JPS6376866A - Production of thin magnetic mn-al-fe alloy film - Google Patents
Production of thin magnetic mn-al-fe alloy filmInfo
- Publication number
- JPS6376866A JPS6376866A JP22095786A JP22095786A JPS6376866A JP S6376866 A JPS6376866 A JP S6376866A JP 22095786 A JP22095786 A JP 22095786A JP 22095786 A JP22095786 A JP 22095786A JP S6376866 A JPS6376866 A JP S6376866A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- substrate
- alloy film
- thin
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 230000005291 magnetic effect Effects 0.000 title abstract description 22
- 229910000640 Fe alloy Inorganic materials 0.000 title 1
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 16
- 239000000956 alloy Substances 0.000 claims abstract description 16
- 238000004544 sputter deposition Methods 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 6
- 229910018084 Al-Fe Inorganic materials 0.000 claims abstract description 5
- 229910018192 Al—Fe Inorganic materials 0.000 claims abstract description 5
- 239000010409 thin film Substances 0.000 claims description 24
- 229910018085 Al-F Inorganic materials 0.000 claims 1
- 229910018179 Al—F Inorganic materials 0.000 claims 1
- 229910001004 magnetic alloy Inorganic materials 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 11
- 230000005294 ferromagnetic effect Effects 0.000 abstract description 9
- 239000011521 glass Substances 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 description 9
- 239000010408 film Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000005307 ferromagnetism Effects 0.000 description 4
- 229910001291 heusler alloy Inorganic materials 0.000 description 4
- 230000005415 magnetization Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- RZJQYRCNDBMIAG-UHFFFAOYSA-N [Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Zn].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn] Chemical class [Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Zn].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn] RZJQYRCNDBMIAG-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910000953 kanthal Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910000809 Alumel Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910018657 Mn—Al Inorganic materials 0.000 description 1
- 101150003998 Slc22a6 gene Proteins 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000011553 magnetic fluid Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、Mn、AI、Fe系の比較的安価な材料を用
いた磁性薄膜の製造法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a magnetic thin film using relatively inexpensive materials such as Mn, AI, and Fe.
(従来技術)
磁気記録の高密度化に伴い磁気記録媒体は、従来のγ−
Fe203粉末を用いた塗布膜からスパッタ法、蒸着法
等による金属薄膜へ移行が検討されている。金属薄膜材
料としては、Go、旧、Crが主体で、これらの資源は
総て輸入に頼っており、又、高価な材料である7gから
、安価で容易に入手可能な金属の利用が求められ、種々
のものが検討されている。これらのうちでMn、 AI
、Cuの三成分から構成される合金であって、Cu2M
nA1組成となる場合に、この合金(ホイスラー合金)
は強磁性体となる事が知られている。(Prior art) With the increasing density of magnetic recording, magnetic recording media are
A transition from coating films using Fe203 powder to metal thin films using sputtering, vapor deposition, etc. is being considered. Metal thin film materials are mainly Go, old, and Cr, and all of these resources rely on imports, and since 7g is an expensive material, the use of cheap and easily available metals is required. , various things are being considered. Among these, Mn, AI
, Cu is an alloy consisting of three components, Cu2M
When the composition is nA1, this alloy (Heusler alloy)
is known to be ferromagnetic.
CuのかわりにAu、Pd、Ni、Go 、 Al(7
)かわりにIn、Sn、Ga、Ge、Sb、Si でも
よい。またこのホイスラー合金組成の他に、Mn−Al
−Fe系のに相と呼ばれる強磁性相が知られている。こ
れらの合金の作製法は、通常の溶融法によっており、ス
パッタあるいは蒸着法による薄膜化の研究はほとんど行
なわれていない。磁気記録媒体として金属薄膜を利用す
る場合、適度な保磁力、飽和磁化を有し、しかも温度に
対して安定していることが望まれる。Au, Pd, Ni, Go, Al(7
) In, Sn, Ga, Ge, Sb, and Si may be used instead. In addition to this Heusler alloy composition, Mn-Al
-Fe-based ferromagnetic phase called ferromagnetic phase is known. These alloys are manufactured by the usual melting method, and there has been little research into thinning them by sputtering or vapor deposition. When a metal thin film is used as a magnetic recording medium, it is desired that it have appropriate coercive force and saturation magnetization, and be stable with respect to temperature.
