[go: up one dir, main page]

JPS6380821A - Operation for separating gas by variable pressure adsorption - Google Patents

Operation for separating gas by variable pressure adsorption

Info

Publication number
JPS6380821A
JPS6380821A JP61225895A JP22589586A JPS6380821A JP S6380821 A JPS6380821 A JP S6380821A JP 61225895 A JP61225895 A JP 61225895A JP 22589586 A JP22589586 A JP 22589586A JP S6380821 A JPS6380821 A JP S6380821A
Authority
JP
Japan
Prior art keywords
pressure
adsorption
gas
tower
absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61225895A
Other languages
Japanese (ja)
Inventor
Shoichi Ogawa
彰一 小川
Toshinori Ochi
越智 敏則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP61225895A priority Critical patent/JPS6380821A/en
Publication of JPS6380821A publication Critical patent/JPS6380821A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To enhance the concn. and recovery percentage of product gas, by leveling the pressure of an absorbing tower held under negative pressure in a desorbed state and subsequently allowing the product gas to flow in said tower to raise the pressure thereof to a predetermined absorbing pressure. CONSTITUTION:Raw gas is supplied to an absorbing tower 1 and a pressure holding valve 13 is operated to hold absorbing pressure therein to perform an absorbing process, and product gas is discharged from the adsorbing tower 1 to be stored in a product gas tank 4. Next, the pressure of the absorbing tower 1 after finishing the absorbing process and the pressure of an absorbing tower 2 after finishing a desorbing process are leveled and, further, the product gas is allowed to flow in the absorbing tower 2 from the tower top part A to raise the pressure of said tower 2 to adsorbing pressure to prepare for the next absorbing process. The absorbing tower 1 is evacuated by a vacuum pump 11 to be desorbed and, thereafter, the absorbing tower 1 returns to another absorbing process through the pressure leveling process and through the pressure raising process by a product gas. This operation is successively repeated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、圧力変動吸M(以下PSAと称する)による
ガス分離の運転方法に関する。特に。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of operating gas separation using pressure swing suction M (hereinafter referred to as PSA). especially.

昇圧工程において製品ガス圧を利用して吸着圧力まで昇
圧し、製品ガス濃度の向りとガス回収率の向上の可能な
ガス分離のためのPSAの運転方法に関する。
The present invention relates to a method of operating a PSA for gas separation, in which the product gas pressure is used in the pressure increase step to increase the pressure to the adsorption pressure, thereby improving the product gas concentration and gas recovery rate.

[従来の技術] 従来、PSA操作のうち、吸着塔を負圧下の再生圧力か
ら大気圧基りの吸着圧力まで4圧するのに、(1)吸着
塔頂部(製品ガス取出側)より均圧ガス、■吸着塔底部
(原料ガス供給側)より加圧原料ガスの順で吸着塔へ導
入した。この時、均圧ガス導入後の吸着塔内圧力と原料
ガスの圧力との間に大きな差がある場合、)ruEEK
l、料ガスの供給btを制限しても、原料ガスは低圧丁
に導入されるために急速に膨張し、大きな流速で吸着塔
内の大半を流通し、吸着塔中央付近から吸着塔頂部付近
に達する。この方法で昇圧すると、その後に統く吸着工
程において吸着塔頂部出口からは(1)均圧ガス。
[Prior art] Conventionally, in PSA operation, in order to raise the adsorption tower to four pressures from the regeneration pressure under negative pressure to the adsorption pressure based on atmospheric pressure, (1) pressure equalizing gas was supplied from the top of the adsorption tower (product gas extraction side). , (2) The pressurized raw material gas was introduced into the adsorption tower in this order from the bottom of the adsorption tower (raw material gas supply side). At this time, if there is a large difference between the pressure inside the adsorption tower after introducing pressure equalizing gas and the pressure of the raw material gas, )ruEEK
l. Even if the feed gas supply bt is restricted, the feed gas expands rapidly as it is introduced into the low pressure chamber, and flows through most of the adsorption tower at a high flow rate, from near the center of the adsorption tower to near the top of the adsorption tower. reach. When the pressure is increased in this way, (1) equal pressure gas is produced from the top outlet of the adsorption column in the subsequent adsorption step.

(クガス膨張に゛より大きな流速で吸着塔内の大半を流
通した原料ガス、0)吸着塔入口より吸着分離に1・分
な流速で流入し、全吸着剤に有効に接触した原料ガスの
順で流出する。
(The raw material gas that has flowed through most of the adsorption tower at a flow rate higher than that due to gas expansion, 0) The raw material gas that has flowed into the adsorption separation from the entrance of the adsorption tower at a flow rate of 1 minute and has effectively contacted all the adsorbents. It flows out.

