JPS6382326A - Element for ultraviolet ray sensor - Google Patents
Element for ultraviolet ray sensorInfo
- Publication number
- JPS6382326A JPS6382326A JP61226109A JP22610986A JPS6382326A JP S6382326 A JPS6382326 A JP S6382326A JP 61226109 A JP61226109 A JP 61226109A JP 22610986 A JP22610986 A JP 22610986A JP S6382326 A JPS6382326 A JP S6382326A
- Authority
- JP
- Japan
- Prior art keywords
- ultraviolet rays
- visible light
- filter
- ultraviolet
- amorphous silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910021417 amorphous silicon Inorganic materials 0.000 claims abstract description 21
- 239000000758 substrate Substances 0.000 claims abstract description 19
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 18
- 239000011521 glass Substances 0.000 abstract description 12
- 229910052751 metal Inorganic materials 0.000 abstract description 10
- 239000002184 metal Substances 0.000 abstract description 10
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 230000010354 integration Effects 0.000 abstract description 2
- 206010034960 Photophobia Diseases 0.000 abstract 1
- 208000013469 light sensitivity Diseases 0.000 abstract 1
- 206010042496 Sunburn Diseases 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 206010015150 Erythema Diseases 0.000 description 2
- 239000004110 Zinc silicate Substances 0.000 description 2
- 231100000321 erythema Toxicity 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000019612 pigmentation Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- XSMMCTCMFDWXIX-UHFFFAOYSA-N zinc silicate Chemical compound [Zn+2].[O-][Si]([O-])=O XSMMCTCMFDWXIX-UHFFFAOYSA-N 0.000 description 2
- 235000019352 zinc silicate Nutrition 0.000 description 2
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910052981 lead sulfide Inorganic materials 0.000 description 1
- 229940056932 lead sulfide Drugs 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 108091008695 photoreceptors Proteins 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 238000000825 ultraviolet detection Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- -1 zinc silicate Chemical compound 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/42—Photometry, e.g. photographic exposure meter using electric radiation detectors
- G01J1/429—Photometry, e.g. photographic exposure meter using electric radiation detectors applied to measurement of ultraviolet light
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Light Receiving Elements (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、間接受光方式の紫外線センサ用素子に関する
。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an element for an indirect light receiving type ultraviolet sensor.
従来、間接受光方式の紫外線用照度計として、紫外線な
硅酸亜鉛螢光体などの螢光板に当てて可視光に変換し、
セレン光電池または硫化鉛光導電セルなどの可視光用検
出器を用いて、紫外線の放射照度を測定するものがある
が、量産しにくく、受光器の集積化が難しい。Conventionally, as an indirect light receiving type UV illuminance meter, the ultraviolet light is converted into visible light by shining it on a phosphor plate such as zinc silicate phosphor.
Some methods use visible light detectors such as selenium photocells or lead sulfide photoconductive cells to measure the irradiance of ultraviolet light, but these are difficult to mass-produce and the integration of photoreceptors is difficult.
本発明はこの問題に鑑み、構造が簡単で量産しやすく、
安価で、高感度でしかも小型化集積化が可能な紫外線セ
ンサ用素子を提供することを目的とするものである。In view of this problem, the present invention has a simple structure and is easy to mass produce.
The object of the present invention is to provide an ultraviolet sensor element that is inexpensive, highly sensitive, and can be miniaturized and integrated.
このため本発明は、検出すべき紫外線の波長領域に応じ
たフィルタと、その紫外線を可視光に変換する螢光体と
、非晶質シリコンを用いたフォトダイオード又はフォト
コンセルとから構成される素子構造とする。Therefore, the present invention provides an element comprising a filter according to the wavelength range of ultraviolet rays to be detected, a phosphor that converts the ultraviolet rays into visible light, and a photodiode or photoconcell using amorphous silicon. Structure.
上記構成により、フィルタを通過した検出すべき波長の
紫外線を、螢光体で可視光に変換し、この光を可視光に
対する感度の大きな非晶質シリコンの光導電率又は光起
電力の変化として検知し、間接的に紫外線の照度を測定
することができる。With the above configuration, the ultraviolet light of the wavelength to be detected that has passed through the filter is converted into visible light by the phosphor, and this light is converted into a change in the photoconductivity or photovoltaic force of amorphous silicon, which has high sensitivity to visible light. It is possible to detect and indirectly measure the illuminance of ultraviolet rays.
