JPS638384B2 - - Google Patents
Info
- Publication number
- JPS638384B2 JPS638384B2 JP55120861A JP12086180A JPS638384B2 JP S638384 B2 JPS638384 B2 JP S638384B2 JP 55120861 A JP55120861 A JP 55120861A JP 12086180 A JP12086180 A JP 12086180A JP S638384 B2 JPS638384 B2 JP S638384B2
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- exchanger tube
- heating
- furnace
- burners
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
【発明の詳細な説明】
本発明は加熱炉に係り、特に化学装置用加熱炉
で、その伝熱管およびバーナの相対的配置に改
良、改善を加えた新規な構造からなる加熱炉に関
するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heating furnace, and in particular to a heating furnace for chemical equipment, which has a novel structure in which the relative arrangement of heat transfer tubes and burners has been improved and improved. .
各種化学装置等に使用される加熱炉はその形
状、大きさのコンパクト化はもちろん、熱効率、
寿命の点でも改善、向上が常に求められているば
かりでなく、近年は環境汚染防止への配慮、公害
規制の命題は益々厳しいものとなり、特に窒素酸
化物(NOx、以下NOxと記載する)の発生量の
規制は非常に厳しくなつているのが実情である。
NOxの発生量は燃焼部における温度の高い程多
くなることが一般に広く知られていることであ
り、この観点からも加熱炉におけるバーナ、伝熱
管等を含む燃焼部の改良、改善が従来から強く望
まれていたことである。 Heating furnaces used in various chemical equipment, etc. not only have a compact shape and size, but also improve thermal efficiency and
Not only is there a constant need for improvements and enhancements in terms of lifespan, but in recent years, consideration has been given to preventing environmental pollution and the requirements for pollution control have become increasingly strict . ) The reality is that regulations on the amount of waste generated are becoming extremely strict.
It is generally widely known that the amount of NO x generated increases as the temperature in the combustion section increases, and from this point of view, improvements and improvements to the combustion section including burners, heat transfer tubes, etc. in heating furnaces have been made. This was something that was strongly desired.
第1図は従来広く使用されている伝熱管コイル
の構造の一例を示すもので、加熱される流体は入
口ヘツダ1から流入し、出口ヘツダ2から流出す
るが、その間、伝熱管3で被加熱流体が加熱され
る構成で、当該入口ヘツダ1、出口ヘツダ2、伝
熱管3から一組の伝熱管コイル4が構成されてい
る。第2図は以上のごとき入口ヘツダ1および出
口ヘツダ2、伝熱管3を含む伝熱管コイル4を多
数、バーナ5と共に配置した火炉の平面図を示す
もので、当該バーナ5を火炉の中心部に複数個配
置し、火壁耐火材からなる側壁部6に当該伝熱管
コイル4を配置する構成からなるものである。こ
の様な構成では、上記伝熱管コイル4は上記バー
ナ5と相対した側の片面だけが強く加熱されるこ
とになる。 Figure 1 shows an example of the structure of a heat exchanger tube coil that has been widely used in the past. The fluid to be heated flows in from an inlet header 1 and flows out from an outlet header 2. The inlet header 1, the outlet header 2, and the heat exchanger tubes 3 constitute a set of heat exchanger tube coils 4 in a configuration in which fluid is heated. Figure 2 shows a plan view of a furnace in which a large number of heat transfer tube coils 4 including the inlet header 1, outlet header 2, and heat transfer tubes 3 as described above are arranged together with burners 5, and the burners 5 are placed in the center of the furnace. A plurality of heat exchanger tube coils 4 are arranged, and the heat exchanger tube coils 4 are arranged on a side wall portion 6 made of a firewall refractory material. In such a configuration, only one side of the heat exchanger tube coil 4 facing the burner 5 is heated strongly.