従って、吸着塔出口における製品ガス濃度は。Therefore, the product gas concentration at the outlet of the adsorption tower is:

(1)高、(り低、0)高の順になり平均的ガス濃度は
急速なガス膨張による大きな流速で吸着塔内の大半を流
通した原料ガスのために低下する。
(1) High, (Low, 0) High, and the average gas concentration decreases due to the raw material gas flowing through most of the adsorption tower at a large flow rate due to rapid gas expansion.

従来法では、fa度の低いガスが流出する以前に吸着工
程を停止しなければならないために、吸着時間が短くな
り、開閉バルブの寿命、製品ガス回収率の低下等のいく
つかの問題がある。
In the conventional method, the adsorption process must be stopped before the low-FA gas flows out, which results in a short adsorption time, resulting in several problems such as a reduction in the life of the on-off valve and a reduction in the product gas recovery rate. .

[発明が解決しようとする問題点] 本発明のPSAによるガス分離運転方法は、急速な原料
ガス流入、ガス膨張をさけ、効率的なPSAガス分離の
運転方法を提供しようとするものである。従って2本発
明は、製品ガスの濃度の低下を防止し、即ち、製品ガス
の濃度低下領域をなくシ、それにより、製品ガスの平均
濃度を向上せしめたPSA運転方法を提供することを目
的とする。また2本発明は、吸着時間を長くシ、バルブ
の開閉頻度を下げ、バルブ寿命を伸ばすことのできるP
SA運転方法を提供することを目的とする。更に9本発
明は、製品ガスの回収率の向−ヒをはかれることのでき
るPSAガス分離の運転方法を提供することを11的と
する。
[Problems to be Solved by the Invention] The PSA gas separation operation method of the present invention aims to provide an efficient PSA gas separation operation method that avoids rapid raw material gas inflow and gas expansion. Therefore, it is an object of the present invention to provide a PSA operating method that prevents a decrease in the concentration of the product gas, that is, eliminates a region where the concentration of the product gas decreases, thereby improving the average concentration of the product gas. do. In addition, the present invention has two advantages: it lengthens the adsorption time, reduces the frequency of opening and closing the valve, and extends the life of the valve.
The purpose is to provide a SA driving method. A further object of the present invention is to provide a method of operating a PSA gas separation that can increase the recovery rate of product gas.

[問題点を解決するための手段] 本発明は1分離すべき原料ガスを圧力変動吸着により分
離するために吸着塔を均圧下にし1次に昇圧し、所定圧
カドで必要吸着を行ない1次に均圧に下げ、更に脱着圧
力にする吸着−脱着サイクルを繰り返す圧力変動吸着に
よるガス分離運転において、負圧下にある脱着された吸
着塔を、均圧し、その後、製品ガスを流入させ、吸着塔
を所定の吸着圧力まで昇圧することを特徴とする圧力変
動吸着によるガス分ll!運転方法である。
[Means for Solving the Problems] In order to separate the raw material gas to be separated by pressure fluctuation adsorption, the present invention brings the adsorption column under pressure equalization, increases the pressure in the primary stage, performs the necessary adsorption at a predetermined pressure, and then performs the necessary adsorption in the primary stage. In gas separation operation using pressure fluctuation adsorption, which repeats an adsorption-desorption cycle in which the pressure is lowered to an equal pressure and then increased to a desorption pressure, the pressure of the desorbed adsorption tower under negative pressure is equalized, and then product gas is introduced into the adsorption tower. Gas fraction ll by pressure fluctuation adsorption, which is characterized by increasing the pressure of the gas to a predetermined adsorption pressure! It's a driving method.

[作用] PSA方法では、吸着圧力のガスを均圧後の吸着塔内へ
導入すると、圧力差により急速な膨張が生じ、Q料ガス
が大きな流速で吸着塔を通過することとなるために、吸
着分離効率が低下するので、吸着塔とほぼ等しい圧力の
原料ガスを供給し、原料ガスを著しく膨張させることな
く充填し、吸着圧力まで昇圧1−る必要がある。しかし
[Function] In the PSA method, when gas at adsorption pressure is introduced into the adsorption tower after pressure equalization, rapid expansion occurs due to the pressure difference, and the Q material gas passes through the adsorption tower at a high flow rate. Since the adsorption separation efficiency decreases, it is necessary to supply the raw material gas at approximately the same pressure as the adsorption tower, fill the raw material gas without significantly expanding it, and increase the pressure to the adsorption pressure. but.

均圧圧力が、負圧の場合には、均圧IE力と大気圧との
間の昇圧を、昇圧機から供給される原料ガスにより膨張
させることなく、実施することはできないために1本発
明運転方法では、均圧圧力から、吸着塔内への流速が制
御可能となるような吸着圧力になるまで、吸着分離が不
要の製品ガスを用いて昇圧するものである。
When the equalization pressure is a negative pressure, it is impossible to increase the pressure between the equalization IE force and the atmospheric pressure without expanding it with the raw material gas supplied from the booster. In the operating method, the pressure is increased from the equal pressure to an adsorption pressure at which the flow rate into the adsorption tower can be controlled using a product gas that does not require adsorption separation.