〔実施例1〕
第1図は本発明の一実施例を示す断面図であり、1波長
域の紫外線を検知するものである。[Embodiment 1] FIG. 1 is a sectional view showing an embodiment of the present invention, which detects ultraviolet rays in one wavelength range.
ガラス基板1の一方の面に紫外線を可視光に変換する螢
光体2と、その上に測定すべき紫外線の波長に応じたフ
ィルタ6とが設けられている。A phosphor 2 for converting ultraviolet rays into visible light is provided on one surface of a glass substrate 1, and a filter 6 corresponding to the wavelength of the ultraviolet rays to be measured is provided thereon.
ガラス基板1のもう一方の面に透明電極4、非晶質シリ
コン5及び金属電極6からなるフォトコンセルが形成さ
れている。透明電極4及び金属電極6には9−ト’ 7
が付いている。A photoconcell consisting of a transparent electrode 4, an amorphous silicon 5, and a metal electrode 6 is formed on the other surface of the glass substrate 1. 9-t'7 for transparent electrode 4 and metal electrode 6
is attached.
被測定光をフィルタ6に入射すると、測定すべき波長の
紫外線だけが螢光体2で可視光に変換され、ガラス基板
1、透明電極4を通って、非晶質シリコン5に達する。When the light to be measured enters the filter 6, only the ultraviolet light having the wavelength to be measured is converted into visible light by the phosphor 2, passes through the glass substrate 1 and the transparent electrode 4, and reaches the amorphous silicon 5.
透明電極4と金属電極乙の間の光導電率を測定すること
により、間接的にフィルタ6を通った紫外線の照度を測
定できる。By measuring the photoconductivity between the transparent electrode 4 and the metal electrode B, the illuminance of the ultraviolet light that has passed through the filter 6 can be measured indirectly.
〔実施例2〕
第2図は他の実施例を示す断面図であり、1波長域の紫
外線を検知するものである。絶縁体の基板8の一つの面
に積層した構造になっている。[Embodiment 2] FIG. 2 is a sectional view showing another embodiment, which detects ultraviolet rays in one wavelength range. It has a structure in which it is laminated on one surface of an insulating substrate 8.
〔実施例3〕
第3図はさらに他の実施例を示す断面図で、2波長域の
紫外線を同時に検知するために、第1図の実施例でフィ
ルタ3だけが異るものを2個並べた構成になっている。[Embodiment 3] Fig. 3 is a sectional view showing still another embodiment. In order to simultaneously detect ultraviolet rays in two wavelength ranges, two filters of the embodiment shown in Fig. 1, which differ only in filter 3, are arranged side by side. The structure is as follows.
両者の間には遮光板9が設けられていて、互いに相手の
光が入り込まないようになっている。A light shielding plate 9 is provided between the two to prevent light from entering into each other.
特に、フィルタ3aとして皮膚に紅斑を生じさせる波長
290〜320 nmの中波長紫外線を通過させるもの
、フィルタ3bとして皮膚に色素沈着を起こす波長32
0〜400 nmの長波長紫外線を透過させるものを用
いると、皮膚て障害を及ぼす2種類の波長域の紫外線を
検出でき、日焼は警報センサとなる。In particular, the filter 3a is one that passes medium-wavelength ultraviolet rays with a wavelength of 290 to 320 nm, which causes erythema on the skin, and the filter 3b is a filter with a wavelength of 32 nm, which causes pigmentation on the skin.
If a material that transmits long-wavelength ultraviolet rays of 0 to 400 nm is used, it is possible to detect ultraviolet rays in two wavelength ranges that cause damage to the skin, and serves as an alarm sensor for sunburn.
〔実施例4〕
第4図はまたさらに他の実施例を示すもので、第2図の
実施例と同じ積層構造であるが、2種類のフィルタ6a
及び6bが設けられていて、2波長域の紫外線を同時に
検知できる構成になっている。この場合も実施例6と同
様に、フィルタ3a及び3bに透過波長290〜320
nmと320〜340 nmのものを用いれば、日焼は
警報センサとなる。[Embodiment 4] Fig. 4 shows still another embodiment, which has the same laminated structure as the embodiment shown in Fig. 2, but with two types of filters 6a.
and 6b are provided, so that ultraviolet rays in two wavelength ranges can be detected simultaneously. In this case, as in Example 6, the filters 3a and 3b have a transmission wavelength of 290 to 320.