(発明が解決しようとする問題点)
本発明は、安価な金属材料を用いて強磁性体薄膜を作製
する為の材料、組成、作製条件について広範囲に研究し
た結果得られたものである。特に三元系合金を使いホイ
スラー合金或いはに相合金として知られるMn−Al−
Fe組成を持つ薄膜の作製条件と薄膜の磁気特性を調べ
た。これらの合金は、バルクでは古くから研究が行なわ
れてきたが、FJPIJの特性については研究されてお
らず、特ニMn−AI−M (MはMetal )系に
ついては、薄膜化の研究はほどんど行なわれていない0
通常のバルクでは強磁性を示すホイスラー合金やに相合
金でも成る温度範囲で薄膜にしないと強磁性を示さなく
なり、磁気記録材として利用できない。(Problems to be Solved by the Invention) The present invention was obtained as a result of extensive research on materials, compositions, and production conditions for producing ferromagnetic thin films using inexpensive metal materials. In particular, ternary alloys are used to produce Mn-Al- which is known as Heusler alloy or phase alloy.
The manufacturing conditions for thin films with Fe composition and the magnetic properties of the thin films were investigated. These alloys have been studied in bulk for a long time, but the characteristics of FJPIJ have not been studied, and in particular, there has been little research on thinning the Mn-AI-M (M is Metal) system. Not done very often0
If it is not made into a thin film in the temperature range where normal bulk Heusler alloys and phase alloys exhibit ferromagnetism, they will no longer exhibit ferromagnetism and cannot be used as magnetic recording materials.
本発明では、Mn−Al−Fe合金を用い、スパッタリ
ングの方法により、主として磁気記録用に利用できるに
相強磁性薄膜を得る作製条件を明らかにした。In the present invention, we have clarified the manufacturing conditions for obtaining a phase ferromagnetic thin film that can be used mainly for magnetic recording by using a Mn-Al-Fe alloy and using a sputtering method.
(問題解決の手段)
本発明では種々のスパッタ条件を検討した結果、生成薄
膜の磁気特性は基板温度に影響されることを見出し、基
板温度を120〜250°Cに保持することにより強磁
性体薄膜を得るものである。(Means for solving the problem) In the present invention, as a result of examining various sputtering conditions, it was found that the magnetic properties of the produced thin film are affected by the substrate temperature. A thin film is obtained.
以下実施例を用いて本発明を説明する。The present invention will be explained below using Examples.
(実施例)
薄膜作製には、直径10c■のターゲットを持つ、対向
ターゲット式スパッタ法を用いた。同法は、二枚の向い
合うターゲラ)la、lb間に磁石2a、2bにて磁界
を加え1発生したプラズマをターゲット間に電磁石3に
より閉じ込め、ターゲットに直交して配置する基板4に
は、直接プラズマの影響が生じない様にして膜を作製す
る装置で、(1)基板温度上昇が少ない、(2)高速粒
子の基板衝突が無いので、再スパツタ現象による薄膜の
組成ずれが生じない、などの特徴を持つ、第1図に装置
の概要を示す、スパッタターゲットには、A1ターゲッ
ト(純度99.99%)上にMn、 Feの小片(純度
はいずれも99.913%)を配置した複合形ターゲッ
トを用いた。(Example) A facing target sputtering method using a target with a diameter of 10 cm was used to fabricate a thin film. In this method, a magnetic field is applied between two facing target plates (la and lb) by magnets 2a and 2b, and the generated plasma is confined by an electromagnet 3 between the targets, and a substrate 4 placed perpendicular to the target is This is an apparatus that produces films without being directly influenced by plasma, and has the following advantages: (1) There is little rise in substrate temperature. (2) There is no collision of high-speed particles with the substrate, so there is no composition shift in the thin film due to re-sputtering. The sputter target, which has the following characteristics and the outline of the device is shown in Fig. 1, has small pieces of Mn and Fe (both have a purity of 99.913%) placed on an A1 target (99.99% purity). A composite target was used.
小片の数は、各金属のスパッタ率及び、堆積した膜の組
成分析値により種々選択し、目標組成となるように構成
した8組成分析にはEPMAを使用した。The number of small pieces was variously selected depending on the sputtering rate of each metal and the composition analysis value of the deposited film, and EPMA was used for the 8 composition analysis configured to have the target composition.
基板には、通常使用されるスライドガラス及びSiウェ
ハーを用いた。基板加熱は基板ホルダーに配置したカン
タル線の抵抗加熱により、又、X1ll温は、基板表面
に接触させたクロメルアルメル熱電対によった。As the substrate, a commonly used slide glass and Si wafer were used. The substrate was heated by resistance heating of a Kanthal wire placed on the substrate holder, and the X111 temperature was measured by a chromel-alumel thermocouple in contact with the substrate surface.