従来の運転法では、負圧にされ脱着された後の吸着塔に
、原料ガスを導入rると、圧力差があるために、急速な
ガス膨張が生じ、原料ガスが大きな速度で吸着塔を通過
するために、原料ガスが吸着されるべき成分も含むまま
で吸着塔から流出されて、製品ガス貯蔵タンクに入る。
In the conventional operation method, when feed gas is introduced into the adsorption tower after it has been desorbed under negative pressure, rapid gas expansion occurs due to the pressure difference, and the feed gas moves through the adsorption tower at a high speed. For passage, the feed gas, still containing the components to be adsorbed, leaves the adsorption column and enters the product gas storage tank.

そのために。for that.

製品ガスの濃度が低下し、吸着分離効率が低下する。The concentration of product gas decreases, and the adsorption separation efficiency decreases.

そこで1本発明のPSAガス分離運転方法では負川下に
ある脱着された吸着塔を、吸着が終了した他の吸着塔と
の間で均圧し、他の吸着塔内残留ガスで比較的製品ガス
組成に近い均圧ガスで昇圧し、その後、製品ガスを流入
させ、吸着塔を昇圧することにより、製品ガスが急速に
吸着塔を通過した原料ガスにより薄められることを防止
できるものである。従って2本発明のPSA運転方法は
、結果的に、製品ガスの濃度を改善せしめることが、で
きるものである。
Therefore, in the PSA gas separation operation method of the present invention, the pressure of the desorbed adsorption tower downstream is equalized with other adsorption towers that have completed adsorption, and the product gas composition is relatively high with the residual gas in the other adsorption towers. By raising the pressure with equal pressure gas close to 100 ml, and then introducing the product gas and raising the pressure of the adsorption tower, it is possible to prevent the product gas from being diluted rapidly by the raw material gas that has passed through the adsorption tower. Therefore, the PSA operating method of the present invention can ultimately improve the concentration of product gas.

本発明によるPSA運転方法とその特徴を、2塔弐PS
A装置を例に、従来の運転方法と比較しながら説明する
The PSA operating method according to the present invention and its characteristics are described in two PSs.
This will be explained using device A as an example and comparing it with the conventional operating method.

第1図は2塔弐PSAの装置の構成を示し、第2図はそ
のPSAの操作運転時における2塔弐PSAの圧力変化
例を示t。
Fig. 1 shows the configuration of a two-column PSA device, and Fig. 2 shows an example of pressure change in the two-column PSA during operation of the PSA.

PSA装置は、ゼオライト、活性炭等の吸着剤を充填し
た1及び2の吸着塔、3〜10の開閉バルブ、11の送
風機、12の真空ポンプ、13の保圧弁、14の製品保
圧タンク及び、これらを結ぶ配管を有し1図では省略し
たバルブ開閉を管理する制御系をも有する。
The PSA device includes 1 and 2 adsorption towers filled with adsorbents such as zeolite and activated carbon, 3 to 10 on-off valves, 11 blowers, 12 vacuum pumps, 13 pressure holding valves, 14 product pressure holding tanks, and It has piping connecting these, and also has a control system for managing valve opening and closing, which is omitted in Figure 1.

製品保圧タンク14は2時間的に変動する製品ガスの生
産量を平滑化して取出すこと等の目的で、従来のPSA
に使用しているものであるが。
The product pressure holding tank 14 is a conventional PSA tank for the purpose of smoothing and taking out the production amount of product gas that fluctuates every two hours.
Although it is used for.

本発明のPSA運転方法では不可決の構成機器である。This is an essential component in the PSA operating method of the present invention.

以上のような構成の装置において、従来の運転方法では
1例えば、第2図に示すような次のような操作運転であ
る。
In the apparatus configured as described above, the conventional operation method is as follows, for example, as shown in FIG.

〈イ)均圧工程l;吸着工程の終了した吸着塔2と十分
真空下に放置し、吸着剤が再生された吸着塔1とを連絡
し、比較的製品ガス組成に近いガス(均圧ガス)を吸着
塔1へ導入する工程である。
(a) Pressure equalization step 1: Connect the adsorption tower 2 that has completed the adsorption step with the adsorption tower 1, which has been left under sufficient vacuum and the adsorbent has been regenerated. ) is introduced into the adsorption tower 1.

この時、バルブ操作は例えば、バルブ8.9を開き、バ
ルブ4,5,6.7を閉じである。また圧力の変化は第
2図に示したように変動する。
At this time, the valve operation is, for example, opening valve 8.9 and closing valves 4, 5, and 6.7. Further, the pressure changes as shown in FIG.

〈口〉昇圧工程;原料ガスを均圧ガスが導入された吸着
塔1へ導入し、塔内を目的の吸着圧力まで昇圧する工程
である。
<Exit> Pressurization step: This is a step in which the raw material gas is introduced into the adsorption tower 1 into which the pressure equalization gas has been introduced, and the pressure inside the tower is increased to the target adsorption pressure.

