[go: up one dir, main page]

JPS6377156A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6377156A
JPS6377156A JP22255886A JP22255886A JPS6377156A JP S6377156 A JPS6377156 A JP S6377156A JP 22255886 A JP22255886 A JP 22255886A JP 22255886 A JP22255886 A JP 22255886A JP S6377156 A JPS6377156 A JP S6377156A
Authority
JP
Japan
Prior art keywords
film
gate electrode
silicon oxide
insulating film
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22255886A
Other languages
Japanese (ja)
Inventor
Takehiro Urayama
浦山 丈裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22255886A priority Critical patent/JPS6377156A/en
Publication of JPS6377156A publication Critical patent/JPS6377156A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress an overetching of a silicon oxide film thereby to improve the dielectric breakdown strength of a gate electrode and wirings and to improve the quality of an MOSIC by interposing a silicon nitride film on the gate electrode. CONSTITUTION:A field insulating film 4 is formed on a P-type silicon substrate 1, a gate insulating film 2 is thermally oxidized to be formed, covered with a polycrystalline silicon film 3 for a gate electrode, and further covered thereon with an SiO2 film 6 and an Si3N4 film 10. Then, a resist film 8 is formed, films 10, 6, 3, 2 are simultaneously patterned in the shape of the gate electrode by anisotropically etching. The whole surface is covered with an SiO2 film 9, anisotropically etched perpendicularly from the upper surface to form a sidewall made of the film 9. Then, the exposed substrate 1 is ion implanted, heat treated to form an N-type source, drain regions 5.

Description

【発明の詳細な説明】 [概要] ゲート絶縁膜、ゲート電極膜、酸化シリコン膜および窒
化シリコン膜を積層してゲート電極の形状にパターンニ
ングし、次いで、全面に第2の酸化シリコン膜を被着し
、更に、垂直に異方性エツチングして、前記ゲート電極
の周囲にサイドウオールを形成し、且つ、ソースおよび
ドレイン形成領域を露出させる。このようにして、窒化
シリコン膜を介在させると、ゲート電極上の酸化シリコ
ン膜のオーバーエッチが抑制される。
[Detailed Description of the Invention] [Summary] A gate insulating film, a gate electrode film, a silicon oxide film, and a silicon nitride film are laminated and patterned in the shape of a gate electrode, and then a second silicon oxide film is covered over the entire surface. Then, vertical anisotropic etching is performed to form a sidewall around the gate electrode and expose the source and drain forming regions. By interposing the silicon nitride film in this way, overetching of the silicon oxide film on the gate electrode is suppressed.

[産業上の利用分野] 本発明は、半導体装置の製造方法のうち、電界効果型半
導体装置(MrSFET)の製造方法に関する。
[Industrial Field of Application] The present invention relates to a method of manufacturing a field effect semiconductor device (MrSFET) among methods of manufacturing a semiconductor device.

MISFETにおいてはMOS l−ランジスタがその
代表的なものあるが、このようなMOSトランジスタか
らなる半導体集積回路(MOS I C)は他の構造の
トランジスタと比べて集積化が容易なため、半導体技術
の進歩と共にセルファライン(自己整合)方式が採り入
れられて高度に集積化され、RAMやROMなどのメモ
リ回路やその他の電子回路に広く利用されている。
A typical example of MISFETs is the MOS l-transistor, and semiconductor integrated circuits (MOS IC) made of such MOS transistors are easier to integrate than transistors of other structures, so they have become a popular choice in semiconductor technology. As technology advances, the self-alignment (self-alignment) method has been adopted, becoming highly integrated and widely used in memory circuits such as RAM and ROM, and other electronic circuits.

しかし、ICが一層高集積化、微細化されてきた現在で
は、高精度に制御できる製造方法が望まれている。
However, now that ICs have become more highly integrated and miniaturized, a manufacturing method that can be controlled with high precision is desired.

[従来の技術] 第2図はMOS半導体素子(MOS l−ランジスタ)
の断面概要図を示しており、1はp型シリコン基板、2
はゲート絶縁膜、3はゲート電極、4はフィールド絶縁
膜、5はn+型のソースまたはドレイン領域、6は絶縁
膜、7は電極である。
[Prior art] Figure 2 shows a MOS semiconductor element (MOS l-transistor)
1 is a p-type silicon substrate, 2 is a cross-sectional schematic diagram of
3 is a gate insulating film, 3 is a gate electrode, 4 is a field insulating film, 5 is an n+ type source or drain region, 6 is an insulating film, and 7 is an electrode.

