[go: up one dir, main page]

JPS637536B2 - - Google Patents

Info

Publication number
JPS637536B2
JPS637536B2 JP59100577A JP10057784A JPS637536B2 JP S637536 B2 JPS637536 B2 JP S637536B2 JP 59100577 A JP59100577 A JP 59100577A JP 10057784 A JP10057784 A JP 10057784A JP S637536 B2 JPS637536 B2 JP S637536B2
Authority
JP
Japan
Prior art keywords
catalyst
tio
anhydride
aqueous solution
diurene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59100577A
Other languages
Japanese (ja)
Other versions
JPS60246343A (en
Inventor
Yoji Akazawa
Ikuo Kurimoto
Yojiro Takahashi
Yoshuki Nakanishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP59100577A priority Critical patent/JPS60246343A/en
Priority to CA000481767A priority patent/CA1261860A/en
Priority to DE8585106175T priority patent/DE3576074D1/en
Priority to EP85106175A priority patent/EP0163231B1/en
Priority to NZ212129A priority patent/NZ212129A/en
Publication of JPS60246343A publication Critical patent/JPS60246343A/en
Priority to US06/841,833 priority patent/US4665200A/en
Publication of JPS637536B2 publication Critical patent/JPS637536B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、1,2,4,5−テトラメチルベン
ゼン(以下、ジユレンという。)を分子状酸素含
有ガスで接触気相酸化して、ピロメリツト酸また
はその無水物を製造する方法に関する。 詳しく述べると、本発明はバナジウム(V)、
チタン(Ti)、リン(P)、ニオブ(Nb)および
アンチモン(Sb)の酸化物を含有する触媒物質
を不活性担体に担持させた触媒を用いて、ジユレ
ンを接触気相酸化することを特徴とするピロメリ
ツト酸またはその無水物の製造法に関するもので
ある。 無水ピロメリツト酸は耐熱性樹脂や可塑剤、エ
ポキシ樹脂硬化剤など広範囲に使用されてきてお
り、工業原料としての重要性も近年ますます高ま
つている。またその製造法もジユレンの接触気相
酸化法の他に、ジユレンの液相酸化法や、2,
4,5−トリメチルベンツアルデヒドの液相酸化
法、その他ジユレン以外の出発原料からの合成法
等も提案されている。 なかでもジユレンの気相酸化法は従来高価であ
つた原料ジユレンが最近ゼオライト系触媒の使用
により大量かつ安価に入手できる可能性が開けた
ことにより、無水ピロメリツト酸の市場価格低下
を促進し、需要拡大を惹起しうるプロセスとして
注目される。 ジユレンの接触気相酸化用触媒としては、多数
の特許文献が公表されており、たとえば、V2O5
−TiO2、WO3系(ベルギー特許第655686号)、
V2O5−P2O5−TiO2、MoO3、WO3系(特公昭45
−4978号)、V2O5−TiO2(アナターゼ型)−
MoO3、P2O5系(特公昭45−15018号)、V2O5
TiO2−Na2O、P2O5系(特公昭45−15252号)、
V2O5−TiO2−P2O5−Nb2O5−K2O、Cs2O系(特
公昭49−31972号)、V2O5−B2O3−SnO2、P2O5
TiO2、Na2O系(特公昭49−31973号)、などが開
示されている。 しかしながら、これらの触媒を用いた事例にお
いては、原料ガス組成におけるジユレン濃度が20
g/Nm3−空気以下という低濃度であつたり、目
的とするピロメリツト酸またはその無水物が収率
良くえられないなど、必ずしも工業的に満足しう
るものとは言い難い。 本発明者らは、ジユレンの接触気相酸化による
ピロメリツト酸またはその無水物の製法につい
て、とくにV2O5−TiO2系触媒について鋭意研究
を行なつた結果、V2O5−TiO2−Nb2O5−P2O5
触媒系にSb2O3を組み合わせた触媒物質を担体に
担持させた多元酸化物担持触媒を用いることによ
り、高原料負荷条件下でもきわめて高い無水ピロ
メリツト酸収率(ピロメリツト酸とその無水物の
合計を換算)が安定してえられることを見出し、
この発明を完成したものである。 以下本発明をさらに具体的に説明する。 本発明における触媒の触媒物質はV2O51〜80重
量部、TiO299〜20重量部を主成分としてなり、
この両成分の合計100部に対して、Nb2O50.01〜
5重量部、P2O50.02〜10重量部、さらにSb2O30,
1〜30重量部を含有するものである。 また、上記組成割合に、さらにNa2O、K2O、
Rb2O、Cs2O、CaO、SrO、BaOの内1種以上を
合計で0.01〜5重量部、あるいはさらに希土類元
素酸化物、ZnO、Tl2Oの内1種以上を合計で0.01
〜3重量部を含有してもよい。ここにいう希土類
元素とは、原子番号39および57〜71の諸元素で、
とくに、イツトリウム、ランタン、セリウム、ネ
オジム、ガドリニウム、テルビウム、エルビウム
などが好ましい。なお、ここで用いられる触媒物
質としての各元素の酸化物、すなわち、V2O5
Nb2O5、P2O5、Sb2O3、Na2O、K2O、Rb2O、
Cs2O、CaO、SrO、BaO、希土類酸化物、ZnO、
Tl2Oの添加源としては、それらの元素の酸化物、
アンモニウム塩、硫酸塩、硝酸塩、有機酸塩、炭
酸塩、塩化物、水酸化物あるいは遊離酸などから
適当に選ぶことができる。また本文中に示された
触媒物質成分は必ずしも本文中に記載された酸化
物の形に限定される必要はなく、単にその組成を
示すために用いられたものである。 本発明における触媒物質において有効なTiO2
の製法は種々あり、たとえば四塩化チタンを原料
として硫酸チタニウムアンモニウムを合成し、そ
の熱分解によりえられる高純度TiO2、または硫
酸チタニルの加水分解により生成する水酸化チタ
ンの熱処理によりえられるTiO2などが好ましい
が、一般に顔料用として市販されているTiO2
も適当な処理を施こして有害不純物を除去コント
ロールすることにより充分使用できる。TiO2
はアナターゼ型、ルチル型の2種類の結晶形が存
在するが、本発明触媒に有用なものはアナターゼ
型である。また四塩化チタンより製造された高純
度TiO2の場合、ルチル型のTiO2の混合したもの
も使用可能であるが、市販の顔料用ルチル型
TiO2はすでに特殊処理を施されたTiO2であり、
本発明において使用してもすぐれた効果は期待で
きない。 上記触媒物質はそれ自体であるいは成型助剤を
