JPS6379234A - Production of magnetic recording medium - Google Patents
Production of magnetic recording mediumInfo
- Publication number
- JPS6379234A JPS6379234A JP22562186A JP22562186A JPS6379234A JP S6379234 A JPS6379234 A JP S6379234A JP 22562186 A JP22562186 A JP 22562186A JP 22562186 A JP22562186 A JP 22562186A JP S6379234 A JPS6379234 A JP S6379234A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- target
- recording medium
- power density
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Physical Vapour Deposition (AREA)
- Magnetic Record Carriers (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の属する技術分野〕
本発明は磁気記録装置に用いられる磁気記録媒体を製造
する方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a method of manufacturing a magnetic recording medium used in a magnetic recording device.
近年、磁気記録装置に用いられる磁気ディスクなどの磁
気記録媒体はますます高記録密度となる傾向にあり、こ
れに伴い磁気記録媒体の磁性層の膜厚を従来の約1μm
程度から0.1μm以下まで薄<シ、保持力(Hc)も
より高くする必要が生じている。そのため磁気記録媒体
の製造方法もサブミクロンオーダでは磁性層の膜厚が不
均一になるスピンコード法に代って、均一な薄膜を容易
に形成することが可能なスパッタ法やメッキ法が注目さ
れるとともに、磁性層としてスパッタ法によって形成さ
れるCo系合金例えばCo−Ni合金磁性薄膜が使用さ
れるようになった。In recent years, magnetic recording media such as magnetic disks used in magnetic recording devices have tended to have higher and higher recording densities.
There is a need to increase the holding force (Hc) even further as the thickness decreases to 0.1 μm or less. For this reason, sputtering and plating methods, which can easily form a uniform thin film, are attracting attention as a manufacturing method for magnetic recording media, as they can easily form a uniform thin film, instead of the spin code method, which results in non-uniform magnetic layer thickness on the submicron order. At the same time, magnetic thin films of Co-based alloys, such as Co--Ni alloys, formed by sputtering have come to be used as magnetic layers.
第2図にディスク状磁気記録媒体の要部構成断面図を示
す。第2図において、磁気記録媒体は合金基板1上に非
磁性基体層2を被覆し、この非磁性基体層2の上にさら
に非磁性金属下地層3を介して磁性層4を被覆し、磁性
層4上に保護潤滑膜5を被覆したものである。FIG. 2 shows a sectional view of the main part of the disk-shaped magnetic recording medium. In FIG. 2, the magnetic recording medium has a non-magnetic base layer 2 coated on an alloy substrate 1, and a magnetic layer 4 is further coated on this non-magnetic base layer 2 via a non-magnetic metal underlayer 3. The layer 4 is coated with a protective lubricant film 5.
このよう1こ構成された磁気記録媒体の合金基板1には
アルミニウム合金が多用されており、所定の面粗さ、平
行度および平面度に仕上げられる。Aluminum alloy is often used for the alloy substrate 1 of the magnetic recording medium configured as described above, and is finished to a predetermined surface roughness, parallelism, and flatness.
非磁性基体層2は例えばNi−P合金を無電解めっきし
た所定の硬さをもったものが用いられ表面は機械的研磨
により鏡面仕上げを行なう。非磁性金属下地層3は一般
にCrを用いてスパッタ法tこより形成され、さらにそ
の上にスパッタされる磁性層4は例えばCo−30at
%Ni−7.5at%Cr 合金が用いられる。The nonmagnetic base layer 2 is made of, for example, a Ni--P alloy electrolessly plated to have a predetermined hardness, and the surface is mechanically polished to a mirror finish. The non-magnetic metal underlayer 3 is generally formed by sputtering using Cr, and the magnetic layer 4 sputtered thereon is made of, for example, Co-30at.
%Ni-7.5at%Cr alloy is used.
