL and the right channel input signal XH, and the signal with the larger signal power between XL and XR is The signal with smaller signal power is
2, an encoding unit 3 that encodes the output signal X1 of the switch to obtain a coded output I, an analyzer 4 that obtains a prediction coefficient A2 of the output signal X2 of the switch, The signal (2) includes a multiplexing circuit 5 that arranges and outputs a signal S representing the power difference/time difference and auxiliary information of the signal C indicating which channel of the signal has been encoded.
電力差・時間差算出器1は、式(1)に示されるN個の
信号から成る17レーム内の相互相関関数r(k)を計
算し、式(3)に示されるσR2とσL2の比を電力差
とし、r (k)を最大とするkの値を時間差とし、こ
の電力差と時間差を信号Sとして出力し、σR2とσL
′の大きさを比べ信号電力の大きいチャネルを表わす情
報をCとして出力する。The power difference/time difference calculator 1 calculates the cross-correlation function r(k) within 17 frames consisting of N signals shown in equation (1), and calculates the ratio of σR2 and σL2 shown in equation (3). The power difference and the value of k that maximizes r (k) are the time difference, and this power difference and time difference are output as a signal S, and σR2 and σL
' is compared, and information representing a channel with a large signal power is output as C.
ニーで、
・・・・・・・・・・・・・・・・・・(3)N :1
7レーム内のサンプル数
L :サンプルのBi1%列を表わす添字切換器2は、
信号電力の大さいチャネルを表わす情報Cに基づいて、
左チャネル人力XLと右入力XRのうち信号電力の大き
い方をXlを他方をX2に切り換える。At the knee, ・・・・・・・・・・・・・・・・・・(3) N: 1
Number of samples L in 7 frames: The subscript switch 2 that represents the Bi1% column of samples is
Based on information C representing a channel with high signal power,
The one with the larger signal power of the left channel input XL and the right input XR is switched to Xl, and the other is switched to X2.
この切り換えは、前記17レームの信号を符号化する最
初に行なわれる。符号化部3はモノフル入力信号X1を
高能率符号化して符号化信号Iを出力する。このように
2チャネル信号のうち1チャネルを選択して符号化する
のは、2個の符号器を用意して2チャネルの信号をそれ
ぞれ独立に符号化する場合に比べて、符号化ビットを1
個の符号器に全て割り当てられるために量子化雑音が少
なく高品質な符号化ができるからである。This switching is performed at the beginning of encoding the 17-frame signal. The encoding unit 3 performs high-efficiency encoding on the monofull input signal X1 and outputs an encoded signal I. Selecting and encoding one channel out of two channel signals in this way reduces the number of encoded bits by one, compared to the case where two encoders are prepared and each of the two channel signals is encoded independently.
This is because high-quality encoding can be performed with less quantization noise since all the signals are allocated to each encoder.
分析器4は、モノラル入力信号X2を線形予測分析して
予測係数A2を求める。予測次数を1、出力すべき予測
係数をA 2 =(azt r a2z+・・・・・・
v a2111 とすれば、入力信号X2のスペクトル
包絡線H2(Z)を
H2(Z) =□ ・・・・・・・・・・・・・
・・・・・(4)Lm+
の全極形ディジタルフィルタの周波数応答で近似で鯵る
係数A2を求めることになる。つまり分析器4で求めた
予測係数A2に基づいて全極形ディノタルフィルタの係
数を設定すれば、入力信号X2がほぼ再生できることに
なる。この意味で、予測係aA2は入力信号X2のスペ
クトル情報を表わしているといえる。The analyzer 4 performs linear predictive analysis on the monaural input signal X2 to obtain a prediction coefficient A2. The prediction order is 1, and the prediction coefficient to be output is A 2 = (azt r a2z+...
If v a2111, then the spectral envelope H2(Z) of the input signal X2 is H2(Z) =□ ・・・・・・・・・・・・・・・
(4) The coefficient A2 is determined by approximating the frequency response of the all-pole digital filter of Lm+. In other words, if the coefficients of the all-pole dinotal filter are set based on the prediction coefficient A2 obtained by the analyzer 4, the input signal X2 can almost be reproduced. In this sense, it can be said that the prediction coefficient aA2 represents spectrum information of the input signal X2.