併用して成型触媒としても用いられるが、好まし
くは不活性担体に担持せしめて用いられる。 不活性担体としてはシリカ、アルミナ、けい酸
塩、シリコンカーバイド、抗火石、軽石等普通一
般公知の担体が用いられるが、好ましい担体とし
て、たとえばアルミニウムがAl2O3として10%以
下、シリコンカーバイド含量が50%以上で、か
つ、見掛気孔率が10%以上のシリコンカーバイド
系担体等が好結果を与える。 本発明における触媒の調整方法としては、バナ
ジウム、ニオブ、リン、アンチモン、その他の成
分元素を含む水溶液、硝酸水溶液、蓚酸水溶液あ
るいは塩酸水溶液中にTiO2粉末を分散させてス
ラリー状にし、この触媒スラリーをあらかじめ加
熱しておいた担体に噴霧器等を用いて噴霧担持さ
せ、次いで300〜650℃、好ましくは400〜550℃で
数時間空気流下もしくは空気しや断下または窒素
等の不活性ガス気流下で焼成する方法が好まし
い。この場合触媒物質の担体への担持率は、使用
する担体の比重、形状、粒径などで異なるが、た
とえば3〜10mm径の球状シリコンカーバイド系担
体を用いる場合、担体100c.c.当り触媒物質3〜15
gを担持させる。 上述のようにして得られる担持触媒を本発明の
製造方法に使用する場合、触媒物質が以下の物性
を有しているものが特に有用である。すなわち平
均細孔径が0.05〜0.45μの範囲にある細孔の全容
積が細孔径10μ以下の細孔の全容積に対して50%
以上を示める割合で細孔が分布しているものであ
る。 一般に平均細孔径および細孔容積の分布は、触
媒組成や焼成条件等の触媒調整条件によつて左右
されるものであるが、本発明における触媒は特に
触媒スラリー中のTiO2粉末と他の触媒物質との
分散度およびスラリー濃度の影響をうける。すな
わち該スラリーの分散度と濃度が共に高い場合は
平均細孔径と細孔容積も大きくなる傾向がある。
このような点も考慮して上記した細孔分布を有す
る触媒物質は触媒組成、触媒スラリーの分散度と
濃度および焼成条件を適宜決定して調製される。 上述したようにして得られる触媒を用いてジユ
レンを接触気相酸化する場合の反応条件は、反応
温度350〜450℃、好ましくは360〜430℃、空間速
度3000〜15000hr-1(STP)、好ましくは4000〜
10000hr-1(STP)、原料ジユレン濃度10〜50g/
Nm3−導通ガス、好ましくは20〜40g/Nm3−導
通ガスである。導通ガスとして空気または分子状
酸素含有ガスを用いるが、空気の使用が好まし
い。また原料ガス中に水蒸気を同伴させることも
できる。かくして無水ピロメリツト酸は110〜115
重量%という高収率で得られる。 すなわち本発明における触媒を使用することに
より高原料負荷条件下でも、きわめて高い無水ピ
ロメリツト酸収率が得られる。 次に本発明の実施例を示し、更に具体的に説明
する。 実施例 1 試薬特級のTiCl45700gを水に徐々に滴下して
60%水溶液とし、このTiCl4水溶液に試薬特級の
硫酸2940gを撹拌下添加した。他方、特級の硫酸
アンモニウム3940gを含む100℃に加温された飽
和水溶液を作り、この飽和水溶液を上記TiCl4
H2SO4水溶液へ撹拌しながら加えたのち放置し、
硫酸チタニウムアンモニウム〔(NH42SO4
TiOSO4・H2O〕を析出させた。これを別分離
したのち750℃で10時間焼成して2300gのTiO2
得た。 脱イオン水6400c.c.に蓚酸514gを溶解させ蓚酸
溶液とし、そこへバナジン酸アンモニウム257g、
第一リン酸アンモニウム16.2gおよび塩化ニオブ
12.2gを含む塩酸水溶液と三酸化アンチモン120
gとを添加して得た調製液に、上記TiO21800g
を加え、30分間撹拌して触媒スラリーを作つた。 外部から加熱できるステンレス製回転炉中に平
均粒径5mm、見掛気孔率20%のSiC担体(SiC含
量98.5%)2000c.c.を入れて200〜250℃に予熱して
おく。回転炉を回転させながら担体上に上記触媒
スラリーを噴霧して触媒物質180gを担持させた。
ついで空気流下530℃で8時間焼成した。こうし
て得られた完成触媒の組成は、重量比でV2O5
TiO2:P2O5:Nb2O5:Sb2O3=10:90:0.5:
0.3:6であつた。 このようにして調製された触媒の細孔分布を水
銀圧入法ポロシメーターで測定したところ細孔径
0.05〜0.45μの細孔を占める細孔容積が10μ以下の
全細孔容積の89%であつた。 得られた触媒100c.c.を直径25mmのステンレス製
反応管に充填後390℃に保持された溶融塩浴に浸
漬した。(以下溶融塩温度をN.T.(℃)と略記す
る。)そこへ毎時15gのジユレンと500Nlの空気
を通じて反応させた。反応ガスは結晶器及び水洗
捕集器に導き、生成物を捕集した。捕集された生
成物全体を温水に溶解し分析したところ、ピロメ
リツト酸が無水ピロメリツト酸に換算して113.2
重量%の収率で得られた。 実施例 2 イルメナイトに80%の濃硫酸を混合し、十分反
応を行なわせたのち水で希釈して硫酸チタン水溶
液とした。これに還元剤として鉄片を加え、イル
メナイト中の鉄分を第一鉄イオンに還元し、しか
るのち冷却して硫酸第一鉄として析出分離した。
このようにして得られた硫酸チタン水溶液を加熱
沸騰させて加水分解し、含水酸化チタンを沈殿さ
せた。これを十分洗浄したのち、800℃の温度で
空気流通下4時間焼成した。これをジエツト気流
粉砕処理し、平均粒子径約0.5μで比表面積22m2
gのアナターゼ型TiO2をえた。 脱イオン水6400c.c.に蓚酸1030gを溶解させ蓚酸
溶液とし、そこへバナジン酸アンモニウム515g、
第一リン酸アンモニウム25.9gおよび塩化ニオブ
20.3gを含む塩酸水溶液、三酸化アンチモン200
g、硝酸バリウム3.4gをそれぞれ添加して得た
調製液に上記TiO21600gを加え、30分間撹拌し
て触媒スラリーを作つた。 実施例1と同様にしてSiC担体に担持させ、焼
成して得られた完成触媒の組成は重量比で
V2O5:TiO2:P2O5:Nb2O5:Sb2O3:BaO=
20:80:0.8:0.5:10:0.1であつた。この触媒の
細孔径0.05〜0.45μの細孔の占める細孔容積は10μ
以下の全細孔容積の86%であつた。 上記触媒100c.c.を内径25mmのステンレス製反応
管に充填し、N.T.400℃で毎時15gのジユレンと
500Nlの空気を通じて反応させたところ、無水ピ
ロメリツト酸及びピロメリツト酸が無水物に換算
して114.1重量%の収率で得られた。 実施例 3〜6 実施例1と同様にして第1表に示した組成の触
媒を調製し反応に供した。結果を第2表に示す。
The present invention relates to a method for producing pyromellitic acid or its anhydride by catalytic gas phase oxidation of 1,2,4,5-tetramethylbenzene (hereinafter referred to as diurene) with a molecular oxygen-containing gas. Specifically, the present invention relates to vanadium (V),