一方第4図に示すのは従来技術になる伝熱炉の
火炉部の別の構成を示す平面図で、火炉の中央部
に伝熱管3を含む伝熱管コイル4を配置し、一方
バーナ5は火壁耐火材からなる側壁部6に近接し
て配置され、当該伝熱管コイル4を一組のバーナ
5,5がはさむ構成であり、したがつて当該伝熱
管コイル4の伝熱管3はその両面から加熱される
ことになる。 On the other hand, FIG. 4 is a plan view showing another configuration of the furnace part of a heat transfer furnace according to the prior art, in which a heat transfer tube coil 4 including a heat transfer tube 3 is arranged in the center of the furnace, while a burner 5 is The heat exchanger tube coil 4 is placed in close proximity to a side wall 6 made of fireproof material, and a pair of burners 5, 5 sandwich the heat exchanger tube coil 4 therebetween. It will be heated from
以上の各構成において、伝熱管の片面加熱の場
合は、火炉の中央部にバーナを設置出来る上、そ
の両側部に伝熱管を配置出来るため、両面加熱の
場合に比較して2倍の数の伝熱管を配置出来るこ
とになる。したがつて装置全体をコンパクトにま
とめることが可能であり、被加熱流体の温度が比
較的低い小型の加熱炉やボイラ等に多く用いられ
ている。一方この様な片面加熱構造の場合、伝熱
管3自体は第4図に示すごとく、ふく射熱の方向
7に対して、当該伝熱管3の平均管壁温度分布お
よび実際の管壁温度分布に関してはそれぞれ曲線
8および9によつて示される状態にある。第4図
に示される様に、伝熱管3は上記バーナ5側のふ
く射熱を直接受ける部分と、耐火材からなる側壁
部6側で、ふく射熱に対して影になる部分とでは
当該伝熱管3の管壁温度に大きな差が出来ること
になる。従つて、使用時のピーク温度が高くなる
と共に上記両部分の温度差は益々大きくなり、こ
れにともなつて当該両部分における熱膨脹量も大
きく異なることになるため熱応力が発生し、高温
で長時間使用するとクリープ変形を起し、伝熱管
3が弓状に湾曲する事例さえみられた。 In each of the above configurations, in the case of single-sided heating of heat transfer tubes, burners can be installed in the center of the furnace, and heat transfer tubes can be placed on both sides of the burner, so the number of burners can be twice as many as in the case of double-sided heating. This allows heat transfer tubes to be placed. Therefore, the entire device can be made compact, and it is often used in small heating furnaces, boilers, etc. where the temperature of the fluid to be heated is relatively low. On the other hand, in the case of such a single-sided heating structure, as shown in FIG. The situation is represented by curves 8 and 9. As shown in FIG. 4, the heat exchanger tube 3 has a portion that directly receives the radiant heat from the burner 5 side, and a portion that is in the shadow from the radiant heat on the side wall portion 6 side made of a refractory material. This results in a large difference in tube wall temperature. Therefore, as the peak temperature during use increases, the temperature difference between the two parts becomes larger, and the amount of thermal expansion in the two parts also differs greatly, causing thermal stress, which causes When used for a long time, creep deformation occurred, and there were even cases where the heat exchanger tube 3 was bent into an arched shape.
一方、以上の管壁温度分布について第3図に示
したごとき両面加熱の場合について示すと第5図
に示すとおりであり、平均管壁温度分布を示す曲
線8に対し、実際の管壁温度分布を示す曲線9は
ふく射熱の方向7に対して伸びた左右対称の温度
分布となり、熱膨脹量の差も上記片面加熱の場合
と比較すれば僅かであり、従つてまた熱応力の発
生も小さく、高温の大型加熱炉等として使用され
ている状況にある。 On the other hand, the above tube wall temperature distribution in the case of double-sided heating as shown in FIG. 3 is as shown in FIG. 5. The curve 9 showing this shows a symmetrical temperature distribution extending with respect to the direction 7 of radiated heat, and the difference in thermal expansion is small compared to the case of single-sided heating. It is currently being used as a large heating furnace, etc.