基板ホルダーは純銅から成っており、表面にカンタル線
ヒーターを配置して基板ホルダーが均一に加熱できるよ
うな構造になっており、ヒーターに流す電流によって温
度調節する。The substrate holder is made of pure copper and has a structure in which a Kanthal wire heater is placed on the surface to uniformly heat the substrate holder, and the temperature is controlled by the current flowing through the heater.
基板ホルダーと基板とは、ろう付けにより密着させ熱伝
導を良くしである。The substrate holder and the substrate are bonded together by brazing to improve heat conduction.
薄膜の膜厚測定は、触針弐段差計により行ない、結晶構
造の解析はX線回折法を用いた。磁気特性は、最大10
KG印加の振動型磁力計を用いた。The thickness of the thin film was measured using a stylus step meter, and the crystal structure was analyzed using an X-ray diffraction method. Magnetic properties are up to 10
A vibrating magnetometer applying KG was used.
第1図に示す装置を使用し、Al板上にMn片及びFe
片を配置した直径10cmの複合ターゲットをセットし
、縦横7cm+X 3cm厚さ2■mのガラス基板上に
Mn−Al−Fe合金薄膜を堆積させた。堆積条件はア
ルゴン圧力2mTorr、投入電力150W、堆積速度
170ス/腸in 、基板温度20℃〜340℃とした
。Using the apparatus shown in Figure 1, Mn pieces and Fe were placed on an Al plate.
A composite target with a diameter of 10 cm on which the pieces were arranged was set, and a Mn-Al-Fe alloy thin film was deposited on a glass substrate measuring 7 cm in length and width + 3 cm in width and 2 μm in thickness. The deposition conditions were an argon pressure of 2 mTorr, an input power of 150 W, a deposition rate of 170 s/in, and a substrate temperature of 20°C to 340°C.
生成膜の膜厚を触針式段差針により測定したところ35
00大1組成はMJ135.Oat1%、 Al50.
l atm%、Fe15.8 atm%であった。The film thickness of the produced film was measured using a stylus-type step needle and was found to be 35.
00 large 1 composition is MJ135. Oat1%, Al50.
1 atm% and Fe15.8 atm%.
得られた薄膜の磁気特性を最大10KG印加の振動磁力
計を用いて室温にて測定した。この結果を第2図に示す
。The magnetic properties of the obtained thin film were measured at room temperature using a vibrating magnetometer that applied a maximum of 10 KG. The results are shown in FIG.
また、X線回折により同定した結晶構造をfjS3図に
示す、第3図において2θζ41.5”のピークが強磁
性を示すに相の(110)回折ピークである。20 触
42.3°のピークはβ−Mn相である。In addition, the crystal structure identified by X-ray diffraction is shown in fjS3 diagram. In Figure 3, the peak at 2θζ41.5" is the (110) diffraction peak of the phase indicating ferromagnetism.20 The peak at 42.3° is the β-Mn phase.
以上の結果から、基板温度が50°Cの場合は、X線回
折パターンは第3図(e)に示すごとく非晶質或いは微
結晶体であることを示し、強磁性は示さない、基板温度
が100℃未、満では飽和磁化Ms、保磁力Hc共に低
く実用的でない。また基板温度が280℃以上になると
第3図(a) 、 (b)に示すごと〈β−Mn相に相
当する回折パターンが出現し、飽和磁化Hs、保磁力H
c共急激に低下する。From the above results, when the substrate temperature is 50°C, the X-ray diffraction pattern shows that it is amorphous or microcrystalline as shown in Figure 3(e), and does not exhibit ferromagnetism. When the temperature is less than 100° C., both the saturation magnetization Ms and the coercive force Hc are low and it is not practical. Furthermore, when the substrate temperature rises to 280°C or higher, a diffraction pattern corresponding to the β-Mn phase appears as shown in Figure 3 (a) and (b), and the saturation magnetization Hs and coercive force H
c also decreases rapidly.
従ってに相合金で強磁性薄りりを得るには、基板温度を
120〜250℃に保持して成膜すれば良いことが明
らかになった。Therefore, it has become clear that in order to obtain a thin ferromagnetic layer using a phase alloy, it is sufficient to maintain the substrate temperature at 120 to 250°C and form a film.