It is characterized by catalytic gas phase oxidation of diurene using a catalyst in which a catalytic material containing oxides of titanium (Ti), phosphorus (P), niobium (Nb) and antimony (Sb) is supported on an inert carrier. The present invention relates to a method for producing pyromellitic acid or its anhydride. Pyromellitic anhydride has been widely used in heat-resistant resins, plasticizers, and epoxy resin curing agents, and its importance as an industrial raw material has been increasing in recent years. In addition to the catalytic gas phase oxidation method of Diurene, the manufacturing method also includes the liquid phase oxidation method of Diurene, 2,
A liquid phase oxidation method for 4,5-trimethylbenzaldehyde and a synthesis method from other starting materials other than diurene have also been proposed. Among these methods, the gas phase oxidation method for pyromellitic anhydride has promoted the decline in the market price of pyromellitic anhydride, and the demand for pyromellitic anhydride has increased due to the possibility that the raw material dyurene, which was traditionally expensive, can be obtained in large quantities and at low cost through the use of zeolite catalysts. It is attracting attention as a process that can cause expansion. Numerous patent documents have been published regarding catalysts for catalytic gas phase oxidation of diurene, such as V 2 O 5
−TiO 2 , WO 3 system (Belgium patent no. 655686),
V 2 O 5 −P 2 O 5 −TiO 2 , MoO 3 , WO 3 series (Special public interest
−4978), V 2 O 5 −TiO 2 (anatase type) −
MoO 3 , P 2 O 5 series (Special Publication No. 45-15018), V 2 O 5
TiO 2 −Na 2 O, P 2 O 5 system (Special Publication No. 15252 of 1972),
V 2 O 5 −TiO 2 −P 2 O 5 −Nb 2 O 5 −K 2 O, Cs 2 O system (Special Publication No. 1972-31972), V 2 O 5 −B 2 O 3 −SnO 2 , P 2 O5 ,
TiO 2 , Na 2 O type (Japanese Patent Publication No. 49-31973), etc. have been disclosed. However, in cases using these catalysts, the concentration of diurene in the raw gas composition is 20
The concentration is as low as g/Nm 3 -air or less, and the desired pyromellitic acid or its anhydride cannot be obtained in good yield, so it is not necessarily industrially satisfactory. The present inventors have conducted extensive research on a method for producing pyromellitic acid or its anhydride by catalytic gas-phase oxidation of diurene, particularly on V 2 O 5 -TiO 2 -based catalysts . By using a multi-component oxide-supported catalyst in which a catalyst material combining Sb 2 O 3 with a catalyst system of Nb 2 O 5 -P 2 O 5 is supported on a carrier, extremely high yields of pyromellitic anhydride can be achieved even under high raw material loading conditions. It was discovered that the ratio (calculated as the sum of pyromellitic acid and its anhydride) could be stably obtained.
This invention has been completed. The present invention will be explained in more detail below. The catalyst material of the catalyst in the present invention mainly contains 1 to 80 parts by weight of V 2 O 5 and 99 to 20 parts by weight of TiO 2 ,
For a total of 100 parts of both components, Nb 2 O 5 0.01~
5 parts by weight, P 2 O 5 0.02 to 10 parts by weight, and further Sb 2 O 3 0,
It contains 1 to 30 parts by weight. In addition, in addition to the above composition ratio, Na 2 O, K 2 O,
A total of 0.01 to 5 parts by weight of one or more of Rb 2 O, Cs 2 O, CaO, SrO, BaO, or a total of 0.01 of one or more of rare earth element oxides, ZnO, Tl 2 O