このMOS半導体素子の従来の製造方法の概要を第3図
(al〜(flによって説明する。
An outline of the conventional manufacturing method of this MOS semiconductor device will be explained with reference to FIGS.

第3図(a) : p型シリコン基板1にLOCO5法
を適用して膜厚の厚い酸化シリコン(Si02)膜から
なるフィールド絶縁膜4を形成し、MOS半導体素子の
形成領域は露出させておく。
FIG. 3(a): A field insulating film 4 made of a thick silicon oxide (Si02) film is formed on a p-type silicon substrate 1 by applying the LOCO5 method, leaving the region where the MOS semiconductor element will be formed exposed. .

第3図(b) :次いで、熱酸化して露出面にゲート絶
縁膜2を生成し、その上に導電性多結晶シリコン膜から
なるゲート電極膜3を化学気相成長(CVD)法で被着
し、更に、その上に同じ< CVD法で5i02膜6 
(絶縁膜)を被着する。
FIG. 3(b): Next, a gate insulating film 2 is formed on the exposed surface by thermal oxidation, and a gate electrode film 3 made of a conductive polycrystalline silicon film is coated thereon by chemical vapor deposition (CVD). 5i02 film 6 is deposited on top of it using the same CVD method.
(insulating film) is applied.

第3図(C):次いで、フォトプロセスを用いてレジス
ト膜マスク8を形成し、垂直に異方性エツチングして5
i02膜6.ゲート電極膜3およびゲート絶縁膜2をゲ
ート電極の形状にパターンニングする。
FIG. 3(C): Next, a resist film mask 8 is formed using a photo process, and vertically anisotropically etched.
i02 membrane6. Gate electrode film 3 and gate insulating film 2 are patterned into the shape of a gate electrode.

第3図(d)二次いで、その全面にCVD法で膜厚40
00人の5i02膜9(第2の酸化シリコン膜)を被着
する。その時、CVD法で被着した膜は被覆性(カバー
レイジ)が良く、ゲート電機の周囲側面にも被着する。
Figure 3(d) Next, the entire surface is coated with a film with a thickness of 40 mm.
A 5i02 film 9 (second silicon oxide film) of 0.00 is deposited. At this time, the film deposited by the CVD method has good coverage (coverage) and is deposited even on the peripheral side surfaces of the gate electric machine.

第3図(e);次いで、その上面から垂直に全面を異方
性エツチング(RI E ;リアクティブイオンエッチ
)すると、5i02膜9は殆ど除去され、ソースおよび
ドレイン形成領域が露出されて、且つ、ゲート電極の周
囲側面にのみ5i02膜9が残存する。この5i02膜
9をサイドウオールと云う。
FIG. 3(e): Next, when the entire surface is anisotropically etched (RI E ; reactive ion etching) perpendicularly from the upper surface, most of the 5i02 film 9 is removed, and the source and drain forming regions are exposed. , the 5i02 film 9 remains only on the peripheral side surfaces of the gate electrode. This 5i02 film 9 is called a sidewall.

第3図(f):次いで、露出面に燐または砒素をイオン
注入し、熱処理してn+型のソースおよびドレイン領域
5を画定する。しかる後、電極7を形成すると、第2図
に示すようなMOS半導体素子が完成する。
FIG. 3(f): Next, phosphorus or arsenic is ion-implanted into the exposed surface and heat treated to define n+ type source and drain regions 5. FIG. Thereafter, electrodes 7 are formed, and a MOS semiconductor device as shown in FIG. 2 is completed.

[発明が解決しようとする問題点] さて、このような形成方法によれば、フォトプロセスを
用いることが少なく (上記工程では1回のみである)
、セルファラインで形成できるから、素子の微細化・I
Cの高集積化に極めて有効な製法で、最近、汎用されて
いる方法である。
[Problems to be solved by the invention] According to such a forming method, a photo process is rarely used (the above process is performed only once).
, since it can be formed with self-alignment, element miniaturization and I
This is an extremely effective manufacturing method for highly integrated C, and has recently been widely used.

ここに、サイドウオールを形成する理由は、ソースおよ
びドレイン領域5をイオン注入し熱処理して画定した場
合、これらの領域がゲート電極下に深(侵入しないよう
にするためと、電極7を形成する場合、電機窓開けをす
る必要がなくて、セルファラインでゲート電極との絶縁
が保てるからである。
The reason why the sidewall is formed here is to prevent these regions from penetrating deeply (underneath the gate electrode) when the source and drain regions 5 are defined by ion implantation and heat treatment, and to form the electrode 7. In this case, there is no need to open the electrical window and insulation from the gate electrode can be maintained with the self-alignment line.