(ハ)吸着工程;吸着圧力まで昇圧された吸着塔1へ吸
着に有効な流速で原料ガスを導入し、同時に他端より製
品ガスを取り出す工程である。この間に吸着塔2は前工
程と同様に吸着剤の再生を継続中である。この時、バル
ブ操作は1例えば、バルブ3,4,8,10.及び7は
開き、バルブ5゜6.9は閉じている。
(c) Adsorption step: This is a step in which the raw material gas is introduced into the adsorption tower 1, which has been pressurized to the adsorption pressure, at a flow rate effective for adsorption, and at the same time, the product gas is taken out from the other end. During this time, the adsorption tower 2 continues to regenerate the adsorbent as in the previous step. At this time, the valve operations are 1, for example, valves 3, 4, 8, 10, . and 7 are open, and valve 5°6.9 is closed.

(ニ)均圧工程2;吸着工程の終了した吸着塔1と、吸
着Mの再生が終了した吸着塔2とを連絡し、均圧工程1
と同じ操作を行なう工程である。
(d) Pressure equalization step 2: The adsorption tower 1, which has completed the adsorption step, and the adsorption tower 2, which has completed the regeneration of adsorption M, are connected, and the pressure equalization step 1
This is a process in which the same operations are performed.

但し、均圧工程1とはガスの流れ方向が逆で、吸着塔1
は減圧し、吸着塔2は昇圧される。^ルプ操作は、均圧
工程1と同じである。
However, the gas flow direction is opposite to pressure equalization step 1, and adsorption tower 1
is reduced in pressure, and the pressure in the adsorption tower 2 is increased. The loop operation is the same as the pressure equalization step 1.

(ホ)脱着工程;吸着が終了し、塔内に残留した半製品
ガスを他塔へ送出した吸着塔1を減圧し、吸着剤の再生
を行なう(再生)工程である。この間、吸着塔2では昇
圧J工程、及びその後の吸着工程が為される。バルブ操
作は9例えば、吸着塔2が昇圧工程にある時は、バルブ
3,5,9.10及び6は開で、バルブ4,7.8は閉
じである。
(e) Desorption step: This is a step in which the adsorption tower 1, which has completed adsorption and sent out the semi-finished product gas remaining in the tower to another tower, is depressurized and the adsorbent is regenerated (regeneration). During this time, in the adsorption tower 2, a pressurization J step and a subsequent adsorption step are performed. For example, when the adsorption tower 2 is in a pressure increasing step, valves 3, 5, 9, 10, and 6 are open, and valves 4, 7, and 8 are closed.

尚、第2図において、実線は吸着塔1の操作工程を示し
2点線は吸着塔2の操作工程を示す。また、上部に示す
各工程は、吸着塔1について述べたものである。
In FIG. 2, the solid line indicates the operating process of the adsorption tower 1, and the two-dot line indicates the operating process of the adsorption tower 2. Further, each process shown in the upper part is described for the adsorption tower 1.

以上で1サイクルが終了し、順次サイクルを繰り返し、
はぼ連続的に製品ガスが得られる。
With this, one cycle is completed, and the cycle is repeated in sequence.
Product gas is obtained almost continuously.

以上のt程のガス圧力の変動をグラフに表わしたものが
第2図である。このグラフにより、より明確に上記の諸
工程の特徴が明らかにされるものである。従って、第2
図により説明するとつぎのようになる。
FIG. 2 is a graph showing the above fluctuations in gas pressure over time t. This graph clarifies the characteristics of the above-mentioned steps more clearly. Therefore, the second
The following is an explanation using a diagram.

先ず、均圧工程終了後バルブ3,4.10を開け、バル
ブ5,6,8.9を閉じ(この時吸着塔2では、バルブ
7を開は脱着している)、ポンプ11により原料ガスを
供給すると、吸着塔1は圧力が上がり(昇圧され)吸着
圧力に達する。その後、バルブ8を開け、吸着塔1に充
填された吸着剤に、吸着除去すべきガス成分が吸着され
塔頂より製品ガスが流出する。第2図のP、の圧力より
均圧工81で3点(圧力P、)に至り、昇圧工程で圧力
P1に昇圧されて、吸着工程に入る。
First, after the pressure equalization process is completed, valves 3, 4.10 are opened, valves 5, 6, and 8.9 are closed (at this time, in the adsorption tower 2, valve 7 is open and desorbed), and the pump 11 pumps the raw material gas. When supplied, the pressure in the adsorption tower 1 rises (pressurizes) and reaches the adsorption pressure. Thereafter, the valve 8 is opened, and the gas component to be adsorbed and removed is adsorbed by the adsorbent filled in the adsorption tower 1, and the product gas flows out from the top of the tower. The pressure at P in FIG. 2 reaches 3 points (pressure P, ) in the pressure equalizer 81, and is increased to pressure P1 in the pressure increasing step, and enters the adsorption step.