一方NOxの発生についてみると、一般には燃
焼部分の温度が高い程その発生量が多くなること
が知られている。燃焼部分における温度の高低
は、火炎の周囲の状況によつても大きく左右され
るもので、伝熱管3の吸熱面、あるいは火炉の側
壁部6等の反射面、更には隣接するバーナの火炎
との干渉作用等の影響を大きく受けることが知ら
れている。この様な観点から前記の片面加熱と、
両面加熱について検討すると、第2図に示したご
とき片面加熱の場合、火炎の両側に当該火炎より
も温度の低い吸熱面を含む伝熱管3が存在するこ
とが特色である。一方、第3図に示す両面加熱の
場合は、火炎の片側の部分にのみ吸熱面があり、
反対側の部分は炉壁、すなわち側壁部であり、高
温のふく射熱は反射され、火炎の周囲は高温の環
境となり、NOxの発生に関しては前記の片面加
熱の場合より不利な状況である。また長手方向に
配置されたバーナ5の状況からみると、バーナ同
志の干渉はさせられず、この観点からみる限り、
片面加熱、両面加熱いずれの場合もNOxの低減
に関しては不利な状況にあることは避けられな
い。 On the other hand, regarding the generation of NOx , it is generally known that the higher the temperature of the combustion part, the greater the amount of NOx generated. The temperature level in the combustion part is greatly influenced by the surrounding conditions of the flame, such as the heat absorption surface of the heat exchanger tube 3, the reflective surface such as the side wall part 6 of the furnace, and even the flame of the adjacent burner. It is known that it is greatly affected by the interference effect of From this point of view, the single-sided heating described above,
When double-sided heating is considered, single-sided heating as shown in FIG. 2 is characterized by the presence of heat exchanger tubes 3 on both sides of the flame that include heat-absorbing surfaces whose temperature is lower than that of the flame. On the other hand, in the case of double-sided heating shown in Figure 3, there is an endothermic surface only on one side of the flame.
The part on the opposite side is the furnace wall, that is, the side wall part, and the high temperature radiant heat is reflected, creating a high temperature environment around the flame, which is a more disadvantageous situation in terms of NO x generation than in the case of single-sided heating. Also, from the perspective of the burners 5 arranged in the longitudinal direction, they cannot interfere with each other, and from this point of view,
In either case of single-sided heating or double-sided heating, it is unavoidable that the situation is disadvantageous when it comes to reducing NO x .
本発明になる加熱炉は前記に詳細に説明した従
来技術にみられた問題点を解消することを目的と
して提案したもので、形状、寸法がコンパクトで
かつNOxの発生量も少ない。改良された新規な
構造の加熱炉を提供するものである。 The heating furnace of the present invention was proposed with the aim of solving the problems seen in the prior art described in detail above, and is compact in shape and size and generates less NOx. The present invention provides a heating furnace with an improved new structure.
本発明になる改良された新規な構造の加熱炉
は、その火炉部における伝熱管コイルおよびバー
ナの配置において、当該伝熱管コイルの被加熱流
体入口側を片面加熱とし、一方出口側の高温部分
では両面加熱となる様に配置し、かつ当該伝熱管
コイルで各バーナを囲い込む構造としたことを特
徴とするものである。以下に添付の図面を参照
し、本発明になる加熱炉の具体的な構造について
更に詳細に説明する。なお以下の第6図におい
て、前出の第1図〜第5図に係る説明と同一の符
号で示すものは相互に同一の部材、機構を示すも
のである。 In the heating furnace with the improved new structure of the present invention, in the arrangement of the heat transfer tube coil and the burner in the furnace section, the inlet side of the heated fluid of the heat transfer tube coil is heated on one side, while the high temperature part on the outlet side is heated. It is characterized by being arranged so that both sides are heated, and having a structure in which each burner is surrounded by the heat exchanger tube coil. The specific structure of the heating furnace according to the present invention will be described in further detail below with reference to the accompanying drawings. Note that in FIG. 6 below, the same reference numerals as in the description of FIGS. 1 to 5 above indicate the same members and mechanisms.