また、サイドウオールは、ショートチャネル対策として
知られるL D D (Lightly Doped 
Drain)構造のMOS半導体素子では、サイドウオ
ールの形成前後にソースおよびドレイン領域を形成する
だめの低濃度と高濃度とのイオン注入がおこなわれ、そ
のため、是非必要なゲート電極の絶縁壁面となっている
In addition, the sidewall is equipped with LDD (Lightly Doped), which is known as a short channel countermeasure.
In a MOS semiconductor device with a drain) structure, low and high concentration ions are implanted to form the source and drain regions before and after sidewall formation. There is.

ところで、このようなサイドウオールを形成するための
工程、即ち、第3図に説明した製造方法のうち、同図(
e)に示すSi○2膜9 (第2の5i02膜)を全面
異方性エツチングする工程においては、ゲート電極3と
同時にパターンニングした5i02膜6が5i02膜9
と同質であるから、5i02膜6が同時にエツチングさ
れて、膜厚1000〜2000人前後まで薄くなると云
う問題がある。それは、ソースおよびドレイン形成領域
の表面には5i02膜9が残存せず、完全にシリコン基
板1が露出するように、オーバー気味にエツチングさせ
ることにも起因している。
By the way, among the steps for forming such a sidewall, that is, the manufacturing method explained in FIG.
In the step of anisotropically etching the entire Si○2 film 9 (second 5i02 film) shown in e), the 5i02 film 6 patterned at the same time as the gate electrode 3 becomes the 5i02 film 9.
There is a problem in that the 5i02 film 6 is etched at the same time and becomes thinner to about 1,000 to 2,000 layers. This is also due to the fact that the 5i02 film 9 does not remain on the surface of the source and drain forming regions and the silicon substrate 1 is completely exposed by over-etching.

しかし、このように、5iOz膜6がエツチングされて
薄くなると、例えば、上部に形成する配線(図示せず)
とゲート電極との絶縁耐圧が十分に保てなくなる。
However, when the 5iOz film 6 is etched and becomes thinner, for example, the wiring (not shown) formed on the upper part
It becomes impossible to maintain sufficient dielectric strength between the electrode and the gate electrode.

本発明は、このような問題点を解消させる製造方法を提
案するものである。
The present invention proposes a manufacturing method that solves these problems.

[問題点を解決するための手段] その目的は、半導体基板上にゲート絶縁膜、ゲート電極
膜、5i02膜および窒化シリコン膜を積層してゲート
電極の形状にパターンニングし、次いで、全面に第2の
5i02膜を被着し、更に、該第2の5i02膜を全面
垂直に異方性エツチングして、前記ゲート電極の周囲に
該第2の5i02膜からなるサイドウオールを形成し、
且つ、前記半導体基板のソースおよびドレイン形成領域
を露出させるようにした半導体装置の製造方法によって
達成される。
[Means for Solving the Problems] The purpose is to stack a gate insulating film, a gate electrode film, a 5i02 film, and a silicon nitride film on a semiconductor substrate, pattern it in the shape of a gate electrode, and then pattern it on the entire surface. depositing a 5i02 film of No. 2, and further anisotropically etching the second 5i02 film vertically over the entire surface to form a sidewall made of the second 5i02 film around the gate electrode;
Further, the present invention is achieved by a method of manufacturing a semiconductor device in which the source and drain forming regions of the semiconductor substrate are exposed.

[作用コ 即ち、本発明は、ゲート電極膜の上に5io2膜と窒化
シリコン膜を積層して、第2の5i02膜の全面異方性
エツチングの際、ゲート電極に接した5t02膜がオー
バーにエツチングされないようにする。
[In other words, in the present invention, a 5io2 film and a silicon nitride film are stacked on the gate electrode film, and when the second 5i02 film is anisotropically etched over the entire surface, the 5t02 film in contact with the gate electrode is over-etched. Avoid being etched.

[実施例] 以下、図面を参照して実施例によって詳細に説明する。[Example] Hereinafter, embodiments will be described in detail with reference to the drawings.

第1図(a)〜(f)は本発明にかかる製造方法の工程
順断面図で、同図によって順次に説明する。
FIGS. 1(a) to 1(f) are cross-sectional views showing the steps of the manufacturing method according to the present invention, and will be explained sequentially with reference to the drawings.

第1図(a):まず、公知のLOCO3法によって、p
型シリコン基板1上にフィールド絶縁膜4 (0,5〜
1μm程度)を生成する。
Figure 1(a): First, p
A field insulating film 4 (0,5~
(approximately 1 μm).