ポンプ12で吸着塔1は脱着される(第2図の均圧工程
2及び脱着工程)。
The adsorption tower 1 is desorbed by the pump 12 (pressure equalization step 2 and desorption step in FIG. 2).

以−Lの工程における吸着塔中の充填ガスの状態を第3
図により説明する。均圧工程において、吸着塔内残留ガ
スで比較的製品ガス組成に近い均圧ガスの一部により、
吸着塔を昇圧し、第3図aの均圧工程終了時は、均圧ガ
スで充填され圧力P1に保持される0次に、原料ガスで
吸着圧力にまで昇圧する。従って、昇圧工程終了時の吸
着塔の充填状態を示す第3図すは、均圧ガスと原料ガス
とより成るものである。[料ガスは膨張により充填され
たガスである。11は膨張により充填されたガスの有効
吸着塔の長さであり、1.は、吸着工程で供給されるガ
スの有効吸着塔の長きであり、1.<1゜である。
The state of the filling gas in the adsorption tower in the step L is as follows:
This will be explained using figures. In the pressure equalization process, a part of the pressure equalization gas remaining in the adsorption tower and having a relatively similar composition to the product gas causes
The pressure of the adsorption tower is increased, and at the end of the pressure equalization step shown in FIG. Therefore, FIG. 3, which shows the filling state of the adsorption tower at the end of the pressure increasing step, is composed of pressure equalization gas and raw material gas. [The feed gas is the gas filled by expansion. 11 is the length of the effective adsorption column for the gas filled by expansion; 1. is the length of the effective adsorption tower for the gas supplied in the adsorption process; 1. <1°.

前述のように、従来の運転方法では均圧工程1、昇圧二
[程において、吸着塔1は真空状態から均圧ガス又は原
料ガスによ・り昇圧されるが、第3図の説明図に示され
るように、均圧ガスと原料ガされる原料ガスは、均圧後
も低圧状態にある吸着塔内に導入されるために、塔内に
おいて膨張し。
As mentioned above, in the conventional operation method, in the pressure equalization step 1 and the pressure increase step 2, the adsorption tower 1 is pressurized from a vacuum state by pressure equalization gas or raw material gas. As shown, the pressure equalized gas and the raw material gas are introduced into the adsorption tower, which remains in a low pressure state even after pressure equalization, so they expand within the tower.

大きな流速で吸着剤と接しながら吸着塔内へ充填されて
いく、このような状態では、吸着工程において吸着に有
効な充分な流速で原料ガスを供給しても、製品ガス濃度
は、第4図に示されるように、変動するものである。即
ち、順次説明すると、■最初は均圧ガスが流出するため
にガス濃度の比較的に高い製品ガスが得られ、■次に塔
内において膨張し、大きな流速で塔中央部まで達した原
料ガスが、塔中央より塔頂部までの短い距離を吸着に有
効な流速で通過するためにガス濃度の低い製品ガスが得
られ、■次に流出してくるガスは吸着に有効な流速で吸
着塔内を通過する距離が長くなるために次第にガス濃度
の高い製品ガスが得られ、■その後、吸着剤が破過(飽
和)″するために得られる製品ガス濃度は低下する。
In such a situation, where the adsorption column is filled into the adsorption tower while contacting the adsorbent at a high flow rate, even if the raw material gas is supplied at a sufficient flow rate to be effective for adsorption in the adsorption process, the product gas concentration will be as shown in Figure 4. As shown in the figure, it is variable. That is, to explain this in sequence: ■ At first, a product gas with a relatively high gas concentration is obtained because the pressure equalized gas flows out, and ■ Next, the raw material gas expands in the column and reaches the center of the column at a high flow rate. However, as the product gas passes through the short distance from the center of the column to the top of the column at a flow rate effective for adsorption, a product gas with a low gas concentration is obtained. As the distance through which the adsorbent passes becomes longer, a product gas with a higher gas concentration is obtained.After that, the adsorbent breakthroughs (saturates) and the resulting product gas concentration decreases.

従って、吸着時間を製品ガス濃度の極小点(最低点、第
4図a参照)になる前になるように、短くしないと十分
高いガス濃度は得られないものとなる。しかし、吸着時
間を短くするとパルプ寿命が短縮され、ガス回収率が低
下する等の欠点が生じる。更に、ガス膨張による大きな
流速でも吸着分離が可能となるようにするには、吸着塔
を大きくする必要があり、製作費、吸着剤費などが増大
する欠点がある。
Therefore, a sufficiently high gas concentration cannot be obtained unless the adsorption time is shortened to a point before the product gas concentration reaches its minimum point (lowest point, see FIG. 4a). However, if the adsorption time is shortened, the life of the pulp will be shortened, resulting in drawbacks such as a decrease in gas recovery rate. Furthermore, in order to enable adsorption separation even at a high flow rate due to gas expansion, it is necessary to increase the size of the adsorption tower, which has the disadvantage of increasing manufacturing costs, adsorbent costs, etc.