It may contain up to 3 parts by weight. The rare earth elements referred to here are elements with atomic numbers 39 and 57 to 71,
Particularly preferred are yttrium, lanthanum, cerium, neodymium, gadolinium, terbium, and erbium. In addition, the oxides of each element as the catalyst material used here, that is, V 2 O 5 ,
Nb2O5 , P2O5 , Sb2O3 , Na2O , K2O , Rb2O ,
Cs2O , CaO, SrO, BaO, rare earth oxides, ZnO,
Sources of Tl 2 O include oxides of these elements,
It can be appropriately selected from ammonium salts, sulfates, nitrates, organic acid salts, carbonates, chlorides, hydroxides, free acids, and the like. Furthermore, the catalyst material components shown in the text are not necessarily limited to the oxide forms described in the text, but are merely used to indicate their compositions. TiO 2 effective in the catalyst material of the present invention
There are various methods for producing TiO 2 , such as high-purity TiO 2 obtained by synthesizing titanium ammonium sulfate using titanium tetrachloride as a raw material and thermally decomposing it, or TiO 2 obtained by heat treating titanium hydroxide produced by hydrolyzing titanyl sulfate. Although TiO 2 , which is generally commercially available for use as a pigment, can be used satisfactorily by performing appropriate treatment to control the removal of harmful impurities. TiO 2 exists in two types of crystal forms: anatase type and rutile type, and the anatase type is useful for the catalyst of the present invention. In addition, in the case of high-purity TiO 2 made from titanium tetrachloride, a mixture of rutile-type TiO 2 can also be used, but commercially available rutile-type TiO 2 for pigments can be used.
TiO 2 is already specially treated TiO 2 ,
Even when used in the present invention, excellent effects cannot be expected. The above-mentioned catalyst substance can be used as a molded catalyst by itself or in combination with a molding aid, but is preferably supported on an inert carrier. As the inert carrier, commonly known carriers such as silica, alumina, silicate, silicon carbide, anti-flinder, pumice, etc. are used. Preferred carriers are, for example, aluminum containing 10% or less as Al 2 O 3 and silicon carbide content of 10% or less. Silicon carbide-based carriers with a porosity of 50% or more and an apparent porosity of 10% or more give good results. The method for preparing the catalyst in the present invention involves dispersing TiO 2 powder into a slurry in an aqueous solution containing vanadium, niobium, phosphorus, antimony, and other component elements, a nitric acid aqueous solution, an oxalic acid aqueous solution, or a hydrochloric acid aqueous solution. is sprayed onto a preheated carrier using a sprayer or the like, and then heated at 300 to 650°C, preferably 400 to 550°C, for several hours under a stream of air or under a blanket of air or under a stream of an inert gas such as nitrogen. A method of firing is preferred. In this case, the loading rate of the catalyst substance on the carrier varies depending on the specific gravity, shape, particle size, etc. of the carrier used, but for example, when using a spherical silicon carbide carrier with a diameter of 3 to 10 mm, the catalyst substance is supported per 100 c.c. of the carrier. 3-15