第6図は本発明になる加熱炉要部の具体的構造
の一例を示す平面図である。第6図において、加
熱炉の要部となる火炉部は火壁耐火材からなる側
壁部6によつて囲まれ、その内部に複数のバーナ
5が配置されている。伝熱管3はそれぞれ入口ヘ
ツダ1および出口ヘツダ2を含み、一組の伝熱管
コイル4を構成し、当該一組の伝熱管コイル4に
おいては、被加熱流体は入口ヘツダ1から導入さ
れ、伝熱管3を経て出口ヘツダ2から流出する
が、当該被加熱流体は当然のことながら当該入口
ヘツダ1の部分で低温であり、出口ヘツダ2の部
分で高温である。そこで上記バーナ5の火炎温度
に対する影響、伝熱管3の管壁部に対するふく射
熱の効果、またそれに伴なう熱膨脹差あるいは熱
応力の発生を考慮し、入口ヘツダ1側の比較的温
度の低い部分を上記側壁部6に沿つて配置して片
面加熱とし、一方、出口ヘツダ2側の比較的温度
の高い部分をそれぞれ相対する側壁部6からそれ
ぞれ火炉部中央のバーナ5の方向にほぼ直角に折
り曲げ、当該出口ヘツダ2がバーナ5のある中央
部に配置される構造とし、したがつて長手方向に
相対する上記バーナ5,5によつて両面から加熱
される、両面加熱の構成としたものである。 FIG. 6 is a plan view showing an example of a specific structure of the main part of the heating furnace according to the present invention. In FIG. 6, a furnace section, which is a main part of the heating furnace, is surrounded by a side wall section 6 made of a refractory material, and a plurality of burners 5 are arranged inside the side wall section 6. Each heat exchanger tube 3 includes an inlet header 1 and an outlet header 2, and constitutes a set of heat exchanger tube coils 4. In the set of heat exchanger tube coils 4, the fluid to be heated is introduced from the inlet header 1, and the heat exchanger tube 3 and flows out from the outlet header 2, the heated fluid naturally has a low temperature at the inlet header 1 and a high temperature at the outlet header 2. Therefore, considering the influence on the flame temperature of the burner 5, the effect of radiated heat on the tube wall of the heat transfer tube 3, and the generation of thermal expansion difference or thermal stress associated with this, the relatively low temperature part on the inlet header 1 side is It is arranged along the side wall 6 to provide single-sided heating, and on the other hand, the relatively high temperature portions on the outlet header 2 side are bent from the opposing side wall 6 at almost right angles in the direction of the burner 5 at the center of the furnace. The outlet header 2 is arranged in the center where the burner 5 is located, so that it is heated from both sides by the burners 5, which are opposed to each other in the longitudinal direction.
以上に説明した様な伝熱管コイル4の配列によ
り、火炉部の大きさ、特にその長さを効果的に小
さくすることが可能となり、更に長手方向に配置
されている複数個の各バーナは伝熱管3によつて
それぞれ仕切られた状態におかれることになる。
すなわち複数個の各バーナは全て単独に配置され
た状況となり、隣接する各バーナ間の火炎が相互
に干渉し合うことに対して効果的な抑制作用を示
すことになる。 By arranging the heat transfer tube coils 4 as described above, it is possible to effectively reduce the size of the furnace section, especially its length, and furthermore, each of the plurality of burners arranged in the longitudinal direction can be effectively reduced. They are separated from each other by heat pipes 3.
In other words, all of the plurality of burners are individually arranged, and the flames between adjacent burners are effectively suppressed from interfering with each other.
