JPS6380721A - Harmonic compensator - Google Patents
Harmonic compensatorInfo
- Publication number
- JPS6380721A JPS6380721A JP61224724A JP22472486A JPS6380721A JP S6380721 A JPS6380721 A JP S6380721A JP 61224724 A JP61224724 A JP 61224724A JP 22472486 A JP22472486 A JP 22472486A JP S6380721 A JPS6380721 A JP S6380721A
- Authority
- JP
- Japan
- Prior art keywords
- harmonic
- phase
- power
- pwm converter
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003990 capacitor Substances 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000001629 suppression Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/40—Arrangements for reducing harmonics
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、電源系統および負荷設備間の系統ラインに設
けられる高調派補償装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a harmonic compensation device provided in a system line between a power supply system and load equipment.
従来、送配電系統の高調波対策としては、LOフィルタ
(受動フィルタ)が多く採用されてきた。Conventionally, LO filters (passive filters) have often been adopted as harmonic countermeasures for power transmission and distribution systems.
これは、特定の高調波に対しては系統インピーダンスよ
りも低インピーダンスとなる分路を構成し、送配電系統
に流出する高調波を抑制するもので、高調波発生源の近
傍に設置されるものである。This is a shunt that has a lower impedance than the system impedance for specific harmonics, and suppresses harmonics flowing into the power transmission and distribution system.It is installed near the source of harmonics. It is.
しかしながら、LOフィルタには次のような問題点があ
る。However, the LO filter has the following problems.
すなわち、LOフィルタによる高調波抑制効果は系統の
インピーダンスの影響を受ける。LCフィルタの定数に
よっては、系統インピーダンスと、の並列共振回路を構
成し、高調波が増大する現象すら発生することがある。That is, the harmonic suppression effect by the LO filter is affected by the impedance of the system. Depending on the constants of the LC filter, it may even form a parallel resonant circuit with the system impedance, causing an increase in harmonics.
また、LOフィルタが過負荷になった場合にはLOフィ
ルタを系統から遮断せざるを得す、全く高調波抑制機能
を失うことがある。Further, when the LO filter becomes overloaded, the LO filter must be cut off from the grid, and the harmonic suppression function may be completely lost.
近年、スイッチング機能を有する半導体素子の発達によ
り、これらの素子を用いた負荷設備が多用されるように
なったため、高調派補償装置が重要視されるようになり
、アクティブフィルタが開発使用されるようになってき
た。In recent years, with the development of semiconductor elements with switching functions, load equipment using these elements has come into widespread use.As a result, harmonic compensation devices have become important, and active filters have been developed and used. It has become.
高速スイッチング素子による3相ブリッジ形PWMコン
バータと、このPWMコンバータの交流側に設けられた
交流リアクトルと、直流側に設けられたコンデンサ等を
基本として構成されるアクティブフィルタは、例えば電
気学会誌 60−865「多重電圧形PWM変換器を用
いた高調波抑制用アクティブフィルタ」に示されている
。An active filter that is basically composed of a three-phase bridge type PWM converter using high-speed switching elements, an AC reactor provided on the AC side of this PWM converter, and a capacitor provided on the DC side is described in, for example, Journal of the Institute of Electrical Engineers of Japan 60- 865 "Active filter for harmonic suppression using multiple voltage type PWM converter".
―(
上記文陶に示されている方法により、例えばし夕により
高調波を抑制しようとすると、PWMコンバータの交流
側に設けられた交流リアクトルのために、レオナードの
転流時に十分な追従ができず、低次高調波の十分な抑制
ができないという難点があった。- (If you try to suppress harmonics by the method shown in the above paper, for example, you will not be able to follow Leonard's commutation sufficiently due to the AC reactor installed on the AC side of the PWM converter. First, there was a drawback that low-order harmonics could not be suppressed sufficiently.