carry g. When the supported catalyst obtained as described above is used in the production method of the present invention, it is particularly useful that the catalyst material has the following physical properties. In other words, the total volume of pores with an average pore diameter in the range of 0.05 to 0.45μ is 50% of the total volume of pores with a pore diameter of 10μ or less.
The pores are distributed at a ratio that shows the above. In general, the average pore diameter and pore volume distribution are influenced by catalyst preparation conditions such as catalyst composition and calcination conditions, but the catalyst in the present invention is particularly characterized by the presence of TiO 2 powder in the catalyst slurry and other catalysts. Affected by the degree of dispersion with the substance and the slurry concentration. That is, when the slurry has a high degree of dispersion and a high concentration, the average pore diameter and pore volume also tend to increase.
Taking these points into consideration, the catalyst material having the above-mentioned pore distribution is prepared by appropriately determining the catalyst composition, the degree of dispersion and concentration of the catalyst slurry, and the firing conditions. The reaction conditions for catalytic gas phase oxidation of diurene using the catalyst obtained as described above include a reaction temperature of 350 to 450°C, preferably 360 to 430°C, and a space velocity of 3000 to 15000 hr -1 (STP), preferably is 4000~
10000hr -1 (STP), raw material concentration 10-50g/
Nm 3 -conducting gas, preferably 20 to 40 g/Nm 3 -conducting gas. Air or a molecular oxygen-containing gas is used as the conduction gas, with air being preferred. Moreover, water vapor can also be entrained in the raw material gas. Thus pyromellitic anhydride is 110-115
It is obtained in a high yield of % by weight. That is, by using the catalyst of the present invention, an extremely high yield of pyromellitic anhydride can be obtained even under high raw material loading conditions. Next, examples of the present invention will be shown and explained in more detail. Example 1 5700g of reagent grade TiCl 4 was gradually dropped into water.
A 60% aqueous solution was prepared, and 2940 g of reagent grade sulfuric acid was added to this TiCl 4 aqueous solution with stirring. On the other hand, prepare a saturated aqueous solution containing 3940 g of special grade ammonium sulfate heated to 100°C, and add this saturated aqueous solution to the TiCl 4
Add to H 2 SO 4 aqueous solution with stirring and leave to stand.
Titanium ammonium sulfate [(NH 4 ) 2 SO 4
TiOSO 4 H 2 O] was precipitated. This was separated separately and then calcined at 750°C for 10 hours to obtain 2300g of TiO 2 . Dissolve 514 g of oxalic acid in 6400 c.c. of deionized water to make an oxalic acid solution, and add 257 g of ammonium vanadate,
16.2g ammonium monophosphate and niobium chloride
Hydrochloric acid aqueous solution containing 12.2g and antimony trioxide 120
1800 g of the above TiO 2 to the prepared solution obtained by adding
was added and stirred for 30 minutes to form a catalyst slurry. 2000 c.c. of SiC carrier (SiC content 98.5%) with an average particle size of 5 mm and an apparent porosity of 20% is placed in a stainless steel rotary furnace that can be heated from the outside and preheated to 200 to 250°C. While rotating the rotary furnace, the catalyst slurry was sprayed onto the carrier to support 180 g of the catalyst material.