受信側は、受信信号から符号化信号工、予測係数A2、
符号化チャネル情報C1電力差・時間差情報Sを分離す
る分離化回路6と、符号化信号工を復号してモノラル復
号信号Y1を出力する復号化部7と、復号化5S7で求
められる予測係数A1と出力Y1および予測係数A2を
用いてモノラル信号Y2を再生する合成器8と、信号C
に基づき信号Y1とY2を右チャネルと左チャネルに切
り換える切換器9と、信号Sから電力差と時間差を抽出
してモノラル信号Y1、Y2から疑似ステレオ信号を再
生するための電力差補正器11、時間差補正器12に制
御信号を送る電力差・時間差検出器10とを備えている
。On the receiving side, from the received signal, encoded signal processing, prediction coefficient A2,
A separation circuit 6 that separates encoded channel information C1 and power difference/time difference information S, a decoding unit 7 that decodes the encoded signal signal and outputs a monaural decoded signal Y1, and a prediction coefficient A1 obtained in decoding 5S7. a synthesizer 8 that reproduces a monaural signal Y2 using the output Y1 and the prediction coefficient A2, and a signal C
a switch 9 that switches the signals Y1 and Y2 to the right channel and the left channel based on the signal S; a power difference corrector 11 that extracts the power difference and time difference from the signal S and reproduces a pseudo stereo signal from the monaural signals Y1 and Y2; The power difference/time difference detector 10 sends a control signal to the time difference corrector 12.
第2図は、合成器8の構成の例を示すブロック図である
。FIG. 2 is a block diagram showing an example of the configuration of the synthesizer 8. As shown in FIG.
本合成器は、遅延器13、可変係数の水算器14、加算
1315、減算@16からなる全零形ディノタルフィル
タと、遅延器17、可変係数の乗算器18、加算器19
.20からなる全極形ディノタルフィルタで構成される
。復号化部7の復号出力Y1は遅延器13と減算器16
に入力される。朱W、器14の可変係数には復号化部7
で求められる線形予測係数A1が用いられる。This synthesizer includes an all-zero dinotal filter consisting of a delay device 13, a variable coefficient water multiplier 14, an addition 1315, and a subtraction@16, a delay device 17, a variable coefficient multiplier 18, and an adder 19.
.. It is composed of 20 all-pole dinotal filters. The decoded output Y1 of the decoder 7 is sent to the delay device 13 and the subtracter 16.
is input. Zhu W, the variable coefficient of the device 14 is a decoder 7
The linear prediction coefficient A1 obtained by is used.
復号化部の予測係数をn s Al =l az ra
1□、・・・・・・e azn l とすると、本合成
器の全Hl (Z) = 1−Σra、i Z−’
・・・・・・・・・・・・・・・・・・(5)Lm+
で表わされる。The prediction coefficient of the decoding unit is n s Al =l az ra
1□,...e azn l , the total Hl of this synthesizer (Z) = 1-Σra, i Z-'
・・・・・・・・・・・・・・・・・・(5) Represented by Lm+.
ここでrは1より小さい正定数(例えば0゜7〜0.8
程度の値)であり、フィルタQをやや低めて再生出力に
異音が発生しないように制御する効果がある。Here, r is a positive constant smaller than 1 (for example, 0°7 to 0.8
This has the effect of slightly lowering the filter Q to prevent abnormal noise from occurring in the reproduced output.
式(5)で表わされるフィルタは、復号信号Ylのスペ
クトル包絡線の逆特性を近似するため、全零形ディジタ
ルフィルタの出力Yのスペクトルは白色化される。Since the filter expressed by equation (5) approximates the inverse characteristic of the spectral envelope of the decoded signal Yl, the spectrum of the output Y of the all-zero digital filter is whitened.
全極形ディジタルフィルタにおける乗算器18の可変係
数には送信側から送られた信号X2の予測係数A2が用
いられる。The prediction coefficient A2 of the signal X2 sent from the transmitting side is used as the variable coefficient of the multiplier 18 in the all-pole digital filter.
本合成器の全極形ディジタルフィルタの伝達関数H2(
Z)は、
し1
で表わされる。The transfer function H2 (
Z) is represented by 1.
式(6)における「の役割は式(5)の説明で述べた「
の役割と同様である。The role of "in equation (6) is the role of ", which was mentioned in the explanation of equation (5).