第1図(b)二次いで、ゲート絶縁膜2(膜厚数100
人)を熱酸化して生成し、その上に導電性多結晶シリコ
ン膜からなるゲート電極膜3 (膜厚4000人程度)
をCVD法で被着し、更に、上面にCVD法で5i02
膜6 (膜厚3000〜4000人)と窒化シリコン(
Si3 N4 )膜10(膜厚数100人)を被着する
FIG. 1(b) Second, gate insulating film 2 (thickness number 100
A gate electrode film 3 made of a conductive polycrystalline silicon film is formed by thermally oxidizing a conductive polycrystalline silicon film (film thickness of about 4000).
was applied using the CVD method, and then 5i02 was applied on the top surface using the CVD method.
Film 6 (thickness 3000-4000) and silicon nitride (
A Si3N4) film 10 (thickness of several hundred layers) is deposited.

第1図(C):次いで、フォトプロセスを用いてレジス
ト膜マスク8を形成し、垂直に異方性工・ノチング(R
IE)してSi3 N4膜10. SiO2膜6゜ゲー
ト電極膜3およびゲート絶縁膜2をゲート電極の形状(
幅1.5μm程度)に一括してパターンニングする。エ
ツチング剤は弗素系ガスを用いる。
FIG. 1(C): Next, a resist film mask 8 is formed using a photo process, and anisotropic etching/notching (R
IE) Si3 N4 film 10. SiO2 film 6° Gate electrode film 3 and gate insulating film 2 are shaped like gate electrode (
Patterning is performed at once to a width of about 1.5 μm). Fluorine gas is used as the etching agent.

第1図(d):次いで、その全面にCVD法で膜厚40
00人のSt○2膜9 (第2の5i02膜)を被着す
る。その時、CVD法で被着した膜はカバーレイジが良
く、ゲート電極の周囲にも形成される。
Figure 1(d): Next, the entire surface is coated with a film with a thickness of 40 mm.
00 St○2 film 9 (second 5i02 film) is deposited. At that time, the film deposited by the CVD method has good coverage and is also formed around the gate electrode.

第1図(e):次いで、その上面から垂直に全面を異方
性エツチング(RI E)する。そうすると、5i02
膜9はゲート電極の周囲側面(サイドウオール)にのみ
残存して、その他の平面部分のSiO2膜9は全部除か
れる。しかも、5t02膜6はSi3 N4膜10のた
めに保護され、オーバーエッチは生じなくなる。反応ガ
スは四弗化炭素(CF4)などの弗素系を用いる。
FIG. 1(e): Next, the entire surface is anisotropically etched (RIE) vertically from the top surface. Then, 5i02
The film 9 remains only on the peripheral side walls of the gate electrode, and the SiO2 film 9 on the other planar portions is completely removed. Furthermore, the 5t02 film 6 is protected by the Si3 N4 film 10, and over-etching does not occur. As the reaction gas, a fluorine-based gas such as carbon tetrafluoride (CF4) is used.

第1図(f)二次いで、露出したシリコン基板1面に燐
または砒素をイオン注入し、熱処理してn+型のソース
およびドレイン領域5を画定する。
FIG. 1(f) Second, phosphorus or arsenic is ion-implanted into the exposed surface of the silicon substrate, and ann+ type source and drain regions 5 are defined by heat treatment.

上記のような形成方法によれば、ゲート電極と配線との
絶縁耐圧が低下する問題は解消されて、MOS I C
が高品質化される。
According to the above-described formation method, the problem of lowering the dielectric strength between the gate electrode and the wiring is solved, and the MOS IC
is improved in quality.

且つ、上記は通常構造のMOS半導体素子で説明してき
たが、本発明はLDD構造のMOS半導体素子にも通用
できることは云うまでもない。
Further, although the above description has been made using a MOS semiconductor element having a normal structure, it goes without saying that the present invention can also be applied to a MOS semiconductor element having an LDD structure.