本発明になる、改良された新規な構造の加熱炉
によつて得られる効果について更に具体的に説明
すると、伝熱管数が同一本数からなる従来技術に
なる構造のものと比較して片面加熱構造にみられ
る熱応力発生の問題を解消した上で更に両面加熱
構造のものの約40%の容積の大きさにまでコンパ
クト化が可能である。すなわち従来の片面加熱構
造の加熱炉火炉部と比較しても、更に約20%の容
積低減、すなわちコンパクト化を可能とするもの
である。したがつてまた必要となる炉材、ケーシ
ング構造材、鉄骨材等、各部構造材の節減、軽量
化が可能となつたばかりか、敷地面積の減少等、
設置面でも大きな効果が得られる等、本発明にな
る加熱炉の設置に伴なう経済的効果は極めて大き
い。 To explain in more detail the effects obtained by the heating furnace with the improved new structure of the present invention, it has a single-sided heating structure compared to the conventional structure in which the number of heat transfer tubes is the same. In addition to solving the problem of thermal stress that occurs in In other words, compared to the conventional heating furnace furnace section with a single-sided heating structure, it is possible to further reduce the volume by about 20%, that is, to make it more compact. Therefore, not only is it possible to save and reduce the weight of the necessary structural materials such as furnace materials, casing structural materials, and steel frames, but also the site area has been reduced.
The economical effects associated with the installation of the heating furnace of the present invention are extremely large, such as the large effects obtained in terms of installation.
一方NOxの抑制効果についてみると、バーナ
の火炎を伝熱管、すなわち吸熱面によつて取囲む
構成とすることにより、燃焼部の温度を下げ、火
炉出口部におけるNOx発生量を効果的に抑制す
ることが可能となつた。具体的には、従来の片面
加熱構造、すなわちバーナの両側部に吸熱面が配
置された構造に比較して約10%、同じく両面加熱
構造のものと比較すると約25%のNOx発生量抑
制交果があるものと評価出来た。 On the other hand, looking at the effect of suppressing NO x , by configuring the burner flame to be surrounded by a heat transfer tube, that is, a heat absorption surface, the temperature of the combustion section is lowered and the amount of NO x generated at the furnace outlet can be effectively reduced. It became possible to suppress it. Specifically, NO x generation is reduced by approximately 10% compared to a conventional single-sided heating structure, in which endothermic surfaces are placed on both sides of the burner, and by approximately 25% compared to a double-sided heating structure. It was evaluated that there was a mutual fruit.
第1図は伝熱管コイルの一般的な構造の一例を
示す説明図、第2図は従来技術になる加熱炉の火
炉部片面加熱構造の一例を示す平面図、第3図は
同じく従来技術になる加熱炉火炉部両面加熱構造
の一例を示す平面図、第4図は1本の伝熱管の管
壁温度分布について示す説明図で、片面加熱の場
合、第5図は同じく両面加熱の場合について示す
説明図、第6図は本発明になる加熱炉要部の構成
について示す平面図である。
符号の説明、1……入口ヘツダ、2……出口ヘ
ツダ、3……伝熱管、4……伝熱管コイル、5…
…バーナ、6……側壁部。
Fig. 1 is an explanatory diagram showing an example of a general structure of a heat exchanger tube coil, Fig. 2 is a plan view showing an example of a single-sided heating structure for the furnace part of a heating furnace according to the prior art, and Fig. 3 is also based on the prior art. Fig. 4 is an explanatory diagram showing the tube wall temperature distribution of one heat exchanger tube, in the case of single-sided heating, and Fig. 5 is the same in the case of double-sided heating. The explanatory diagram shown in FIG. 6 is a plan view showing the configuration of the main part of the heating furnace according to the present invention. Explanation of symbols, 1... Inlet header, 2... Outlet header, 3... Heat exchanger tube, 4... Heat exchanger tube coil, 5...
...Burner, 6...Side wall part.