The role is similar to that of
式(6)で表わされるフィルタは送信側から送られてき
たものだから信号X2のスペクトル包絡線を近似し、そ
のため、白色化された信号Yは信号X2のスペクトル包
路線の形状に整形され、出力信号Y2となる。Since the filter expressed by equation (6) is sent from the transmitting side, it approximates the spectral envelope of the signal X2, so the whitened signal Y is shaped into the shape of the spectral envelope of the signal X2 and is output. The signal becomes Y2.
以上述べたように、信号Y1、Y2はそれぞれ入力信号
X1、X2のスペクトル包路線が保存された2チャネル
信号となっており、切換器9によって補助情報Cに基づ
き信号電力の大きいチャネルに信号Y1が、信号電力の
小さいチャネルに信号Y2が供給される。As described above, the signals Y1 and Y2 are two-channel signals in which the spectral envelopes of the input signals X1 and X2 are preserved, respectively, and the switch 9 selects the signal Y1 to the channel with the larger signal power based on the auxiliary information C. However, the signal Y2 is supplied to the channel with low signal power.
次に、疑似ステレオ出力信号YLとYRを得るため、補
助情報Sから電力差・時間差検出器10によって検出さ
れた電力差と時間差を用いて電力差補正器11と時間差
補正器12によって適切な補正が行なわれる。Next, in order to obtain pseudo-stereo output signals YL and YR, appropriate correction is performed by a power difference corrector 11 and a time difference corrector 12 using the power difference and time difference detected by the power difference/time difference detector 10 from the auxiliary information S. will be carried out.
本実施例では、符号化部と復号化部で予測符号化が行な
われるとして、復号化部内の極予測係数A1を合成器8
の入力に利用したが、符号化部と復号化部で予測符号化
が行なわれない場合であっても、送信側で用いる分析器
4を受信側に加えて信号Y1を分析すれば極予測係数A
1を得ることができる。In this embodiment, assuming that predictive coding is performed in the encoding section and the decoding section, the polar prediction coefficient A1 in the decoding section is sent to the synthesizer 8.
However, even if predictive coding is not performed in the encoding section and decoding section, if the analyzer 4 used on the transmitting side is added to the receiving side and the signal Y1 is analyzed, the polar predictive coefficient can be obtained. A
1 can be obtained.
以上説明したように、本発明においては、送信側に2チ
ャネルのステレオ信号の電力差と時間差を求める回路と
、信号電力の大きい方のチャネル信号を符号化する回路
と、信号電力の小さい方のチャネル信号の予測係数を求
める回路とを備えるとともに、受(1[に1チャネルの
符号化信号を復号化する回路と、予測係数を利用して1
チャネル信号のスペクトルを整形して他チャネル信号を
合成する回路と、左右チャネル信号の電力差と時間差を
補正する回路とを備えるように構成しているので、量子
化雑音の少ない高品質な符号化ができ、しかも正確な音
像定位特性を有する疑似ステレオ符号器・復号器が実現
できる。As explained above, in the present invention, the transmitting side includes a circuit for determining the power difference and time difference between two channel stereo signals, a circuit for encoding the channel signal with higher signal power, and a circuit for encoding the channel signal with higher signal power. It is equipped with a circuit for decoding the encoded signal of one channel in the receiver (1[) and a circuit for decoding the encoded signal of one channel using the prediction coefficient.
The configuration includes a circuit that shapes the spectrum of a channel signal and synthesizes other channel signals, and a circuit that corrects the power difference and time difference between left and right channel signals, allowing high-quality encoding with little quantization noise. It is possible to realize a pseudo-stereo encoder/decoder that has accurate sound image localization characteristics.
第1図は、本発明の一実施例を示すブロック図、wS2
図は合成器の構成の例を示すブロック図である。FIG. 1 is a block diagram showing one embodiment of the present invention, wS2
The figure is a block diagram showing an example of the configuration of a synthesizer.