以下この磁気記録媒体の製造方法の概要を述べる。第3
図はスパッタ装置におけるチャンバー内の部材配置と作
動を説明するための模型的断面図である。第3図におい
てチャンバー6の外周に真空排気ロアとArガス導入口
8を備え、それぞれ図示してない真空排気系とArガス
ボンベに連通しており、いずれも操作バルブ9,9aを
備え、チャンバー6の内部には基板1aがとりつけられ
たトレー10が配設され、基板1aと対向して基板1a
を昇温するヒータ11が置かれている。トレー10は基
板1aとともに矢印の方向に移動することができ、その
移動過程でCrターゲッ)12により下地層がスパッタ
され、引き続きCo−30a tチNi−7,5at%
Crの磁性合金ターゲット13からCo系磁性層がスパ
ッタ形成される。An outline of the method for manufacturing this magnetic recording medium will be described below. Third
The figure is a schematic cross-sectional view for explaining the arrangement and operation of members inside a chamber in a sputtering device. In FIG. 3, a vacuum exhaust lower and an Ar gas inlet 8 are provided on the outer periphery of the chamber 6, and these communicate with a vacuum exhaust system and an Ar gas cylinder (not shown), both of which are equipped with operation valves 9 and 9a, and the chamber 6 A tray 10 on which the substrate 1a is attached is disposed inside the tray 10, and the tray 10 is placed opposite the substrate 1a.
A heater 11 is placed to raise the temperature. The tray 10 can move in the direction of the arrow together with the substrate 1a, and in the process of movement, the base layer is sputtered by the Cr target 12, and then Co-30a, Ni-7,5at%
A Co-based magnetic layer is formed by sputtering from a Cr magnetic alloy target 13 .
まず例えば直径3.5インチの円板状アルミニウム合金
板上にNi−Pメッキを均一に厚さ約15μm行ない、
これに平面ポリッシュにより表面鏡面加工を施したもの
をアルコール溶液で超音波洗条、フロン溶液の超音波洗
条、蒸気洗条などを行なった後、チャンバー6内のトレ
ー10にセットする。First, for example, Ni-P plating is uniformly applied to a thickness of about 15 μm on a disc-shaped aluminum alloy plate with a diameter of 3.5 inches.
This is subjected to surface mirror finishing by plane polishing, and then subjected to ultrasonic cleaning with an alcohol solution, ultrasonic cleaning with a fluorocarbon solution, steam cleaning, etc., and then set on a tray 10 in the chamber 6.
次いでチャンバー6内を排気ロアから5X10”” t
orrまで真空排気し、ヒータ11を用いて基板1aを
100℃に加熱保持しておき、バルブ9aを開きArガ
ス導入口8からArガスを流量60SCCmでチャンバ
ー6内に流入させ、バルブ9を調節してチャンバー6内
の圧力を2X10− torr に設定する。次いでC
rターゲット12と磁性合金ターゲット13にスパッタ
パワーを印加し、トレー10を矢印の方向に117tx
/mの速度で搬送することにより、基板la上にCr下
地層とCo−30at%Ni−7.5%Cr磁性層がこ
の順に形成されるのである。Next, move inside chamber 6 from the exhaust lower to 5X10”
The substrate 1a is heated and maintained at 100° C. using the heater 11, and the valve 9a is opened to allow Ar gas to flow into the chamber 6 from the Ar gas inlet 8 at a flow rate of 60 SCCm, and the valve 9 is adjusted. and set the pressure inside chamber 6 to 2×10-torr. Then C
Apply sputtering power to the r target 12 and the magnetic alloy target 13, and move the tray 10 in the direction of the arrow at 117tx.
By conveying at a speed of /m, a Cr underlayer and a Co-30at%Ni-7.5%Cr magnetic layer are formed in this order on the substrate la.
次に以上の過程と得られる磁気記録媒体に付与される磁
気特性の関係について述べる。磁気特性は保持力(Hc
)、残留磁束密度(Br)と磁性層の膜厚(δ)との積
(Br−8)、保磁力角形比(S*)がバランスよく保
たれ、Hc〉750(Oe)、 Br−a>350(G
すm)、s ”〉o、s oとするのが望ましい。これ
らの磁気特性を得るにはHaを高めることが優先的に留
意され、Hcの増大に寄与するのはCr下地層の膜厚で
あって、Cr下地層の膜厚を厚くすると、Hcが増大す
る傾向がある。しかし、 Cr下地層の膜厚が大きくな
るにつれて、HcやS*の磁気異方性が顕著1(なり、
磁気ディスクの再生出力のモジュレーションが発生する
ようになるので、Cr下地層の膜厚は2000X程度と
すべきである。そしてこのCr下地層の膜厚に対応して
組み合わせる磁性層の膜厚は5001程度とするのが最
もよい。Next, the relationship between the above process and the magnetic properties imparted to the obtained magnetic recording medium will be described. The magnetic property is the coercive force (Hc
), the product of the residual magnetic flux density (Br) and the magnetic layer thickness (δ) (Br-8), and the coercive force squareness ratio (S*) are maintained in a well-balanced manner, Hc>750 (Oe), Br-a >350(G
It is desirable that the magnetic properties are as follows: m), s ”〉o, s o. To obtain these magnetic properties, priority should be given to increasing Ha, and the film thickness of the Cr underlayer contributes to increasing Hc. However, as the thickness of the Cr underlayer increases, Hc tends to increase. However, as the thickness of the Cr underlayer increases, the magnetic anisotropy of Hc and S* becomes more pronounced.