If a wavelength of 320 to 340 nm is used, sunburn becomes an alarm sensor.
以上説明したように、本発明によれば、紫外線を間接受
光方式により非晶質シリコンで検出しているので、感度
が高く、量産に向き、安価で簡便でしかも小型化、集積
化が容易な紫外線センサ用素子が得られる利点がある。As explained above, according to the present invention, ultraviolet rays are detected using amorphous silicon using an indirect light receiving method, so the sensitivity is high, suitable for mass production, inexpensive, simple, and easy to miniaturize and integrate. This has the advantage that a UV sensor element can be obtained.
産業上及び医療上、紫外線の照度を測定する紫外線セン
サ用素子として利用価値が大きい。Industrially and medically, it has great utility as an element for an ultraviolet sensor that measures the illuminance of ultraviolet rays.
第1図は本発明一実施例の概略構成を示す断面図、第2
図は他の実施例の概略構成を示す断面図、第6図はさら
に他の実施例の概略構成を示す断面図、第4図はさらに
他の実施例の概略構成を示す断面図である。
1・・・ガラス基板、2・・・螢光体、3.3a、3b
・・・フィルタ、4・・・透明電極、5・・・非晶質シ
リコン、6・・・金属電極、7・・・リード、8・・・
基板、9・・・遮光板。
特許出願人 神 奈 川 県
手続補正書
昭和62年12月25日
特許庁長官 小 川 邦 夫 殿
1、事件の表示
昭和61年特許願第226109号
2、発明の名称
紫外線センサ用素子
3、補正をする者
事件との関係 特許出願人
住所 神奈川県横浜市中区日本大通1番地相互第一ビル
電話 (265)9649
6、補正の対象 明細書全文および図面全文7、
補正の内容 別紙のとおり全文訂正明細書
1、発明の名称
紫外線センサ用素子
2、特許請求の範囲
l)検出すべき紫外線の波長領域に応じて選択されたフ
ィルタと、その紫外線を可視光に度山する紫外線センサ
用素子。
2)同一基板上に、複数の波長領域のそれぞれに応じて
選択された複数のフィルタと、その紫外線を可視光に変
換する蛍光体と、非晶質に検出する紫外線センサ用素子
。
3)前記フィルタが、波長290〜320r+mの記載
の紫外線センサ用素子。
3、発明の詳細な説明
〔産業上の利用分野〕
本発明は、間接受光方式の紫外線センサ用素子に関する
。
〔従来の技術〕
従来、間接受光方式の紫外線用照度計として、紫外線を
硅酸亜鉛等の蛍光体で可視光線に変換し、硫化カドミウ
ム光導電゛セルや結晶シリコンフォトトランジスタ等の
可視光検出器を用いて、紫外線の放射照度を間接的に測
定するものがある。この種の装置は特開昭50−305
74号、特開昭51−40183号及び特開昭51−4
2576号に示されている。
〔発明が解決しようとする問題点〕
上述の如き従来の紫外線検出素子は、生産コストが高<
、量産しに<<、小型化・集積化が難しいという欠点が
あった。
〔発明の開示〕
木′Q囮は、拾出ナベ缶些駅也小弓向鼠I−廖1−ナー
フィルタと、その紫外線を可視光に変換する蛍光体と、
非晶質シリコンを用いた可視光検出器とから構成される
素子構造の紫外線センサ用素子を提供するものである。
この可視光検出器は光起電力型あるいは光導電型のいず
れでもよい。
本発明の紫外線センサ用素子においては、可視光検出部
に非晶質シリコンを用いるため、安価で量産に向き、小
型化・集積化が可能である。
特に同一基板上に複数の素子を作製できるので、複数の
波長の紫外線を同時に検出することもできる。
以下に、本発明の実施例を掲げ、添付図面を参照して、
本発明を具体的に説明する。
実施例 l
第1図に本発明の一実施例が断面図で示されている。1
波長域の紫外線を検出するものである。ガラス基板1の
一方の面に紫外線を可視光に変換する蛍光体2と、その
上に測定すべき紫外線の波長に応じた帯域フィルタ3と
が設けらられている。ガラス基板1のもう一方の面に透
明電極4、非晶質シリコン5及び金属電極6からなる可
視光検出器が形成されている。被測定光をフィルタ3に
入射すると、測定すべき波長域の紫外線だけが透過し、
蛍光体2で可視光に変換される。この可視光はガラス基
板1、透明電極4を通って、非晶質シリコン5に達する