Claims (1)
検出器と、信号電力の大きい方のチャネル信号を予測符
号化する符号器と、信号電力の小さい方のチャネル信号
の予測係数を計算する分析器と、前記検出器で求められ
た電力差・時間差を表わす信号と前記分析器で求められ
た予測係数と、いずれのチャネルの信号を符号化したか
を表わす信号とを補助情報として前記符号器の出力信号
と多重化してディジタル出力端子に出力する多重化回路
と、ディジタル入力端子の信号から符号器の出力信号と
補助情報とを分離する分離回路と、符号化信号を復号す
る復号器と、復号信号に対して求められた予測係数と補
助情報から得られる予測係数とを用いて復号器出力信号
のスペクトルを整形することにより他チャネルの信号を
再生する合成器と、いずれのチャネルの信号を符号化し
たかを表わす信号を用いて復号器出力と前記合成器出力
を左右のチャネルに切り換える回路と、左右のチャネル
号信号に補助情報から得られる電力差・時間差に基づい
た電力値・遅延量の適切な補正を行なう補正器を具備す
ることを特徴とするステレオ符号・復号器。A detector that detects the power difference and time difference between two channel stereo signals, an encoder that predictively encodes the channel signal with higher signal power, and an analyzer that calculates the prediction coefficient of the channel signal with lower signal power. and a signal representing the power difference/time difference found by the detector, a prediction coefficient found by the analyzer, and a signal representing which channel the signal was encoded as auxiliary information for the encoder. a multiplexing circuit that multiplexes the output signal with the output signal and outputs it to the digital output terminal; a separation circuit that separates the encoder output signal and auxiliary information from the signal at the digital input terminal; a decoder that decodes the encoded signal; and a decoding circuit. A synthesizer that regenerates the signals of other channels by shaping the spectrum of the decoder output signal using the prediction coefficients obtained for the signal and the prediction coefficients obtained from the auxiliary information; A circuit that switches the decoder output and the synthesizer output to left and right channels using a signal indicating whether the signal is converted into a A stereo encoder/decoder comprising a corrector that performs appropriate correction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22829486A JPS6384213A (en) | 1986-09-29 | 1986-09-29 | Streo coding and decoding device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22829486A JPS6384213A (en) | 1986-09-29 | 1986-09-29 | Streo coding and decoding device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6384213A true JPS6384213A (en) | 1988-04-14 |
Family
ID=16874209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22829486A Pending JPS6384213A (en) | 1986-09-29 | 1986-09-29 | Streo coding and decoding device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6384213A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0263335A (en) * | 1988-08-30 | 1990-03-02 | Toshiba Corp | Stereo voice transmission system |
JP2013179585A (en) * | 2012-02-01 | 2013-09-09 | Nikon Corp | Sound processing device and sound processing program |
-
1986
- 1986-09-29 JP JP22829486A patent/JPS6384213A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0263335A (en) * | 1988-08-30 | 1990-03-02 | Toshiba Corp | Stereo voice transmission system |
JP2013179585A (en) * | 2012-02-01 | 2013-09-09 | Nikon Corp | Sound processing device and sound processing program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5701346A (en) | Method of coding a plurality of audio signals | |
KR101183857B1 (en) | Method and apparatus to encode and decode multi-channel audio signals | |
WO1998018230A2 (en) | Audio decoder with an adaptive frequency domain downmixer | |
CN109300480B (en) | Coding and decoding method and coding and decoding device for stereo signal | |
KR101926209B1 (en) | Processing stereophonic audio signals | |
KR100636145B1 (en) | Exednded high resolution audio signal encoder and decoder thereof | |
JP5340378B2 (en) | Channel signal generation device, acoustic signal encoding device, acoustic signal decoding device, acoustic signal encoding method, and acoustic signal decoding method | |
JP4835648B2 (en) | Speech encoding method and speech decoding method | |
US6012025A (en) | Audio coding method and apparatus using backward adaptive prediction | |
JP2001339311A (en) | Audio signal compression circuit and expansion circuit | |
JPS6384213A (en) | Streo coding and decoding device | |
KR100238324B1 (en) | Audio signal error concealment method and circuit therefor | |
JP2006309264A (en) | Methods of transmitting and decoding audio signal | |
JPH0588697A (en) | Missing voice interpolation method | |
JPH10260699A (en) | Voice coding method and apparatus | |
KR960012477B1 (en) | Adaptive Stereo Digital Audio Coding and Decoding Device Using Cognitive Information Volume | |
JPS6384214A (en) | Stereo coding and decoding device | |
JP4148203B2 (en) | Audio signal transmission method and audio decoding method | |
KR960012478B1 (en) | Adaptable ms-stereo digital audio coder & decoder | |
JPH02183638A (en) | Audio transmission method | |
JPS6014539A (en) | Multichannel signal encoding method | |
JPH0758938B2 (en) | Stereo signal transmission encoding / decoding method, encoding device and decoding device | |
JP2006350361A (en) | Audio signal transmission method and audio signal decoding method | |
JPS6251827A (en) | Audio encoding method | |
JPH0319417A (en) | stereo audio encoding device |