Since modulation of the reproduction output of the magnetic disk occurs, the thickness of the Cr underlayer should be approximately 2000X. It is best to set the thickness of the magnetic layer to be about 5,001 mm corresponding to the thickness of the Cr underlayer.
以上のことから、これら下地層と磁性層に最適膜厚を付
与し、磁気特性をバランスよく保持するためには、磁気
記録媒体の製造過程において、これらを連続スパッタす
る各ターゲットに印加するパワー密度の最適条件を決定
することが早急に望まれる。From the above, in order to give the underlayer and magnetic layer an optimal film thickness and maintain well-balanced magnetic properties, it is necessary to apply the power density to each target for continuous sputtering during the manufacturing process of magnetic recording media. It is urgently desired to determine the optimal conditions for
本発明は上述の点に鑑みてなされたものであり、その目
的は磁気記録媒体を製造する際に、良好な磁気特性を得
るための、下地層と磁性層に印加する最適パワー密度範
囲の設定値を提供することにある。The present invention has been made in view of the above points, and its purpose is to set the optimum power density range to be applied to the underlayer and magnetic layer in order to obtain good magnetic properties when manufacturing a magnetic recording medium. It's about providing value.
本発明は磁気記録媒体のCr下地層、Co系合金磁性層
を連続スパッタ形成するとき、CrターゲットとCo系
合金ターゲットtこ印加するパワー密度をそれぞれ1.
49〜17.9 (W/CI!t)および0.43〜5
.17(W/cr/I)に設定することにより、この媒
体の磁気特性としてHc〉7500e 、Breδ〉3
50G番μm。In the present invention, when forming the Cr underlayer and the Co-based alloy magnetic layer of a magnetic recording medium by continuous sputtering, the power density applied to the Cr target and the Co-based alloy target is set to 1.
49-17.9 (W/CI!t) and 0.43-5
.. 17 (W/cr/I), the magnetic properties of this medium are Hc〉7500e, Breδ〉3
No. 50G μm.
s*>o、goを満足できるようにしたものである。It is designed to satisfy s*>o, go.
以下本発明を実施例に基づき説明する。 The present invention will be explained below based on examples.
本発明に用いられる装置は第3図に示したものと同様で
あるから、その説明は省略する。ここではターゲットに
CrおよびCo−3Qat%Ni−7,5at%Cr合
金を用い、第2図の構成を有する磁気記録媒体を製造す
るものであることおよびその他の主な成膜条件を前述と
全く同様に設定しておき、Cr下なるように、トレーの
搬送速度を選択し、各ターゲットのスパッタパワー密度
を変化させて行なったものである。トレー搬送速度と各
ターゲットのスパッタパワー密度の組み合わせは第1表
の通りである。Since the apparatus used in the present invention is similar to that shown in FIG. 3, a description thereof will be omitted. Here, Cr and Co-3Qat%Ni-7,5at%Cr alloy are used as targets, and the magnetic recording medium having the structure shown in Figure 2 is to be manufactured, and other main film-forming conditions are exactly the same as above. The same settings were made, the tray conveyance speed was selected and the sputtering power density of each target was varied so that Cr was lower. Table 1 shows the combinations of tray conveyance speed and sputtering power density for each target.