(発明の効果)
Go、 Ni、 Cr、希土類、貴金属等の高価な材料
を用いずにFe、 Mn、 AIの比較的安価で入手容
易な材祠を用いた強磁性薄膜を作製する」二で、基板温
度が120〜250℃の範囲で強磁性薄膜を得ることが
できた0本発明で作製した合金薄膜は、磁気記録材料あ
るいは、同合金はキューリ一温度が100℃以下と低い
ので、磁気温度センサー、整磁路磁性流体媒質への用途
がある。(Effect of the invention) A ferromagnetic thin film is produced using relatively inexpensive and easily available materials such as Fe, Mn, and AI without using expensive materials such as Go, Ni, Cr, rare earths, and precious metals. , a ferromagnetic thin film could be obtained at a substrate temperature in the range of 120 to 250°C.The alloy thin film produced by the present invention can be used as a magnetic recording material, or because the alloy has a low Curie temperature of 100°C or less, it can be used as a magnetic recording material. It has applications in temperature sensors and magnetic flux shunt magnetic fluid media.
第1図は本発明に使用する対向ターゲット式スパッタ装
置の概要を示す説明図、第2図は本発明によって得られ
た合金薄膜の磁気特性を示す図、第3図は本発明によっ
て得られた合金薄膜のX線回折ピークを示す図である。Fig. 1 is an explanatory diagram showing an overview of the facing target type sputtering apparatus used in the present invention, Fig. 2 is a diagram showing the magnetic properties of the alloy thin film obtained by the present invention, and Fig. 3 is a diagram showing the magnetic properties of the alloy thin film obtained by the present invention. It is a figure showing the X-ray diffraction peak of an alloy thin film.
Claims (1)
e合金薄膜を製造するにあたり、基板温度を120〜2
50℃に保持することを特徴とするMn−Al−Fe磁
性合金薄膜の製造方法。1) Mn-Al-F by facing target sputtering method
When manufacturing the e-alloy thin film, the substrate temperature is set at 120~2
A method for manufacturing a Mn-Al-Fe magnetic alloy thin film, the method comprising maintaining the temperature at 50°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22095786A JPS6376866A (en) | 1986-09-20 | 1986-09-20 | Production of thin magnetic mn-al-fe alloy film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22095786A JPS6376866A (en) | 1986-09-20 | 1986-09-20 | Production of thin magnetic mn-al-fe alloy film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6376866A true JPS6376866A (en) | 1988-04-07 |
Family
ID=16759204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22095786A Pending JPS6376866A (en) | 1986-09-20 | 1986-09-20 | Production of thin magnetic mn-al-fe alloy film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6376866A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5534080A (en) * | 1995-06-01 | 1996-07-09 | National Science Council Of Republic Of China | Method for producing Mn-Al thin films |
-
1986
- 1986-09-20 JP JP22095786A patent/JPS6376866A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5534080A (en) * | 1995-06-01 | 1996-07-09 | National Science Council Of Republic Of China | Method for producing Mn-Al thin films |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3110613A (en) | Magnetic material | |
Naoe et al. | Properties of amorphous Co–Ta and Co–W films deposited by rf sputtering | |
US3625849A (en) | Manufacture of magnetic medium | |
JPS6376866A (en) | Production of thin magnetic mn-al-fe alloy film | |
JPS5893B2 (en) | Magnetic recording media for thermal transfer | |
JPS63186844A (en) | amorphous material | |
JPS6039157A (en) | Manufacturing method of amorphous magnetic alloy | |
JP2842683B2 (en) | Soft magnetic thin film material | |
JPS60200935A (en) | Magnetoresistive alloy film and its manufacturing method | |
JPS59107501A (en) | Heat sensor | |
JPH01260804A (en) | Hard magnetic thin film | |
JPH01146312A (en) | Soft magnetic thin film | |
JPS61234510A (en) | Soft magnetic thin film | |
JPH0316203A (en) | Magnetic film and magnetic head using the same | |
JPS61189610A (en) | Magnetic material for magnetic recording medium | |
CN117995501A (en) | Soft and hard magnetic composite material with pinning effect and preparation method and application thereof | |
JPS6278805A (en) | Soft magnetic thin film | |
JP2636813B2 (en) | Soft magnetic thin film | |
JPS61234509A (en) | Soft magnetic thin film | |
JPH0828298B2 (en) | Soft magnetic thin film | |
JPH0192359A (en) | Manufacture of thin amorphous film | |
JPS58119606A (en) | Method of producing target for resistance film | |
JPH03270203A (en) | Magnetic alloy | |
JPS61234508A (en) | Soft magnetic thin film | |
JP2000030939A (en) | Magnetic element and its manufacture |