。
非晶質シリコンは可視域での光感度が大きいので透明電
極4と金属電極6の間の電気特性から可視光の強度を測
定し、間接的にフィルタ3を通った紫外線の強度を測定
できる。
作製法の一例は以下のとおりである。パイレックスガラ
ス基板に透明電極としてITO膜をスパッタで作製し、
その上にプラズマCVDでノンドープ非晶質シーリコン
膜を作製し、さらにその上に金属電極としてアルミニウ
ムを蒸着して、可視光検出器とする。基板のもう一方の
側に蛍光体としてヘキストジャパン(株)製Ho5ta
lux PEを塗布し、帯域フィルタとして透過中心波
長365 nmのものを設ける。この紫外線センサ用素
子の電流−電圧特性の一例を第2図に示す。光源には水
銀ランプを用い、波長365nmの放射照度は0.2m
W/ cm”である。蛍光体を用いないときの光電流は
暗電流とあまり変わらないが、蛍光体を入れると明暗比
は2〜3桁とされている。
実施例 2
第3図に他の一実施例が断面図で示されている。1波長
域の紫外線を検出するものである。
基板8の1つの面に積層した構造になっている。
実施例 3
第4図にさらに他の一実施例が断面図で示されている。
2波長域の紫外線を同時に検出するために、第1図の実
施例でフィルタ3だけが異なるものを2個並べた構成に
なっている。両者の間には遮光板が設けられていて、互
゛いに相手の光が入り込まないようになっている。特に
、フィルタ3aとして皮膚に紅斑を生じさせる波長29
0〜320 r+n+の範囲の中波長紫外線の一部が透
過するもの、フィルタ3bとして皮膚に色素沈着を起こ
す波長320〜400nmの範囲の長波長紫外線の一部
が透過するものを用いると、皮膚に及ぼす障害の異なる
2種類の波長域の紫外線を同時に検出でき、日焼けの警
報や防止に役立つ。
実施例3のタイプの素子の一例について述べる。可視光
検出器には、非晶質シリコンのp−1−n構造の光起電
力型のものを用い、蛍光体には前記と同じものを用い、
帯域フィルタには透過中心波長306 nmと367
nmのものを用いる。このときの素子の出力である短絡
電流の測定例を第5図に示す。両方の出力とも放射照度
と共に増加しており、皮膚への作用の異なる2種類の紫
外線が検出できることがわかる。
実施例 4
第6図に他の一実施例が断面図で示されている。第3図
の実施例と同じ構造であるが、2種類のフィルタ3a及
び3bが設けられていて、2波長域の紫外線を同時に検
出できる構成になっている。この場合も実施例3と同様
に、フィルタ3a及び3bに波長290〜320nmの
範囲の一部が透過するものと波長320〜400nmの
範囲の一部が透過するものを用いれば、皮膚に及ぼす障
害の異なる2種類の波長域の紫外線を同時に検出でき、
日焼けの警報や防止に役立つ。
〔発明の効果〕
以上説明したように、本発明によれば、紫外線を間接受
光方式により非晶質シリコンで検出するので、安価で量
産に向き、小型化・集積化が容易な紫外線センサ素子が
得られる利点がある。産業上及び医療上、紫外線の強度
を測定する紫外線センサ用素子として利用価値が大きい
。
1゜図面の簡単な説明
第1図は本発明一実施例の概略構成を示す断面図、第2
図は一実施例の電流−電圧特性を示す図、第3図は他の
実施例の概略構成を示す断面図、第4図はさらに他の実
施例の概略構成を示す断面図、第5図は一実施例の出力
特性を示す図、第6図はさらに他の実施例の概略構成を
示す断面図である。
1・・・ガラス基板、2・・・蛍光体、3 、3 a、
3 b・・・フィルタ、4・・・透明電極、5・・・
非晶質シリコン、6・・・金属電極、7・・・リード、
8・・・基板、9・・・遮光板。
第1図
第 2 図
ノ署イアス電圧(V)
第3図
第ダ図
第 5 図
入射光量(W/cR2)Fig. 1 is a sectional view showing the schematic configuration of one embodiment of the present invention;
6 is a sectional view showing a schematic structure of another embodiment, FIG. 6 is a sectional view showing a schematic structure of still another embodiment, and FIG. 4 is a sectional view showing a schematic structure of another embodiment. 1... Glass substrate, 2... Fluorescent material, 3.3a, 3b
...Filter, 4...Transparent electrode, 5...Amorphous silicon, 6...Metal electrode, 7...Lead, 8...
Substrate, 9... light shielding plate. Patent Applicant Kanakawa Prefectural Procedural Amendment December 25, 1986 Director General of the Patent Office Kunio Ogawa 1, Indication of Case Patent Application No. 226109, 1985 2, Name of Invention Ultraviolet Sensor Element 3, Amendment Relationship with the case of a person who does the following: Address of the patent applicant: Mutual Daiichi Building, 1 Nihon Odori, Naka-ku, Yokohama, Kanagawa Prefecture Phone: (265) 9649 6. Subject of amendment: Full text of the specification and drawings 7.
Contents of the amendment As shown in the attached document, the full text of the revised specification 1, the title of the invention, ultraviolet sensor element 2, the scope of claims l) a filter selected according to the wavelength range of ultraviolet rays to be detected, and a filter that converts the ultraviolet rays into visible light; Ultraviolet sensor element that piles up. 2) On the same substrate, a plurality of filters selected according to each of a plurality of wavelength regions, a phosphor that converts the ultraviolet rays into visible light, and an ultraviolet sensor element that detects the ultraviolet rays in an amorphous state. 3) The ultraviolet sensor element according to the description, wherein the filter has a wavelength of 290 to 320 r+m. 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an element for an indirect light receiving type ultraviolet sensor. [Prior technology] Conventionally, indirect light receiving type UV illuminance meters have been used to convert UV light into visible light using a phosphor such as zinc silicate, and to detect visible light using cadmium sulfide photoconductive cells, crystalline silicon phototransistors, etc. There are methods that indirectly measure the irradiance of ultraviolet rays using a device. This type of device was published in Japanese Patent Application Publication No. 50-305.
No. 74, JP-A-51-40183 and JP-A-51-4
No. 2576. [Problems to be solved by the invention] The conventional ultraviolet detection elements as described above have high production costs.
However, it had the disadvantage that it was difficult to mass produce it, and it was difficult to miniaturize and integrate it. [Disclosure of the Invention] The wood Q decoy consists of a filter, a phosphor that converts the ultraviolet rays into visible light,
The present invention provides an ultraviolet sensor element having an element structure comprising a visible light detector using amorphous silicon. This visible light detector may be of either a photovoltaic type or a photoconductive type. In the ultraviolet sensor element of the present invention, since amorphous silicon is used in the visible light detection section, it is suitable for mass production at low cost and can be miniaturized and integrated. In particular, since multiple elements can be fabricated on the same substrate, ultraviolet rays of multiple wavelengths can be detected simultaneously. Examples of the present invention are listed below, and with reference to the accompanying drawings,
The present invention will be specifically explained. Embodiment 1 An embodiment of the present invention is shown in cross-section in FIG. 1
It detects ultraviolet light in the wavelength range. A phosphor 2 for converting ultraviolet rays into visible light is provided on one surface of a glass substrate 1, and a bandpass filter 3 corresponding to the wavelength of the ultraviolet rays to be measured is provided thereon. A visible light detector consisting of a transparent electrode 4, an amorphous silicon 5, and a metal electrode 6 is formed on the other surface of the glass substrate 1. When the light to be measured enters the filter 3, only the ultraviolet rays in the wavelength range to be measured are transmitted.
The phosphor 2 converts the light into visible light. This visible light passes through the glass substrate 1 and the transparent electrode 4 and reaches the amorphous silicon 5. Since amorphous silicon has high photosensitivity in the visible range, the intensity of visible light can be measured from the electrical characteristics between transparent electrode 4 and metal electrode 6, and the intensity of ultraviolet light that has passed through filter 3 can be measured indirectly. An example of the manufacturing method is as follows. An ITO film was sputtered as a transparent electrode on a Pyrex glass substrate,
A non-doped amorphous silicon film is formed thereon by plasma CVD, and aluminum is further deposited thereon as a metal electrode to form a visible light detector. Hoechst Japan Co., Ltd.'s Ho5ta was used as a phosphor on the other side of the substrate.
Lux PE is applied, and a bandpass filter with a transmission center wavelength of 365 nm is provided. An example of the current-voltage characteristics of this ultraviolet sensor element is shown in FIG. A mercury lamp is used as the light source, and the irradiance at a wavelength of 365 nm is 0.2 m.
W/cm".The photocurrent when no phosphor is used is not much different from the dark current, but when a phosphor is added, the brightness ratio is said to be 2 to 3 digits.Example 2 Figure 3 and others One embodiment is shown in a cross-sectional view.It detects ultraviolet rays in one wavelength range.It has a structure in which it is laminated on one surface of a substrate 8.Example 3 FIG. One embodiment is shown in a cross-sectional view.In order to simultaneously detect ultraviolet rays in two wavelength ranges, two filters of the embodiment shown in Fig. 1, which differ only in filter 3, are arranged side by side. A light shielding plate is provided between them to prevent each other's light from entering.In particular, as a filter 3a, the wavelength 29 which causes erythema on the skin is filtered.
If a filter 3b that partially transmits medium-wavelength ultraviolet rays in the range of 0 to 320 r+n+ and a filter that partially transmits long-wavelength ultraviolet rays in the wavelength range of 320 to 400 nm that cause pigmentation on the skin are used, It can simultaneously detect ultraviolet rays in two wavelength ranges that cause different damage, and is useful for warning and preventing sunburn. An example of the element of the type of Example 3 will be described. For the visible light detector, a photovoltaic type one with a p-1-n structure of amorphous silicon was used, and for the phosphor, the same one as above was used.
The bandpass filter has transmission center wavelengths of 306 nm and 367 nm.
nm is used. An example of measurement of the short circuit current, which is the output of the element at this time, is shown in FIG. Both outputs increase with irradiance, indicating that two types of ultraviolet rays with different effects on the skin can be detected. Embodiment 4 Another embodiment is shown in cross section in FIG. Although it has the same structure as the embodiment shown in FIG. 3, two types of filters 3a and 3b are provided, so that ultraviolet rays in two wavelength ranges can be detected simultaneously. In this case as well, as in Example 3, if the filters 3a and 3b are filters that transmit part of the wavelength range of 290 to 320 nm and filters that transmit part of the wavelength range of 320 to 400 nm, it is possible to prevent damage to the skin. It can simultaneously detect ultraviolet rays in two different wavelength ranges,
Helps warn and prevent sunburn. [Effects of the Invention] As explained above, according to the present invention, since ultraviolet rays are detected using amorphous silicon using an indirect light reception method, an ultraviolet sensor element that is inexpensive, suitable for mass production, and easy to miniaturize and integrate can be obtained. There are advantages that can be obtained. Industrially and medically, it has great utility as an element for an ultraviolet sensor that measures the intensity of ultraviolet rays. 1゜Brief explanation of the drawings Fig. 1 is a sectional view showing the schematic structure of one embodiment of the present invention, Fig. 2
The figure shows the current-voltage characteristics of one embodiment, FIG. 3 is a sectional view showing the schematic structure of another embodiment, FIG. 4 is a sectional view showing the schematic structure of another embodiment, and FIG. 5 6 is a diagram showing the output characteristics of one embodiment, and FIG. 6 is a sectional view showing the schematic configuration of still another embodiment. DESCRIPTION OF SYMBOLS 1...Glass substrate, 2...phosphor, 3, 3a,
3 b... Filter, 4... Transparent electrode, 5...
Amorphous silicon, 6... Metal electrode, 7... Lead,
8... Board, 9... Light shielding plate. Figure 1 Figure 2 Signature voltage (V) Figure 3 Figure 5 Figure 5 Incident light amount (W/cR2)
Claims (1)
ィルタと、 その紫外線を可視光に変換する螢光体と、 可視光検出器とよりなり、可視光検出器が非晶質シリコ
ンを用いたフォトダイオード又はフオトコンセルである
紫外線の照度を間接的に測定する紫外線センサ用素子。 2)同一基板上に、複数の波長領域のそれぞれに応じて
選択された複数のフィルタと、 その紫外線を可視光に変換する螢光体と、 可視光検出器とを設けてなり、可視光検出器が非晶質シ
リコンを用いたフォトダイオード又はフオトコンセルで
ある紫外線の照度を間接的に測定する紫外線センサ用素
子。 3)前記フィルタが、波長290〜320nmの領域及
び320〜400nm領域を透過する2種の紫外線透過
フィルタである特許請求の範囲第2項記載の紫外線セン
サ用素子。[Scope of Claims] 1) Consisting of a filter selected according to the wavelength range of ultraviolet rays to be detected, a phosphor that converts the ultraviolet rays into visible light, and a visible light detector, the visible light detector is An ultraviolet sensor element that indirectly measures the illuminance of ultraviolet rays, which is a photodiode or photoconcell using amorphous silicon. 2) On the same substrate, multiple filters selected according to each of multiple wavelength regions, a phosphor that converts the ultraviolet rays into visible light, and a visible light detector are provided to detect visible light. An ultraviolet sensor element that indirectly measures the illuminance of ultraviolet rays, the device being a photodiode or photoconcell using amorphous silicon. 3) The ultraviolet sensor element according to claim 2, wherein the filter is two types of ultraviolet transmitting filters that transmit wavelengths of 290 to 320 nm and 320 to 400 nm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61226109A JPS6382326A (en) | 1986-09-26 | 1986-09-26 | Element for ultraviolet ray sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61226109A JPS6382326A (en) | 1986-09-26 | 1986-09-26 | Element for ultraviolet ray sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6382326A true JPS6382326A (en) | 1988-04-13 |
JPH0535976B2 JPH0535976B2 (en) | 1993-05-27 |
Family
ID=16839973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61226109A Granted JPS6382326A (en) | 1986-09-26 | 1986-09-26 | Element for ultraviolet ray sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6382326A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01262425A (en) * | 1988-04-13 | 1989-10-19 | Yamatake Honeywell Co Ltd | solar ultraviolet sensor |
FR2697352A1 (en) * | 1992-10-26 | 1994-04-29 | Physique Rayon Lumie Lab | Electromagnetic energy concentrator with frequency change constituting among other things an electromagnetic iodine. |
FR2792460A1 (en) * | 1999-04-19 | 2000-10-20 | Biocube | Photovoltaic generator, having light cascades, comprises photovoltaic cell included in transparent matrix having dichroic filter on its entry surface and reflective coating on its opposite surface |
WO2000063975A1 (en) * | 1999-04-19 | 2000-10-26 | Biocube (S.A.R.L) | Photovoltaic generators with light cascade and varying electromagnetic flux |
US7554093B1 (en) * | 2008-01-11 | 2009-06-30 | Star Tech Instruments, Inc. | Uniformly responsive ultraviolet sensors |
US20160142660A1 (en) * | 2014-09-12 | 2016-05-19 | Cista System Corp. | Single chip image sensor with both visible light image and ultraviolet light detection ability and the methods to implement the same |
JP2020041922A (en) * | 2018-09-11 | 2020-03-19 | ローム株式会社 | UV detector |
EP4373238A4 (en) * | 2021-08-27 | 2024-11-13 | Huawei Technologies Co., Ltd. | DISPLAY MODULE AND ELECTRONIC DEVICE |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5030574A (en) * | 1973-07-13 | 1975-03-26 | ||
JPS5140183A (en) * | 1974-10-01 | 1976-04-03 | Toshiba Electric Equip | SHIGAISENHOSHAKYODOSOKUTEISOCHI |
JPS5142576A (en) * | 1974-10-08 | 1976-04-10 | Kyoto Daiichi Kagaku Kk | SHIGAISENKENSHUTSUKI |