第 1 表
このときの媒体の磁気特性を試料振動車マグネトメータ
(vSM)で創建し、横軸を磁性合金ターゲットのスパ
ッタパワー密とし、縦軸をそれぞれHc、Br・δおよ
びS*としてこれらの値をプロットすると第1図に示し
た線図が得られる。第1図から磁気特性はターゲットに
加えるスパッタパワー密度が増すとともに大きくなり、
単位時間車りの成膜速度に依存することがわかる。磁気
特性として好ましイHc〉75Q Oe 、 Br−δ
〉350GIIAm 、 S >0.8を満足する磁
性合金ターゲットのパワー密度は第1図の結果から0.
43〜5.17 W/1fflの範囲にあり、したがっ
てこのときのCrターゲットに加えるパワー密度は1.
49〜17.9 W/dである。パワー密度の上限を1
7.9 W/cI!tとしたのはこれ以上にすると、タ
ーゲットの温度が上昇し過ぎ、スパッタ装置に対して好
ましくないからである。Table 1 The magnetic properties of the medium at this time were established using a sample vibrating wheel magnetometer (vSM), and the horizontal axis represents the sputtering power density of the magnetic alloy target, and the vertical axis represents Hc, Br・δ, and S*, respectively. Plotting the values yields the diagram shown in FIG. From Figure 1, the magnetic properties increase as the sputtering power density applied to the target increases.
It can be seen that the unit time depends on the film formation rate of the vehicle. Preferable magnetic properties Hc〉75Q Oe, Br-δ
From the results shown in Figure 1, the power density of the magnetic alloy target that satisfies >350GIIAm, S >0.8 is 0.
The power density is in the range of 43 to 5.17 W/1ffl, so the power density applied to the Cr target at this time is 1.
49 to 17.9 W/d. The upper limit of power density is 1
7.9 W/cI! The reason for choosing t is that if the temperature is higher than this, the temperature of the target will rise too much, which is not preferable for the sputtering apparatus.
基板上に被覆したNi−Pめっき層の上にCr下地層と
、Co系磁性合金層を連続スパッタして得られる磁気記
録媒体は磁気時性の保磁力、残留磁束密度、角形比のい
ずれをも十分高い値とすることができなかったのIこ対
し、本発明ではCrターゲットとCo系磁性合金ターゲ
ットに印加する最適なスパッタパワー密度としてそれぞ
れ1.49〜17.9W/CII、 0.43〜5.1
7W/dに設定したために、Hcン7500e、Br−
a〉350G−μm、8 >0.80を満足するすぐれ
た磁気特性をもつ記録媒体が得られるようになり、高い
記録密度を実現することが可能となったものである。A magnetic recording medium obtained by successively sputtering a Cr underlayer and a Co-based magnetic alloy layer on a Ni-P plating layer coated on a substrate has a high magnetic coercive force, residual magnetic flux density, and squareness ratio. However, in the present invention, the optimum sputtering power density applied to the Cr target and the Co-based magnetic alloy target is 1.49 to 17.9 W/CII and 0.43 W/CII, respectively. ~5.1
Because it was set to 7W/d, Hc-7500e, Br-
It has become possible to obtain a recording medium with excellent magnetic properties satisfying a>350G-μm and 8>0.80, and it has become possible to realize a high recording density.