このような欠点を除くために本発明の運転方法によると
1例えば、均圧工程1の終了後の、吸着塔内が低圧状態
にある時に、第1図の装置による例に従えば、バルブ7
.8.10を開き、バルブ4.5,6.9を閉じ、吸着
圧力に保持された製品タンク14から製品ガスが吸着塔
1に流れるようにし、原料ガスが供給されても塔内で膨
張しない吸着圧力になるまで製品ガスで昇圧#−れば、
その後原料ガスが導入されても、吸着に七分有効な流速
で流入し、全吸着剤に有効に接触するために、製品ガス
濃度は低下することなく得られる。
In order to eliminate such drawbacks, the operating method of the present invention is adopted. For example, when the adsorption tower is in a low pressure state after the end of the pressure equalization step 1, according to the example of the apparatus shown in FIG.
.. 8.10 and close valves 4.5 and 6.9, so that the product gas flows from the product tank 14 maintained at the adsorption pressure to the adsorption tower 1, so that it does not expand in the tower even if the raw material gas is supplied. If the pressure is increased with the product gas until the adsorption pressure is reached,
Even when the raw material gas is introduced thereafter, it flows at a flow rate that is effective for adsorption and effectively contacts all the adsorbents, so that the product gas concentration does not decrease.

即ち9本発明による運転方法では、昇圧工程において、
吸着塔内には、塔頂部から■均圧ガス、■製品タンクよ
り導入したガス、■吸着塔入口から原料ガスの順でガス
供給があり、流入した原料ガスは有効に吸着剤と接し、
流出するために、製品ガスは第41mbkm示すように
濃度低下領域が消滅し、平均製品ガス濃度が向上する。
That is, in the operating method according to the present invention, in the pressure increasing step,
Inside the adsorption tower, gas is supplied from the top of the tower in the following order: - Equal pressure gas, - Gas introduced from the product tank, and - Raw material gas from the entrance of the adsorption tower.
Due to the outflow, the product gas concentration decrease region disappears as shown in the 41st mbkm, and the average product gas concentration increases.

また、同一の濃度の製品ガスを得るために、吸着時間を
長くすることができ、バルブの切り換えの頻度を低下さ
せ、バルブ寿命が延長し、ガス回収率が向上する。
In addition, to obtain the same concentration of product gas, the adsorption time can be lengthened, reducing the frequency of valve switching, extending the valve life and improving the gas recovery rate.

第1図の2塔式のPSAガス分離の装置について2本発
明の運転方法を更に説明する。
The operating method of the present invention for the two-column PSA gas separation apparatus shown in FIG. 1 will be further explained.

先ず、吸着工程においてバルブ3,4,8.10を開き
、バルブ5,6.9を閉じ、ポンプ11を働かすと、左
側の吸着塔1の側に通路ができ。
First, in the adsorption step, when valves 3, 4, 8.10 are opened, valves 5, 6.9 are closed, and pump 11 is activated, a passage is created on the left side of adsorption tower 1.

吸着塔1には、原料ガスが流入する。ガスは保圧;f?
13により吸着圧力に保持されているので、吸着される
べき成分は吸着塔1の吸着剤に吸着されて、塔頂より製
品ガスが流出し、製品タンク14には製品ガスが貯蔵き
れていく0次に、バルブ4.5,6.7.10は閉じら
れ、バルブ8.9工程が終了した吸着塔2を均圧し、吸
R塔2を均圧ガスで満たし、圧力P、に保持する。更に
、バルブ4,7.8は閉じられ、バルブ9が開けられ。
A raw material gas flows into the adsorption tower 1 . Gas is at holding pressure; f?
13, the components to be adsorbed are adsorbed by the adsorbent in the adsorption tower 1, and the product gas flows out from the top of the tower, and the product gas is stored in the product tank 14. Next, valves 4.5, 6.7.10 are closed to equalize the pressure of the adsorption tower 2 where the valve 8.9 step has been completed, and the suction tower 2 is filled with pressure equalization gas and maintained at pressure P. Furthermore, valves 4, 7.8 are closed and valve 9 is opened.