It was then calcined for 8 hours at 530°C under a stream of air. The composition of the finished catalyst thus obtained is V 2 O 5 :
TiO 2 :P 2 O 5 :Nb 2 O 5 :Sb 2 O 3 =10:90:0.5:
It was 0.3:6. The pore distribution of the catalyst prepared in this way was measured using a mercury intrusion porosimeter, and the pore diameter was
The pore volume occupied by 0.05-0.45μ pores was 89% of the total pore volume of 10μ or less. 100 c.c. of the obtained catalyst was filled into a stainless steel reaction tube with a diameter of 25 mm, and then immersed in a molten salt bath maintained at 390°C. (Hereinafter, the temperature of the molten salt will be abbreviated as NT (°C).) 15 g of diurene and 500 Nl of air were introduced per hour to cause a reaction. The reaction gas was led to a crystallizer and a water-washed collector to collect the product. When the entire collected product was dissolved in hot water and analyzed, the amount of pyromellitic acid was 113.2 in terms of pyromellitic anhydride.
A yield of % by weight was obtained. Example 2 Ilmenite was mixed with 80% concentrated sulfuric acid, and after a sufficient reaction, the mixture was diluted with water to obtain a titanium sulfate aqueous solution. Iron pieces were added as a reducing agent to reduce the iron content in ilmenite to ferrous ions, which were then cooled and separated as ferrous sulfate.
The aqueous titanium sulfate solution thus obtained was heated to boiling and hydrolyzed to precipitate hydrous titanium oxide. After thoroughly washing this, it was fired at a temperature of 800° C. for 4 hours under air circulation. This was subjected to jet air flow pulverization treatment, with an average particle size of approximately 0.5 μ and a specific surface area of 22 m 2 /
g of anatase-type TiO 2 was obtained. Dissolve 1030 g of oxalic acid in 6400 c.c. of deionized water to make an oxalic acid solution, and add 515 g of ammonium vanadate,
25.9g ammonium monophosphate and niobium chloride
Hydrochloric acid aqueous solution containing 20.3g, antimony trioxide 200
1,600 g of the above TiO 2 was added to the prepared solution obtained by adding 3.4 g of barium nitrate and 3.4 g of barium nitrate, and the mixture was stirred for 30 minutes to prepare a catalyst slurry. The composition of the finished catalyst obtained by supporting it on a SiC carrier and calcining it in the same manner as in Example 1 is as follows in terms of weight ratio:
V 2 O 5 : TiO 2 : P 2 O 5 : Nb 2 O 5 : Sb 2 O 3 : BaO=
It was 20:80:0.8:0.5:10:0.1. The pore volume occupied by pores with a pore diameter of 0.05 to 0.45 μ in this catalyst is 10 μ
It was less than 86% of the total pore volume. 100 c.c. of the above catalyst was packed into a stainless steel reaction tube with an inner diameter of 25 mm, and 15 g of diurene was added per hour at NT400°C.
When the reaction was carried out by passing 500 Nl of air, pyromellitic anhydride and pyromellitic acid were obtained in a yield of 114.1% by weight in terms of anhydride. Examples 3 to 6 Catalysts having the compositions shown in Table 1 were prepared in the same manner as in Example 1 and subjected to reactions. The results are shown in Table 2.