本発明にかかる高調派補償装置は、電源系統および負荷
設備間の系統ラインに設けられた高調派補償装置におい
て、3相PWMコンバータト、該3相PWMコンバータ
の各相の入力側に設けられたリアクトルと、前記3相P
WMコンバータの出力側に並列に設けられた直流コンデ
ンサと、前記3相PWMコンバータを制御する制御装置
とを具え、該制御装置は、電源のn倍の周波数を有する
正弦波形の第n調波3相電圧を発生する手段と、該第n
調波3相電圧と前記負荷設備の負荷電流より第n調波瞬
時実電力および虚電力を算出する手段と、該第n調波瞬
時実電力および虚電力から高調液分を除去し直流分を取
り出す手段と、該第n調波瞬時実電力および虚電力の直
流分の符号を反転して実電力および虚電力指令信号を発
生する手段と、前記第n調波3相電圧と前記実電力およ
び虚電力指令信号より電流指令信号を生成する手段と、
該電流指令信号と補償電流の値とを比較しで3相PWM
コンバータの各相のスイッチング素子のトリガ信号を生
成する手段とを具えたことを特徴とするものである。The harmonic compensator according to the present invention is a harmonic compensator provided in a system line between a power supply system and load equipment, and includes a three-phase PWM converter, and a harmonic compensator provided on the input side of each phase of the three-phase PWM converter. reactor and the three-phase P
The control device includes a DC capacitor provided in parallel on the output side of the WM converter, and a control device that controls the three-phase PWM converter. means for generating a phase voltage;
means for calculating n-th harmonic instantaneous real power and imaginary power from the harmonic three-phase voltage and the load current of the load equipment, and removing a harmonic liquid component from the n-th harmonic instantaneous real power and imaginary power to obtain a DC component. means for inverting the signs of the DC components of the n-th harmonic instantaneous real power and imaginary power to generate real power and imaginary power command signals; means for generating a current command signal from an imaginary power command signal;
Three-phase PWM is performed by comparing the current command signal and the compensation current value.
The present invention is characterized by comprising means for generating trigger signals for switching elements of each phase of the converter.
本発明の高調派補償装置の作用について、第5調波の補
償装置の場合を例にとって説明する。本装置Rでは以下
に説明するような3相−2相変換を行い、実電力および
虚電力なる概念を導入している。The operation of the harmonic compensator of the present invention will be explained by taking the fifth harmonic compensator as an example. This device R performs three-phase to two-phase conversion as described below, and introduces the concepts of real power and imaginary power.
この概念は、まず次の(1)〜(4)式を使って、正弦
波形の第5調波3相電圧euI ey + ewおよび
非正弦波の負荷電流ILU + tt、v j ILW
をα、βの2相の電圧頃、eβおよび電流11n *
tLβに変換する。This concept first uses the following equations (1) to (4) to calculate the sinusoidal waveform fifth harmonic three-phase voltage euI ey + ew and the non-sinusoidal load current ILU + tt, v j ILW
around the voltage of the two phases α and β, eβ and the current 11n *
Convert to tLβ.
上記(2)、(3)式より求めた2相の電圧および電流
を使うと、次の
れ第5調波瞬時実電力および虚電力である。これらの第
5調波瞬時実電力pおよび虚電力qは、次の(6) 、
C力のように直流分p+qと交流会p、qに分解され
る。Using the two-phase voltages and currents obtained from equations (2) and (3) above, the fifth harmonic instantaneous real power and imaginary power are as follows. These fifth harmonic instantaneous real power p and imaginary power q are as follows (6),
Like the C force, it is decomposed into a DC component p+q and an alternating current component p, q.
p=1)+I) ・・・・・・・・・
・・・・・・・・・(6)q”q+q
・・・・・・・・・・・・・・・・・・(7)ここで
、負荷電流iLα、iLβの第5調波分は直流分i、i
に変換されるので、ローパスフィルタを通して分離する
ことができる。p=1)+I) ・・・・・・・・・
・・・・・・・・・(6)q”q+q
・・・・・・・・・・・・・・・・・・(7) Here, the 5th harmonic components of the load currents iLα, iLβ are DC components i, i
can be separated through a low-pass filter.
ゆえに、第5鯛波瞬時実電力pおよび虚電力qから
8−− ・・・・・・・・・・・・
・・・・・・(8) −−p
8−− ・・・・・・・・・・・・
・・・・・・(9)q −″q
なる実電力指令信号pおよび虚電力指令信号qを符号反
転回路によって得ることができる。Therefore, from the 5th Taiha wave instantaneous real power p and imaginary power q, 8-- ・・・・・・・・・・・・
・・・・・・(8) −−p 8−− ・・・・・・・・・・・・
(9) A real power command signal p and an imaginary power command signal q of q −″q can be obtained by the sign inversion circuit.
* *
これらの実電力および虚電力指令信号p+Qより、次の
(10)〜(12)式に従って2相電流指令信号Iα。* * From these real power and imaginary power command signals p+Q, a two-phase current command signal Iα is obtained according to the following equations (10) to (12).
Iを得、2相−3相変換を行って第5調波補償装上記電
流信号沼+ 禮* 1÷に追隨するごと(PWMコンバ
ータの制御を行えば、補償電流は負荷電流中の第5調波
を打ち消すように流れる。I is obtained, 2-phase to 3-phase conversion is performed, and the 5th harmonic compensator is converted to the above current signal + 1 ÷ (If the PWM converter is controlled, the compensation current is the 5th harmonic in the load current. The flow cancels out the harmonics.
この結果、本装置の目的とする高調波補償を行うことが
できる。As a result, harmonic compensation, which is the purpose of this device, can be achieved.
以上の説明では高調波の次数として第5のものについて
行ったが、本発明の高調派補償装置の次数は5に限られ
るものではなく、n次のものに全て適用することができ
る。この場合、上記の説明中の5の代りにnを入れて読
み代えればよい。Although the above description has been made regarding the fifth harmonic order, the harmonic compensator of the present invention is not limited to the fifth order, but can be applied to all n-order orders. In this case, n may be substituted for 5 in the above explanation.
以下、一実施例につき図面を参照しつつ説明する。第1
図は本発明にかかる高調派補償装置を第5高調派補償装
置とした場合の制御装置の一実施例を示すブロック図、
第2図は高調派補償装置を具えた3相交流系統の主回路
構成を示す図である。Hereinafter, one embodiment will be described with reference to the drawings. 1st
The figure is a block diagram showing an embodiment of a control device when the harmonic compensator according to the present invention is a fifth harmonic compensator,
FIG. 2 is a diagram showing the main circuit configuration of a three-phase AC system equipped with a harmonic compensator.
図中、1は第5調波発生回路、2は第5調波電力演算回
路、3はローパスフィルタ、4は符号反転回路、5は電
流指令値演算回路、6は電流制御回路、11は3相交流
系統電源、12は負荷、13は交流リアクトル、14は
3相PWMコンバータ、15ハチ′ ン 寸
直流コン〜+島を示す。また、添字U、V、Wはそれぞ
れ3相交流系統電源のU、V、W相を、添字りは負荷成
分であることを示す。In the figure, 1 is a fifth harmonic generation circuit, 2 is a fifth harmonic power calculation circuit, 3 is a low-pass filter, 4 is a sign inversion circuit, 5 is a current command value calculation circuit, 6 is a current control circuit, 11 is 3 12 is a load, 13 is an AC reactor, 14 is a three-phase PWM converter, and 15 is a DC converter. Further, the subscripts U, V, and W indicate the U, V, and W phases of the three-phase AC system power supply, respectively, and the subscripts indicate the load components.
高調派補償装置は第2図に示すように交流リアクトル1
3,3相PWMコンバータ14.直流コンデンサ15お
よび第1図に示した制御装置により構成される。As shown in Figure 2, the harmonic compensator is connected to AC reactor 1.
3, 3-phase PWM converter 14. It is composed of the DC capacitor 15 and the control device shown in FIG.
このうち、3相PWMコンバータ14は6個のダイオー
ドD1〜D6およびオン、オフ可能なスイッチング素子
81〜S6から構成される装置御回路6から供給される
スイッチング指令vGによりスイッチング素子81〜S
6がオン.オフされ、補償電流iU + IV + I
Wの制御を行うものである。Of these, the three-phase PWM converter 14 is operated by switching elements 81 to S6 in response to a switching command vG supplied from the device control circuit 6, which is composed of six diodes D1 to D6 and switching elements 81 to S6 that can be turned on and off.
6 is on. turned off, compensation current iU + IV + I
It controls W.
なお、交流リアクトル13は3相PWMコンバータ14
の電流の立ち上がりを制限するためのものであり、直流
コンデンサ15は3相PWMコンバータ14の直流側の
電圧を安定化するためのものである。Note that the AC reactor 13 is a three-phase PWM converter 14.
The DC capacitor 15 is used to stabilize the voltage on the DC side of the three-phase PWM converter 14.
今、第2図に示す主回路構成において、交流リアクトル
13,3相PWMコンバータおよび直流コンデンサ15
から構成される高調派補償装置部分に流入する補償電流
’U + IV + IWと負荷電流’LU + lL
V+iLWをベクトル的に加算した電源電流に第5fA
波成分を含まないようにするには、補償電流IU+lV
+iwがそれぞれ負荷電流’LU + ILV + I
LWの第5調波成分を打ち消す成分を持っていればよい
。Now, in the main circuit configuration shown in FIG.
Compensation current 'U + IV + IW flowing into the harmonic compensator section consisting of and load current 'LU + lL
The 5th fA is added to the power supply current obtained by vectorial addition of V+iLW.
To avoid including wave components, the compensation current IU + lV
+iw is the load current 'LU + ILV + I
It is sufficient to have a component that cancels the fifth harmonic component of LW.
次に、以上に述べた原理に基づいて構成された制御装置
の例を第1図により説明する。第1図において、第5調
波発生回路1は3相交流系統電源11の5倍の周波数を
有する正弦波形の第5調波3相電圧を発生する。第5調
波電力演算回路2は負荷電流’LU + iLV +
tt,wと前記第5調波3相寛圧から前記(2) 、
(5)式の演算を行い、第5調波瞬時実電力pおよび虚
電力qを演算する。Next, an example of a control device constructed based on the principle described above will be explained with reference to FIG. In FIG. 1, a fifth harmonic generation circuit 1 generates a sinusoidal fifth harmonic three-phase voltage having a frequency five times that of a three-phase AC power supply 11. In FIG. The fifth harmonic power calculation circuit 2 calculates the load current 'LU + iLV +
From tt, w and the fifth harmonic three-phase relaxation pressure, the above (2),
Equation (5) is calculated to calculate the fifth harmonic instantaneous real power p and imaginary power q.
ローパスフィルタ3は第5調波瞬時実電力pおよび虚電
力qから交流会を除去するものである。The low-pass filter 3 removes the alternating current from the fifth harmonic instantaneous real power p and imaginary power q.
符号反転回路4はローパスフィルタ3の出力である第5
調波瞬時実電力pおよび虚電力qの直流分iおよびiの
符号を反転して、式(8) 、 (9)に示され*
る実電力指令信号pおよび虚電力指令信号舊q*を出力
する。The sign inverting circuit 4 receives the fifth signal which is the output of the low-pass filter 3.
By inverting the signs of the DC components i and i of the harmonic instantaneous real power p and imaginary power q, we obtain the real power command signal p and the imaginary power command signal q* shown in equations (8) and (9). Output.
電流指令値演算回路5は前記(2)式および(10)〜
* *
(12)式に従って2相電流指令値iα、iβを算出の
上、2相−3相変換を行い高調派補償装置の電流指令信
号i♂+ IV’+ twを生成する・電流制御回路6
はヒステリシスコンパレータを* 、* 、*
具え、電流指令信号IU+慮V + IWと補償電流I
U * IV’+iwとを比較し、例えば
*、*
ig≧Oで且つ IU≦iU
なるとき第2図に示すスイッチング素子S4をオンし1
、*
IU≧Oで且つ iU〉iU
なるときスイッチング素子S1をオフするようなトリガ
信号VGを生成するものであり、このトリガ信号vGに
よってスイッチング素子81〜S6がオン、オフ制御さ
れ、高調派補償装置の各相電流瞬時値が各相電流指令信
号に追隨するごとく制御される。The current command value calculation circuit 5 is based on the above equation (2) and (10) to
* *Current control circuit that calculates the two-phase current command values iα and iβ according to equation (12), performs two-phase to three-phase conversion, and generates the current command signal i♂+IV'+tw of the harmonic compensator. 6
is equipped with hysteresis comparators *, *, *, and the current command signal IU + consideration V + IW and compensation current I
For example, when *, *ig≧O and IU≦iU, the switching element S4 shown in FIG. 2 is turned on, and when *IU≧O and iU>iU, the switching element S4 is turned on. A trigger signal VG that turns off S1 is generated, and the switching elements 81 to S6 are controlled on and off by this trigger signal vG, and the instantaneous value of each phase current of the harmonic compensator is changed to each phase current command signal. It is controlled as if it were chased.
以上の説明では第5調波補償装置について言及したが、
例えば第7調波をも補償したいときは、第5調波発生回
路1、第5調波電力演算回路2、ローパスフィルタ3、
符号反転回路4、電流指令値演算回路5のそれぞれの回
路を第7調波に対しても構成し、生成される同様な第7
調波電流指令信号と前記第5調波電流指令信号を電流制
御回路6へ送出することによって、第5と同時に第7調
波をも補償できる。In the above explanation, reference was made to the fifth harmonic compensator, but
For example, if you want to compensate for the 7th harmonic, the 5th harmonic generation circuit 1, the 5th harmonic power calculation circuit 2, the low-pass filter 3,
Each circuit of the sign inversion circuit 4 and the current command value calculation circuit 5 is configured also for the 7th harmonic, and a similar 7th harmonic is generated.
By sending the harmonic current command signal and the fifth harmonic current command signal to the current control circuit 6, it is possible to compensate for the seventh harmonic as well as the fifth harmonic.
また、以上の説明では3相−2相変換行列は(4)式を
使用したが、次に示す(13)式を使用することによっ
ても同様の補償を行うことができる。Further, in the above explanation, the three-phase to two-phase conversion matrix uses equation (4), but similar compensation can also be performed by using equation (13) shown below.
ここで ωt=2πft(fは基本波周波数)である。Here, ωt=2πft (f is the fundamental frequency).
このとき、2相−3相変換のための逆変換行列は
〔発明の効果〕
以上詳細に説明したごとく、本発明にかかる高調派補償
装置によれば、負荷電流に含まれる各高調波のうち一つ
の高調波について、その高調波の開時実効電力pおよび
虚電力qの直流分i、iとして検出し、該直流分P+Q
の符号を反転したものを2相−3相変換することによっ
て電流指令信号を得ているので、電流指令信号が滑らか
になり、目的とする低次高調波の抑制を十分行うことが
できる。At this time, the inverse transformation matrix for 2-phase to 3-phase conversion is [Effects of the Invention] As explained in detail above, according to the harmonic compensator according to the present invention, among the harmonics included in the load current, One harmonic is detected as DC components i, i of the harmonic's open effective power p and imaginary power q, and the DC component P+Q
Since the current command signal is obtained by inverting the sign of , and converting it from 2-phase to 3-phase, the current command signal becomes smooth, and the target low-order harmonics can be sufficiently suppressed.
第1図は本発明にかかる高調派補償装置を第5高調派補
償装置とした場合の制御装置の一実施例を示すブロック
図、第2図は高調派補償装置を具えた3相交流系統の主
回路構成を示す図である。
1・・・・・・第5調波発生回路、2・・・・・・第5
調波電力演算回路、3・・・・・・ローパスフィルタ、
4・・・・・・符号反転回路、5・・・・・・電流指令
値演算回路、6・・団・電流制御回路、11・・・・・
・3相交流電源系統、12・・・・・・負荷、13・・
・・・・交流リアクトル、14・・・・・・3相PWM
コアバー9.15・・・・・・直流コンデンサ。FIG. 1 is a block diagram showing an embodiment of a control device when the harmonic compensator according to the present invention is a fifth harmonic compensator, and FIG. 2 is a block diagram of a three-phase AC system equipped with a harmonic compensator. FIG. 3 is a diagram showing the main circuit configuration. 1...Fifth harmonic generation circuit, 2...Fifth
Harmonic power calculation circuit, 3...Low pass filter,
4... Sign inversion circuit, 5... Current command value calculation circuit, 6... Group current control circuit, 11...
・3-phase AC power supply system, 12...Load, 13...
...AC reactor, 14...3 phase PWM
Core bar 9.15...DC capacitor.