吸着塔2に塔頂部Aより製品ガスが流入し、−方、吸着
塔1は真空ポンプで真空に引かれ、脱着される0次に、
吸着塔2の圧力が吸着圧力に達すると、バルブ5は開け
られ、ポンプ11により原料ガスが吸着塔2に塔底Bよ
り流入され、吸着工程がなされる。このようなPSAの
運転方法では、吸着塔に急速にガスが流入し急速なガス
膨張に伴いガスが吸着塔を通過していく時の流入ガスは
精製されたガス即ち製品ガスであるために、製品側に精
製されないものが流出していようことが少なく、製品ガ
スの純度、或いは濃度は高められ、改善されたものとな
る。
Product gas flows into the adsorption tower 2 from the tower top A, and on the other hand, the adsorption tower 1 is evacuated by a vacuum pump, and the zero-order gas is desorbed.
When the pressure in the adsorption tower 2 reaches the adsorption pressure, the valve 5 is opened, and the pump 11 causes the raw material gas to flow into the adsorption tower 2 from the bottom B, thereby performing an adsorption process. In such a PSA operating method, when gas rapidly flows into the adsorption tower and passes through the adsorption tower with rapid gas expansion, the inflowing gas is purified gas, that is, product gas. There is less chance that unpurified substances will flow out to the product side, and the purity or concentration of the product gas will be increased and improved.

PSAガス分離を従来のように運転すると、その製造さ
れた製品ガスは、その濃度を吸着時間に対して第4図a
のように変動する。この濃度の低下を随ぐために1図示
の1.の短い吸着時間にして一5aFIlh&JJ+(
’Ta<Lfp+、)mlT[1MLjI711.x!
−4?ahJ、44えられる、然し乍ら、この方法では
、バルブの開閉時間が短くなり、また、運転効率を下げ
るものである。これに対して9本発明の運転方法では。
When a PSA gas separation is operated in a conventional manner, the product gas produced has a concentration of
It fluctuates like this. In order to follow this decrease in concentration, 1. With a short adsorption time of -5aFIlh&JJ+(
'Ta<Lfp+,)mlT[1MLjI711. x!
-4? However, in this method, the opening/closing time of the valve is shortened, and the operating efficiency is lowered. On the other hand, in the operating method of the present invention.

第4図すに示されるように製品ガスの濃度は、均圧工程
後の昇圧工程に不純物の少ない製品ガスを使用し、昇圧
するために、製品ガスとして出るガスの濃度は、平均化
され1図示の如く、はぼ一定の濃度のものとなる。更に
、吸着工程の時間が長くなるために、バルブの開閉の頻
度も少なく、更に、効率よい運転ができる。即ち、第4
図aに示すように従来の運転方法では1点線で示すよう
に変動のある濃度であり、更に、平均濃度も本発明運転
Jj法に比べて低いものとなる。これに対して1本発明
運転方法では、製品ガスの濃度は図示のようにほぼ最高
の水準に保持することができる。尚1本発明運転方法で
、吸着時間を不必要に長くとり、破過状態にすると、1
点鎖線で示すように、a度は低下していく。
As shown in Figure 4, the concentration of the product gas is averaged and 1 As shown in the figure, the density is approximately constant. Furthermore, since the adsorption process takes a long time, the frequency of opening and closing of the valve is reduced, and more efficient operation can be achieved. That is, the fourth
As shown in Figure a, in the conventional operating method, the concentration fluctuates as shown by the dotted line, and furthermore, the average concentration is lower than that in the Jj method of the present invention. On the other hand, in one operating method of the present invention, the concentration of the product gas can be maintained at approximately the highest level as shown in the figure. 1. In the operating method of the present invention, if the adsorption time is unnecessarily long and a breakthrough state is reached, 1
As shown by the dotted chain line, the a degree decreases.

[発明の効果] 本発明のPSAガス分離運転方法は9.第1に。[Effect of the invention] 9. PSA gas separation operation method of the present invention. Firstly.

従来のPSA法よりも、得られる製品ガス濃度を向上[
ることができること、第2に、ガス回収率の向上をはか
れるPSAガス分離の運転方法を提供することができた
こと、第3に、バルブ開閉。
Improved product gas concentration compared to conventional PSA method [
Second, we were able to provide an operating method for PSA gas separation that improves the gas recovery rate. Third, we were able to open and close valves.

切り換えの頻度を著しく低下させることができたために
、バルブ寿命を延長せしめることができ。
Since we were able to significantly reduce the frequency of switching, we were able to extend the valve life.