【表】【table】

【表】 比較例 1 特公昭49−31972号明細書中の実施例1に記載
の触媒(V2O5:TiO2:P2O5:Nb2O5:K2O:
Cs2O=10:90:1.2:0.466:0.142:0.15重量比)
を用いて本願実施例1と同様の条件で反応を行つ
たところ、無水ピロメリツト酸及びピロメリツト
酸が無水物換算で106.7重量%の収率で得られた
にすぎなかつた。 比較例 2 触媒成分にSb2O3を全く含まない点以外は、実
施例1と同様にして触媒を調製し反応を行つたと
ころ、無水ピロメリツト酸及びピロメリツト酸が
無水物換算で102.2重量%の収率で得られたにす
ぎなかつた。
[Table] Comparative Example 1 Catalyst described in Example 1 in Japanese Patent Publication No. 49-31972 (V 2 O 5 :TiO 2 :P 2 O 5 :Nb 2 O 5 :K 2 O:
Cs 2 O = 10:90:1.2:0.466:0.142:0.15 weight ratio)
When the reaction was carried out under the same conditions as in Example 1 of the present application, pyromellitic anhydride and pyromellitic acid were obtained in a yield of only 106.7% by weight in terms of anhydride. Comparative Example 2 A catalyst was prepared in the same manner as in Example 1 except that the catalyst component did not contain any Sb 2 O 3 and the reaction was carried out. It was obtained in only a high yield.