Claims (1)
含む複数組の伝熱管コイルと、当該伝熱管コイル
を加熱する複数個のバーナと、当該伝熱管コイル
およびバーナを囲む側壁部からなる加熱炉におい
て、上記各入口ヘツダ部を上記側壁部に近接して
設けて片面加熱とし、一方出口ヘツダ部は各バー
ナ間の中央部に配置して両面加熱とし、かつ上記
伝熱管コイルで各バーナを取囲む構造としたこと
を特徴とする加熱炉。1. A heating furnace consisting of a plurality of sets of heat exchanger tube coils including an inlet header and an outlet header for heating fluid, a plurality of burners that heat the heat exchanger tube coils, and a side wall portion surrounding the heat exchanger tube coils and burners. Each inlet header portion is provided close to the side wall portion for single-sided heating, while the outlet header portion is placed in the center between each burner for double-sided heating, and each burner is surrounded by the heat exchanger tube coil. A heating furnace characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12086180A JPS5747186A (en) | 1980-09-01 | 1980-09-01 | Heating furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12086180A JPS5747186A (en) | 1980-09-01 | 1980-09-01 | Heating furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5747186A JPS5747186A (en) | 1982-03-17 |
JPS638384B2 true JPS638384B2 (en) | 1988-02-22 |
Family
ID=14796760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12086180A Granted JPS5747186A (en) | 1980-09-01 | 1980-09-01 | Heating furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5747186A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0564388U (en) * | 1992-02-07 | 1993-08-27 | ヤマハ株式会社 | Wooden entrance door |
JPH0616056Y2 (en) * | 1989-03-16 | 1994-04-27 | ヤマハ株式会社 | Fire door structure |
JPH0616055Y2 (en) * | 1989-03-16 | 1994-04-27 | ヤマハ株式会社 | Fire door structure |
JPH0720308Y2 (en) * | 1991-04-05 | 1995-05-15 | 有限会社石田工業 | Decorative door |
-
1980
- 1980-09-01 JP JP12086180A patent/JPS5747186A/en active Granted
Non-Patent Citations (1)
Title |
---|
EXXON HIGH INTENSITY FURNACE AND BURNERS=1980 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0616056Y2 (en) * | 1989-03-16 | 1994-04-27 | ヤマハ株式会社 | Fire door structure |
JPH0616055Y2 (en) * | 1989-03-16 | 1994-04-27 | ヤマハ株式会社 | Fire door structure |
JPH0720308Y2 (en) * | 1991-04-05 | 1995-05-15 | 有限会社石田工業 | Decorative door |
JPH0564388U (en) * | 1992-02-07 | 1993-08-27 | ヤマハ株式会社 | Wooden entrance door |
Also Published As
Publication number | Publication date |
---|---|
JPS5747186A (en) | 1982-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4904179A (en) | Low NOx primary zone radiant screen device | |
JP3944147B2 (en) | Condensing gas boiler with corrosion prevention structure by dissimilar metals | |
KR940007420A (en) | Low NOx and low CO combustion method and apparatus | |
EP0413535A1 (en) | Improved apparatus and method for heating water | |
US2823652A (en) | Helical coil heater | |
JPS638384B2 (en) | ||
GB2044441A (en) | Water heating arrangements in stoves | |
WO2002073111A1 (en) | Partially studded radiant tubes | |
US2294977A (en) | Heater | |
EP3750974B1 (en) | A delayed coking furnace for heating coker feedstock | |
US6095096A (en) | Integrated boiler burner with balanced heat flux | |
JPS6115389Y2 (en) | ||
KR20030082199A (en) | Gas fired quick-heating water boiler having improved heat exchanging property | |
RU26635U1 (en) | WATER BOILER | |
US2983235A (en) | Furnace baffle | |
KR20000013776A (en) | Device for promoting heat transfer of flue smoke tube boiler | |
AU709911B2 (en) | NOx reducing combustor tube insert apparatus | |
RU2038539C1 (en) | Recuperative heater | |
KR950009059Y1 (en) | Boiler | |
JPH033761Y2 (en) | ||
JPH0412325Y2 (en) | ||
USRE21745E (en) | murray | |
RU2202591C1 (en) | Tubular furnace | |
SU1652768A1 (en) | Water-heating boiler | |
US1921817A (en) | Domestic heater |