効率よい運転が確保されることなどの技術的効果が得ら
れた。
Technical effects such as ensuring efficient operation were achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は9本発明の運転方法の1実施例を行なう1例の
PSA装置を示す説明図である。 第2図は、第1図の装置によるPSA運転の場合の各吸
着塔での圧力変動を示す説明図である。 第3図は、従来のPSA運転方法の昇圧工程における流
入状態を示す説明図である。 第4図a、bは、従来の運転法と本発明の運転方法にお
ける製品ガス濃度の変動の状態を示す説明グラフである
。 [主要部分の符号の説明] 1.2.、、吸着塔 3〜10.、、開閉バルブ11、
、、送風機  12 、 、 、 it空ポンプ13、
、、保圧弁  14.、、製品タンク15、、、配管 特許出願人  住友重機械工業株式会社復代理人  弁
理士  倉 持  裕(外1名)1サイフル 哨4間 −一→ Cユ)(シ) 第3図 吸塩11間→ 第4図工 吸1時間 −一→ 第4図b
FIG. 1 is an explanatory diagram showing one example of a PSA device for carrying out one embodiment of the operating method of the present invention. FIG. 2 is an explanatory diagram showing pressure fluctuations in each adsorption tower in the case of PSA operation using the apparatus shown in FIG. FIG. 3 is an explanatory diagram showing the inflow state in the pressure increasing step of the conventional PSA operating method. FIGS. 4a and 4b are explanatory graphs showing the state of fluctuation in product gas concentration in the conventional operating method and the operating method of the present invention. [Explanation of symbols of main parts] 1.2. ,, Adsorption tower 3-10. ,,opening/closing valve 11,
,,Blower 12, ,It empty pump 13,
,,Pressure valve 14. ,,Product Tank 15,,,Piping Patent Applicant Sumitomo Heavy Industries Co., Ltd. Sub-Agent Patent Attorney Hiroshi Kuramochi (1 other person) 1 Saiful 4-ken -1 → Cyu) (shi) Figure 3 Salt Absorption 11 hours → Figure 4 Work 1 hour -1 → Figure 4 b

Claims (1)

【特許請求の範囲】 分離すべき原料ガスを圧力変動吸着により分離するため
に脱着された吸着塔を吸着の終了した他の吸着塔との間
で均圧し、次に更に昇圧し、所定圧力下で必要な吸着を
行ない、次に均圧に下げ、更に脱着圧力にする吸着−脱
着サイクルを繰り返す圧力変動吸着によるガス分離運転
において、 負圧下にある脱着された吸着塔を、均圧し、その後、製
品ガスを流入させ、所定の吸着圧力まで吸着塔を昇圧す
ることを特徴とする圧力変動吸着によるガス分離運転方
法。
[Scope of Claims] In order to separate the raw material gas to be separated by pressure fluctuation adsorption, the pressure of the desorbed adsorption tower is equalized with another adsorption tower that has completed adsorption, and then the pressure is further increased, and the pressure is lowered to a predetermined pressure. In gas separation operation using pressure fluctuation adsorption, the pressure is lowered to equalization, and then the adsorption-desorption cycle is repeated to increase the desorption pressure. In gas separation operation by pressure fluctuation adsorption, the pressure of the desorbed adsorption tower under negative pressure is equalized, and then, A gas separation operation method using pressure fluctuation adsorption, characterized by introducing product gas and increasing the pressure of an adsorption tower to a predetermined adsorption pressure.
JP61225895A 1986-09-26 1986-09-26 Operation for separating gas by variable pressure adsorption Pending JPS6380821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61225895A JPS6380821A (en) 1986-09-26 1986-09-26 Operation for separating gas by variable pressure adsorption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61225895A JPS6380821A (en) 1986-09-26 1986-09-26 Operation for separating gas by variable pressure adsorption

Publications (1)

Publication Number Publication Date
JPS6380821A true JPS6380821A (en) 1988-04-11

Family

ID=16836561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61225895A Pending JPS6380821A (en) 1986-09-26 1986-09-26 Operation for separating gas by variable pressure adsorption

Country Status (1)

Country Link
JP (1) JPS6380821A (en)

Similar Documents

Publication Publication Date Title
KR100288568B1 (en) Single Bed Pressure Cyclic Adsorption Method for Recovery of Oxygen from Air
JP3232003B2 (en) Reflux in pressure swing adsorption method
KR960010377B1 (en) Absorption-separation method
JPS63166702A (en) Concentration of oxygen gas
JP3310249B2 (en) Oxygen production method and apparatus using one adsorber and one blower
TWI460001B (en) A method for producing nitrogen gas, a method for separating gas, and nitrogen gas production equipment
JPH0531481B2 (en)
JP7374925B2 (en) Gas separation equipment and gas separation method
JP2004262743A (en) Oxygen concentrating method and oxygen concentrating device
KR20050030957A (en) Method of separating target gas
JPS6380821A (en) Operation for separating gas by variable pressure adsorption
JP2529929B2 (en) Method for separating and recovering carbon monoxide gas
JPH09141038A (en) Gas separation device
JP3895037B2 (en) Low pressure oxygen enrichment method
JPS61136419A (en) Selective desorption in pressure swing adsorption
KR0145787B1 (en) Process for preparing oxygen by changing pressure
JPH0938443A (en) Gas separation device
JP3561886B2 (en) Pressure fluctuation adsorption separation method
JP2529928B2 (en) Method for separating and recovering carbon monoxide gas
JPH0295409A (en) Separation of gaseous nitrogen
JP3369424B2 (en) Mixed gas separation method
JP3073061B2 (en) Gas separation device
JPH03262513A (en) Separation of nitrogen gas
JPH057719A (en) Pressure swinging-type mixed gas separation system
JPH03288512A (en) Separation of nitrogen gas