第1図は磁性合金ターゲットに刃口えるスパッタパワー
密度と媒体の磁気特性との関係線図、第2図は磁気記録
媒体の構成断面図、第3図はスパッタチャンバーの模型
断面図である。
1、la:基板、3:下地層、4:磁性層、6:チャン
バー、lO:トレー、12 : Crターゲット、13
:磁性合金ターゲット。
磁1合金欠−ケ゛ットに加えるスハ゛・ンタバフー密′
度(W7(、、り第1図FIG. 1 is a diagram showing the relationship between the sputtering power density applied to a magnetic alloy target and the magnetic properties of the medium, FIG. 2 is a sectional view of the configuration of a magnetic recording medium, and FIG. 3 is a model sectional view of a sputtering chamber. 1, la: substrate, 3: underlayer, 4: magnetic layer, 6: chamber, lO: tray, 12: Cr target, 13
:Magnetic alloy target. Magnetic 1 Alloy Missing - Substance added to the case
degree (W7(,,ri Fig. 1
Claims (1)
チャンバー内で昇温し、次いで該チャンバー内にArガ
スを導入した後、CrおよびCo系磁性合金のターゲッ
トを連続的にスパッタして前記Ni−Pめっき層の上に
Cr下地層とCo系磁性合金層をこの順に積層形成する
磁気記録媒体の製造方法において、前記Crターゲット
に加えるパワー密度を1.49〜17.9W/cm^3
、前記Co系磁性合金ターゲットに加えるパワー密度を
0.43〜5.17W/cm^3とすることを特徴とす
る磁気記録媒体の製造方法。1) A substrate whose main surface is plated with Ni-P is heated in an evacuated chamber, then Ar gas is introduced into the chamber, and Cr and Co-based magnetic alloy targets are continuously sputtered. In the method for manufacturing a magnetic recording medium, in which a Cr underlayer and a Co-based magnetic alloy layer are laminated in this order on the Ni-P plating layer, the power density applied to the Cr target is 1.49 to 17.9 W/cm. ^3
A method for manufacturing a magnetic recording medium, characterized in that a power density applied to the Co-based magnetic alloy target is 0.43 to 5.17 W/cm^3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61225621A JPH0740362B2 (en) | 1986-09-24 | 1986-09-24 | Method of manufacturing magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61225621A JPH0740362B2 (en) | 1986-09-24 | 1986-09-24 | Method of manufacturing magnetic recording medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6379234A true JPS6379234A (en) | 1988-04-09 |
JPH0740362B2 JPH0740362B2 (en) | 1995-05-01 |
Family
ID=16832182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61225621A Expired - Lifetime JPH0740362B2 (en) | 1986-09-24 | 1986-09-24 | Method of manufacturing magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0740362B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5552217A (en) * | 1989-10-20 | 1996-09-03 | Fuji Electric Co., Ltd. | Magnetic recording medium and a method for producing it |
US6500567B1 (en) | 1997-12-04 | 2002-12-31 | Komag, Inc. | Ultra-thin nucleation layer for magnetic thin film media and the method for manufacturing the same |
-
1986
- 1986-09-24 JP JP61225621A patent/JPH0740362B2/en not_active Expired - Lifetime
Non-Patent Citations (3)
Title |
---|
IEEE TRANSACTIONS ON MAGNETICS=1983 * |
IEEE TRANSACTIONS ON MAGNETICS=1984 * |
IEEE TRANSACTIONS ON MAGNETICS=1985 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5552217A (en) * | 1989-10-20 | 1996-09-03 | Fuji Electric Co., Ltd. | Magnetic recording medium and a method for producing it |
US6500567B1 (en) | 1997-12-04 | 2002-12-31 | Komag, Inc. | Ultra-thin nucleation layer for magnetic thin film media and the method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JPH0740362B2 (en) | 1995-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4207140B2 (en) | Perpendicular magnetic recording medium and manufacturing method thereof | |
KR100418640B1 (en) | Magnetic recording medium and its manufacturing method | |
JP2911782B2 (en) | Magnetic recording medium and method of manufacturing the same | |
JP3481252B2 (en) | Magnetic recording medium and method of manufacturing the same | |
US5552217A (en) | Magnetic recording medium and a method for producing it | |
JPS6379234A (en) | Production of magnetic recording medium | |
JPS6379233A (en) | Method for manufacturing magnetic recording media | |
JPS6342027A (en) | Production of magnetic recording medium | |
JP2911797B2 (en) | Magnetic recording medium and method of manufacturing the same | |
JPH0322646B2 (en) | ||
JPH0268716A (en) | Production of magnetic disk medium | |
JPS6348610A (en) | Magnetic recording medium | |
JP3649416B2 (en) | Method for manufacturing magnetic recording medium | |
JP2806443B2 (en) | Magnetic recording medium and method of manufacturing the same | |
JPH02154323A (en) | Method for manufacturing magnetic recording media | |
JPS5868229A (en) | Magnetic recording medium | |
JPH1011735A (en) | Magnetic recording medium | |
JPH04117611A (en) | Magnetic recording medium | |
JPH03127329A (en) | Production of magnetic recording medium | |
JPH0447521A (en) | Magnetic recording medium | |
JPH0440620A (en) | Magnetic recording disk and its manufacturing method | |
JPH05135342A (en) | Magnetic recording medium | |
JPH04356728A (en) | Production of magnetic recording medium | |
JPH03125322A (en) | Magnetic recording medium | |
JPH0268711A (en) | Magnetic recording medium |