[発明の効果] 以上の説明から明らかなように、本発明によればゲート
電極と配線との絶縁耐圧が向上する等、MOSICの品
質が向上する顕著な効果があるものである。
[Effects of the Invention] As is clear from the above description, the present invention has a remarkable effect of improving the quality of MOSIC, such as improving the dielectric strength between the gate electrode and the wiring.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al〜(f)は本発明にかかる製造方法の工程
順断面図、 第2図は1103半導体素子の断面図、第3図(al〜
ff)は従来の製造方法の工程順断面図である。 図において、 1はp型シリコ・ン基板、 2はゲート絶縁膜、 3はゲート電極、 4はフィールド絶縁膜(SiO2膜)、5はn+型領領
域ソースドレイン領域、6は5i02膜(絶縁膜)、 7は電極、 8はレジスト膜マスク、 9は5i02膜(第2の5i02;サイドウオール)、
10はSi3N4膜、 σJ間本、羨方j壱哨工、tY傾酢j図第3図 X                        
寸O N了 ^           −− −Q      Q     ″。
1(a-1f) are cross-sectional views in the order of steps of the manufacturing method according to the present invention, FIG.
ff) is a step-by-step sectional view of a conventional manufacturing method. In the figure, 1 is a p-type silicon substrate, 2 is a gate insulating film, 3 is a gate electrode, 4 is a field insulating film (SiO2 film), 5 is an n+ type region source/drain region, and 6 is a 5I02 film (insulating film). ), 7 is an electrode, 8 is a resist film mask, 9 is a 5i02 film (second 5i02; side wall),
10 is Si3N4 film, σJ Mamoto, Enikata Ichipou, tY Sakuzuj Figure 3
Dimensions O N completed ^ -- -Q Q ″.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上にゲート絶縁膜、ゲート電極膜、酸化シリ
コン膜および窒化シリコン膜を積層してゲート電極の形
状にパターンニングし、次いで、全面に第2の酸化シリ
コン膜を被着し、更に、該第2の酸化シリコン膜を全面
垂直に異方性エッチングして、前記ゲート電極の周囲に
該第2の酸化シリコン膜からなるサイドウォールを形成
し、且つ、前記半導体基板のソースおよびドレイン形成
領域を露出させるようにしたことを特徴とする半導体装
置の製造方法。
A gate insulating film, a gate electrode film, a silicon oxide film, and a silicon nitride film are stacked on a semiconductor substrate and patterned into the shape of a gate electrode, and then a second silicon oxide film is deposited on the entire surface, and then a second silicon oxide film is deposited on the entire surface. The second silicon oxide film is anisotropically etched vertically over the entire surface to form a sidewall made of the second silicon oxide film around the gate electrode, and the source and drain forming regions of the semiconductor substrate are etched. A method of manufacturing a semiconductor device, characterized in that the semiconductor device is exposed.
JP22255886A 1986-09-19 1986-09-19 Manufacture of semiconductor device Pending JPS6377156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22255886A JPS6377156A (en) 1986-09-19 1986-09-19 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22255886A JPS6377156A (en) 1986-09-19 1986-09-19 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6377156A true JPS6377156A (en) 1988-04-07

Family

ID=16784331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22255886A Pending JPS6377156A (en) 1986-09-19 1986-09-19 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6377156A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2345339A (en) * 1998-12-24 2000-07-05 Aisin Seiki Surface micro-machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2345339A (en) * 1998-12-24 2000-07-05 Aisin Seiki Surface micro-machine

Similar Documents

Publication Publication Date Title
US5173437A (en) Double polysilicon capacitor formation compatable with submicron processing
US6693003B2 (en) Semiconductor device and manufacturing method of the same
US6255218B1 (en) Semiconductor device and fabrication method thereof
US6200846B1 (en) Semiconductor device with capacitor formed on substrate and its manufacture method
JPH098135A (en) Manufacture of semiconductor device
KR100223736B1 (en) Method of manufacturing semiconductor device
JPS62291176A (en) Semiconductor device and manufacture thereof
KR0170436B1 (en) Method of manufacturing mosfet
US5620911A (en) Method for fabricating a metal field effect transistor having a recessed gate
JPS6377156A (en) Manufacture of semiconductor device
JP2798953B2 (en) Semiconductor device and manufacturing method thereof
JPH1197529A (en) Manufacture of semiconductor device
JP2707536B2 (en) Method for manufacturing semiconductor device
KR100365409B1 (en) Method for forming a gate electrode in semiconductor device
JPH08321607A (en) Method of manufacturing semiconductor device
JPH1126756A (en) Manufacture of semiconductor device
JPH08250603A (en) Semiconductor device and manufacture thereof
US6544852B1 (en) Method of fabricating semiconductor device
KR960016236B1 (en) Self-aligned contact manufacturing method of semiconductor device
JP3523244B1 (en) Method for manufacturing semiconductor device
JPH11354650A (en) Semiconductor device and its manufacture
JPH0917779A (en) Formation method of oxide film for element isolation of semiconductor device
JPH0230124A (en) Manufacture of semiconductor device
KR100606953B1 (en) Method of forming a semiconductor device
JPS62147777A (en) Manufacture of mos field effect transistor