JPS6171325A (en) * | 1984-09-17 | 1986-04-12 | Semiconductor Energy Lab Co Ltd | semiconductor equipment |
-
1986
- 1986-09-26 JP JP61226109A patent/JPS6382326A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5030574A (en) * | 1973-07-13 | 1975-03-26 | ||
JPS5140183A (en) * | 1974-10-01 | 1976-04-03 | Toshiba Electric Equip | SHIGAISENHOSHAKYODOSOKUTEISOCHI |
JPS5142576A (en) * | 1974-10-08 | 1976-04-10 | Kyoto Daiichi Kagaku Kk | SHIGAISENKENSHUTSUKI |
JPS6171325A (en) * | 1984-09-17 | 1986-04-12 | Semiconductor Energy Lab Co Ltd | semiconductor equipment |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01262425A (en) * | 1988-04-13 | 1989-10-19 | Yamatake Honeywell Co Ltd | solar ultraviolet sensor |
FR2697352A1 (en) * | 1992-10-26 | 1994-04-29 | Physique Rayon Lumie Lab | Electromagnetic energy concentrator with frequency change constituting among other things an electromagnetic iodine. |
FR2792460A1 (en) * | 1999-04-19 | 2000-10-20 | Biocube | Photovoltaic generator, having light cascades, comprises photovoltaic cell included in transparent matrix having dichroic filter on its entry surface and reflective coating on its opposite surface |
WO2000063975A1 (en) * | 1999-04-19 | 2000-10-26 | Biocube (S.A.R.L) | Photovoltaic generators with light cascade and varying electromagnetic flux |
US7554093B1 (en) * | 2008-01-11 | 2009-06-30 | Star Tech Instruments, Inc. | Uniformly responsive ultraviolet sensors |
US20160142660A1 (en) * | 2014-09-12 | 2016-05-19 | Cista System Corp. | Single chip image sensor with both visible light image and ultraviolet light detection ability and the methods to implement the same |
JP2020041922A (en) * | 2018-09-11 | 2020-03-19 | ローム株式会社 | UV detector |
EP4373238A4 (en) * | 2021-08-27 | 2024-11-13 | Huawei Technologies Co., Ltd. | DISPLAY MODULE AND ELECTRONIC DEVICE |
Also Published As
Publication number | Publication date |
---|---|
JPH0535976B2 (en) | 1993-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5973149B2 (en) | Photodetector | |
US9341513B2 (en) | Photodetecting element having an optical absorption layer, photodetecting device having an optical absorption layer, and auto lighting device | |
US20120187513A1 (en) | Light sensor having ir cut and color pass interference filter integrated on-chip | |
US4065672A (en) | Ultraviolet sensor and exposure instrument | |
JPS6382326A (en) | Element for ultraviolet ray sensor | |
US4804833A (en) | Color sensing method and device therefor | |
AU658568B2 (en) | Light detector | |
KR101722396B1 (en) | Spectrum sensor, spectrometric device and spectrometry method using the same | |
ITRM970341A1 (en) | INFRARED RADIATION DETECTION SYSTEM BASED ON AMORPHOUS SILICON SENSORS AND ITS ALLOYS | |
RU166459U1 (en) | TANDEM STRUCTURE OF A TWO-CHANNEL INFRARED RADIATION RECEIVER | |
ITRM940294A1 (en) | VARIABLE SPECTRUM DETECTOR CONTROLLED IN VOLTAGE, FOR DETECTION AND RECONSTRUCTION APPLICATIONS OF TWO-DIMENSIONAL COLOR IMAGES | |
US20030189162A1 (en) | Light sensing film and light sensor circuit using the same | |
JPH01292220A (en) | Semiconductor light detector | |
JPH0550857B2 (en) | ||
JPH03202732A (en) | Color sensor | |
JP2016174163A (en) | Optical filter | |
JPH0738138A (en) | Ultraviolet sensor | |
RU2642181C2 (en) | Tandem- structure of two-channel infrared radiation detector | |
JPS6177375A (en) | color sensor | |
Caputo et al. | Innovative amorphous silicon balanced ultraviolet photodiode | |
JP6757183B2 (en) | Receiver and portable electronics | |
Verkelis et al. | Narrow spectral optoelectronic sensors in remote-control equipment | |
TWI255348B (en) | Single element optical sensor | |
JP2006147692A (en) | Semiconductor device and image sensor | |
JP3159386B2 (en) | Optical sensor |