Claims (1)
調派補償装置において、3相PWMコンバータと、該3
相PWMコンバータの各相の入力側に設けられたリアク
トルと、前記3相PWMコンバータの出力側に並列に設
けられた直流コンデンサと、前記3相PWMコンバータ
を制御する制御装置とを具え、該制御装置は、電源のn
倍の周波数を有する正弦波形の第n調波3相電圧を発生
する手段と、該第n調波3相電圧と前記負荷設備の負荷
電流より第n調波瞬時実電力および虚電力を算出する手
段と、該第n調波瞬時実電力および虚電力から高調波分
を除去し直流分を取り出す手段と、該第n調波瞬時実電
力および虚電力の直流分の符号を反転して実電力および
虚電力指令信号を発生する手段と、前記第n調波3相電
圧と前記実電力および虚電力指令信号より電流指令信号
を生成する手段と、該電流指令信号と補償電流の値とを
比較して3相PWMコンバータの各相のスイッチング素
子のトリガ信号を生成する手段とを具えたことを特徴と
する高調波補償装置。In a harmonic compensator installed in a system line between a power supply system and load equipment, a three-phase PWM converter and a three-phase PWM converter,
A reactor provided on the input side of each phase of the three-phase PWM converter, a DC capacitor provided in parallel on the output side of the three-phase PWM converter, and a control device for controlling the three-phase PWM converter, the control device comprising: The device is powered by
means for generating an n-th harmonic three-phase voltage of a sinusoidal waveform having twice the frequency; and calculating n-th harmonic instantaneous real power and imaginary power from the n-th harmonic three-phase voltage and the load current of the load equipment. means for removing harmonic components from the n-th harmonic instantaneous real power and imaginary power to extract a DC component; and means for generating an imaginary power command signal; means for generating a current command signal from the nth harmonic three-phase voltage and the real power and imaginary power command signals; and comparing the current command signal and the value of the compensation current. and means for generating trigger signals for switching elements of each phase of a three-phase PWM converter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61224724A JPS6380721A (en) | 1986-09-22 | 1986-09-22 | Harmonic compensator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61224724A JPS6380721A (en) | 1986-09-22 | 1986-09-22 | Harmonic compensator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6380721A true JPS6380721A (en) | 1988-04-11 |
Family
ID=16818251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61224724A Pending JPS6380721A (en) | 1986-09-22 | 1986-09-22 | Harmonic compensator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6380721A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS563574A (en) * | 1979-06-20 | 1981-01-14 | Hitachi Ltd | Power source filter device |
-
1986
- 1986-09-22 JP JP61224724A patent/JPS6380721A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS563574A (en) * | 1979-06-20 | 1981-01-14 | Hitachi Ltd | Power source filter device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kim et al. | New control scheme for AC-DC-AC converter without DC link electrolytic capacitor | |
KR100430930B1 (en) | Pwm controlled power conversion device | |
JP2954333B2 (en) | AC motor variable speed system | |
Zhou et al. | Model-predictive control scheme of five-leg AC–DC–AC converter-fed induction motor drive | |
Loh et al. | A reduced common mode hysteresis current regulation strategy for multilevel inverters | |
WO2016017517A1 (en) | Power conversion device | |
Rocha et al. | Single-phase to three-phase converters with two parallel single-phase rectifiers and reduced switch count | |
Denis et al. | Active rectifier with different control system types | |
CN111756258A (en) | Control method of multiple four-quadrant pulse rectifier | |
TWI375394B (en) | Three-phase/single-phase power conversion equipment | |
Kolar et al. | A new concept for reconstruction of the input phase currents of a three-phase/switch/level PWM (VIENNA) rectifier based on neutral point current measurement | |
Wijekoon et al. | Implementation of a hybrid AC/AC direct power converter with unity voltage transfer ratio | |
Lin et al. | Analysis and implementation of a three-level active filter with a reduced number of power semiconductors | |
JPS6380721A (en) | Harmonic compensator | |
Kikuchi et al. | Complementary half controlled three phase PWM boost rectifier for multi-DC-link applications | |
Sharma et al. | A brief review regarding sensor reduction and faults in shunt active power filter | |
JP2778976B2 (en) | Harmonic suppression device using both AC filter and active filter for power | |
JPH10323052A (en) | Voltage dividing transformer and power converter the same | |
JP2664932B2 (en) | Control device for multiple PWM converters | |
Pettersson et al. | Four-wire current source active power filter with an open-loop current control | |
Yamamoto et al. | A novel three-phase diode rectifier with LC resonance in commercial frequency | |
Al-Zamil et al. | Harmonic compensation for three-phase adjustable speed drives using active power line conditioner | |
JP2859930B2 (en) | Harmonic compensator | |
JP2607337Y2 (en) | Output limiter circuit of power conversion circuit | |
Singh et al. | A three-phase active power filter for harmonic and reactive power compensation |