Claims (1)

【特許請求の範囲】[Claims] 1 1,2,4,5−テトラメチルベンゼンを分
子状酸素含有ガスにより接触気相酸化して、ピロ
メリツト酸またはその無水物を製造するに際し、
バナジウム、チタン、リン、ニオブおよびアンチ
モンのそれぞれの酸化物からなる触媒物質を不活
性担体に担持せしめてなる触媒を用いることを特
徴とするピロメリツト酸またはその無水物の製造
方法。
1. When producing pyromellitic acid or its anhydride by catalytic gas phase oxidation of 1,2,4,5-tetramethylbenzene with a molecular oxygen-containing gas,
1. A method for producing pyromellitic acid or its anhydride, which comprises using a catalyst comprising oxides of vanadium, titanium, phosphorus, niobium and antimony supported on an inert carrier.
JP59100577A 1984-05-21 1984-05-21 Preparation of pyromellitic acid or anhydride thereof Granted JPS60246343A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59100577A JPS60246343A (en) 1984-05-21 1984-05-21 Preparation of pyromellitic acid or anhydride thereof
CA000481767A CA1261860A (en) 1984-05-21 1985-05-17 Method for the preparation of pyromellitic acid or its anhydride
DE8585106175T DE3576074D1 (en) 1984-05-21 1985-05-20 CATALYST FOR USE IN THE PRODUCTION OF PYROMELLITHIC ACID AND / OR PYROMELLITHIC ACID ANHYDRIDE.
EP85106175A EP0163231B1 (en) 1984-05-21 1985-05-20 Catalyst for use in preparation of pyromellitic acid and/or pyromellitic anhydride
NZ212129A NZ212129A (en) 1984-05-21 1985-05-20 Supported catalyst composition
US06/841,833 US4665200A (en) 1984-05-21 1986-03-20 Method for preparing pyromellitic acid and/or pyromellitic anhydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59100577A JPS60246343A (en) 1984-05-21 1984-05-21 Preparation of pyromellitic acid or anhydride thereof

Publications (2)

Publication Number Publication Date
JPS60246343A JPS60246343A (en) 1985-12-06
JPS637536B2 true JPS637536B2 (en) 1988-02-17

Family

ID=14277742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59100577A Granted JPS60246343A (en) 1984-05-21 1984-05-21 Preparation of pyromellitic acid or anhydride thereof

Country Status (1)

Country Link
JP (1) JPS60246343A (en)

Also Published As

Publication number Publication date
JPS60246343A (en) 1985-12-06

Similar Documents

Publication Publication Date Title
KR950009710B1 (en) Catalyst for preparing phthalic anhydride and method for producing phthalic anhydride using the catalyst
US3926846A (en) Catalysts for the preparation of phthalic anhydride
CA1311740C (en) Method for manufacture of phthalic anhydride
EP0447267B1 (en) Catalyst for producing phthalic anhydride
US4665200A (en) Method for preparing pyromellitic acid and/or pyromellitic anhydride
JP3584940B2 (en) Ammoxidation catalyst composition
JPS603307B2 (en) Method for producing phthalic anhydride
US4046780A (en) Preparation of phthalic anhydride
EP0539878B1 (en) Method for production of phthalic anhydride by vapor-phase oxidation of mixture of ortho-xylene with naphthalene
JPS63107744A (en) Oxidation catalyst and manufacture thereof
SU471704A3 (en) Catalyst for anthraquinone production
US6153767A (en) Production process for pyromellitic dianhydride
AU2003226632B2 (en) Ti-pillared clay based vandia catalyst and process for preparation
JPS637536B2 (en)
JPS608860B2 (en) Catalyst for phthalic anhydride production
JPS60233028A (en) Preparation of fluorenone
JPH0149133B2 (en)
JPH0415020B2 (en)
JPH04215843A (en) Catalyst for manufacturing phthalic anhydride
JPS637537B2 (en)
JP3102837B2 (en) Catalyst for producing pyromellitic anhydride and method for producing pyromellitic anhydride
JPS63208575A (en) Production of cyanopyridine
CN114618543A (en) Catalyst for synthesizing hydrocyanic acid through ammoxidation, preparation method of catalyst and preparation method of hydrocyanic acid
JPH05220398A (en) Fluid catalyst for catalytically oxidizing durene in vapor phase
JP2003055382A (en) Method for producing pyromellitic anhydride

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees