JPS637411A - Seismic reinforcement method for existing port structures - Google Patents
Seismic reinforcement method for existing port structuresInfo
- Publication number
- JPS637411A JPS637411A JP15025886A JP15025886A JPS637411A JP S637411 A JPS637411 A JP S637411A JP 15025886 A JP15025886 A JP 15025886A JP 15025886 A JP15025886 A JP 15025886A JP S637411 A JPS637411 A JP S637411A
- Authority
- JP
- Japan
- Prior art keywords
- shell
- ground
- double steel
- outer shell
- sand
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 13
- 230000002787 reinforcement Effects 0.000 title claims description 9
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 19
- 239000010959 steel Substances 0.000 claims abstract description 19
- 239000004576 sand Substances 0.000 claims abstract description 13
- 238000010276 construction Methods 0.000 claims description 9
- 230000003014 reinforcing effect Effects 0.000 claims description 3
- 239000004575 stone Substances 0.000 abstract description 4
- 239000002689 soil Substances 0.000 abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
- Revetment (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
本発明は、地震時に液状化する可能性のある砂買地盤上
にある既設港湾構造物を耐震補強する工法に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a construction method for seismically reinforcing an existing port structure located on gravel ground that is likely to liquefy during an earthquake.
(ロ)従来の技術
一般に、水分を多く含む砂質地盤に地震外力が加えられ
たとき、砂質地盤があたかも液体としての性状を呈する
液状化現象が起ることは広く知られている。この現象は
、砂質地盤の局部せん断変形により砂粒子間の水圧が急
増し、水流を生じ、それに伴い砂粒子の流動が生じるこ
とによって起るものである。(b) Conventional technology It is generally known that when an external earthquake force is applied to sandy ground containing a large amount of moisture, a liquefaction phenomenon occurs in which the sandy ground behaves as if it were a liquid. This phenomenon occurs when water pressure between sand particles rapidly increases due to local shear deformation of the sandy ground, creating a water flow, which causes the sand particles to flow.
このような地震時に液状化する可能性のある砂質地盤上
に施工される構造物としては、海岸等の岸壁・護岸1等
がある。このような地盤上にあるこれら港湾の既設構造
物に対する従来の耐震補強工法の代表例を第2図に示す
。Structures constructed on sandy ground that may liquefy during such earthquakes include quay walls and seawalls 1 on beaches and the like. Figure 2 shows typical examples of conventional seismic reinforcement methods for existing port structures located on such ground.
第2図は、港湾構造物の1つであるケーソン構造物によ
る護岸の一例の横断面図である。支持地g11上には、
地震時に液状1ヒする可能性のある砂質地盤2がある。FIG. 2 is a cross-sectional view of an example of a seawall made of a caisson structure, which is one of the port structures. On the support ground g11,
There is sandy ground 2 that may become liquid during an earthquake.
砂質地盤2上に捨石マウンド3が設けられ、その上にケ
ーソン4が置かれ、その内に砂、石等が詰め込まれ、水
面と反対側に裏込め土砂5が盛られて護岸が形成される
。A rubble mound 3 is provided on sandy ground 2, a caisson 4 is placed on top of it, and sand, stones, etc. are packed into it, and backfill earth and sand 5 is piled up on the opposite side of the water surface to form a seawall. Ru.
以下、説明の便宜上、土砂等を詰め込んだケーソン4お
よび捨石マウンド3等を含めて、ケーソン構造物40と
呼ぶ。Hereinafter, for convenience of explanation, the caisson 4 filled with earth and sand, the rubble mound 3, etc. will be referred to as a caisson structure 40.
耐震補強設計にさいしては、地震時の「すべり面」6が
設定される。砂質地盤2は、地震時に液状化する可能性
があると、すべり力に対する抵抗が期待できない、裏込
め土砂5の範囲のみに抵抗力を期待することになるが、
それだけでは不十分である。In seismic reinforcement design, a "slip surface" 6 is set during an earthquake. If the sandy ground 2 has the possibility of liquefaction during an earthquake, resistance to sliding force cannot be expected, but resistance is expected only in the area of the backfill soil 5.
That alone is not enough.
そこで、従来の耐震補強工法ではケーソン構造物40を
補強するためにケーソン4の前面側(海側)に、砕石、
砂等による改良地盤7を設ける。Therefore, in the conventional seismic reinforcement method, in order to reinforce the caisson structure 40, crushed stone,
Improved ground 7 is provided with sand, etc.
改良地盤7により、地震時には、砂質地盤2の過剰間隙
水圧を抜けさせて余効地盤8の生成を期待する。改良範
囲をし、余効範囲を2とすれば、L十lの範囲が地震時
のすべり力に抵抗できることになる。そこで、設計では
すべり力と抵抗力とが等しくなるように、Lの範囲を決
定する。The improved ground 7 is expected to release excess pore water pressure in the sandy ground 2 and generate aftereffect ground 8 in the event of an earthquake. If the improvement range is taken as the aftereffect range and the aftereffect range is taken as 2, then an area of L11 can resist the sliding force during an earthquake. Therefore, in the design, the range of L is determined so that the sliding force and the resistance force are equal.
しかし、Lの範囲は使用する材料によって長いものが必
要となり、また、lの範囲も不明な点が多く、置換の方
法によっては特定できない。However, the range of L needs to be long depending on the material used, and the range of l also has many unknown points and cannot be specified depending on the substitution method.
その他、液状化防止工法として、従来からの種々の提案
がなされてきたが、施工法、経済性の点で一長一短があ
り、効果については、定量的に把握されていないものが
多い。In addition, various proposals have been made for liquefaction prevention construction methods, but they have advantages and disadvantages in terms of construction method and economic efficiency, and the effectiveness of many of them has not been quantitatively understood.
(ハ)発明が解決しようとする問題点
本発明が解決しようとする問題点は、既設ケーソン構造
物を支持する地盤に対して、地震時の液状化防止および
すべり防、止を図ることができる簡便な耐震補強工法を
得ることにある。(c) Problems to be solved by the invention The problems to be solved by the invention are that it is possible to prevent liquefaction and slippage during earthquakes for the ground that supports existing caisson structures. The objective is to obtain a simple seismic reinforcement method.
(ニ)問題点を解決するための手段
本発明の耐震補強工法は、多数の小孔を設けた外殻と該
外殻に所定の間隔をあけて内挿された内殼とからなる二
重鋼板セルを、既設港湾構造物付近の地盤に複数個数打
設する際、前記二重鋼板セルの下端部を支持地盤に迄根
入れしかつ該セルの小孔を設けた中間部を地震時に液状
化の可能性のある砂質地盤に位置せしめること、前記外
殻と内殼との間に進入した土砂を排除することによって
、上記問題点を解決している。(d) Means for Solving the Problems The seismic reinforcement method of the present invention consists of a double shell consisting of an outer shell with a large number of small holes and an inner shell inserted into the outer shell at a predetermined interval. When pouring a plurality of steel plate cells into the ground near an existing port structure, the lower end of the double steel plate cell is embedded into the supporting ground, and the middle part of the cell where the small hole is provided is liquefied during an earthquake. The above-mentioned problems are solved by locating it on sandy ground where there is a possibility of erosion, and by removing the earth and sand that has entered between the outer shell and the inner shell.
(ホ)実施例
図面を参照して、本発明の耐震補強工法の具体的実施例
について説明する。(e) Examples Specific examples of the seismic reinforcement method of the present invention will be described with reference to the drawings.
第1図に示すケーソン構造物40による護岸設置状況は
第2図に示す護岸の設置状況と同じである。したがって
、同一参照番号は同一のものを示す。The installation situation of the seawall using the caisson structure 40 shown in FIG. 1 is the same as the installation situation of the seawall shown in FIG. Accordingly, identical reference numbers refer to identical items.
本発明の工法においては、まず第1図および第3図に概
略示すような二重鋼板セル10を準備する。二重鋼板セ
ル10は厚鋼板を湾曲加工した後に溶接してつくられる
。二重鋼板セル10は、多数の小孔を設けた外殻11と
、外殻11に所定の間隔をあけて内挿された内殼12と
からできている。外殻11と内殼12とはリブ13によ
って連結・補強されている。小孔の形状は任意のもので
よいが、応力集中、加工難易の観点から円形のものが好
ましい。In the construction method of the present invention, first, a double steel plate cell 10 as schematically shown in FIGS. 1 and 3 is prepared. The double steel plate cell 10 is made by bending a thick steel plate and then welding it. The double steel plate cell 10 is made up of an outer shell 11 provided with a large number of small holes, and an inner shell 12 inserted into the outer shell 11 at a predetermined interval. The outer shell 11 and the inner shell 12 are connected and reinforced by ribs 13. Although the shape of the small hole may be arbitrary, a circular shape is preferable from the viewpoint of stress concentration and processing difficulty.
次いで、二重鋼板セル10を、既設ケーソン構造物付近
で(図示実施例では海側)の地盤に根入れする。この根
入れ工程は、第4図に示すように、慣用のバイブロハン
マ20又は図示省略したがウォータジェット或はサクシ
ョン等の方法によって行う。Next, the double steel plate cell 10 is embedded in the ground near the existing caisson structure (in the illustrated embodiment, on the sea side). As shown in FIG. 4, this embedding step is performed using a conventional vibrohammer 20 or, although not shown, a method such as water jet or suction.
二重鋼板セル10の下端部は、支持地盤1迄根入れされ
、小孔を設けた中間部は地震時に液状化する可能性のあ
る砂質地盤に定置される。二重鋼板セル10の上端は海
中に突出させる。The lower end of the double steel plate cell 10 is embedded into the supporting ground 1, and the middle part provided with a small hole is placed in sandy ground that may liquefy during an earthquake. The upper end of the double steel plate cell 10 is made to protrude into the sea.
二重鋼板セル10の内殼12の内部には砕石、土砂等を
詰め込み、上部をコンクリート14で蓋をする。内殼1
2と外殻11との間にある土砂は慣用のサクション工法
により外部に排除する。The inside of the inner shell 12 of the double steel plate cell 10 is filled with crushed stones, earth and sand, and the upper part is covered with concrete 14. Inner shell 1
The earth and sand between 2 and the outer shell 11 are removed to the outside by a conventional suction method.
(へ) 作用 本発明の耐震補強工法の作用について説明する。(to) Effect The operation of the seismic reinforcement method of the present invention will be explained.
第1図に示すように、セル10の外殻11に設けた小孔
を通して地震時に砂質地盤2に生じた過剰間隙水圧は、
セル10の上端から海中に排水することによって消散さ
れる。このようにして、砂質地盤2は、セル10の付近
のL′範囲の液状化を防止する。As shown in FIG. 1, the excess pore water pressure generated in the sandy ground 2 during an earthquake through the small holes provided in the outer shell 11 of the cell 10 is
It is dissipated by draining water from the top of the cell 10 into the sea. In this way, the sandy ground 2 prevents liquefaction in the area L' near the cell 10.
さらに二重鋼板セル10を支持地盤1まで根入れしであ
るので、すべり面6に対するすべり抵抗を発生している
。これら二つの作用が相乗されて、従来工法よりすぐれ
た補強効果を発揮する。Furthermore, since the double steel plate cell 10 is embedded into the supporting ground 1, it generates sliding resistance against the sliding surface 6. These two effects are synergized to provide a superior reinforcing effect compared to conventional construction methods.
第1図は本発明の工法の概略説明図、第2図は従来の工
法の概略説明図。第3図は本発明の工法に基づく二重鋼
板セルの斜視図、第4図は二重鋼板セルの根入れ方法の
一例を示す説明図。
1:支持地盤 2:砂質地盤
3:捨石マウンド 4:ケーソン
5:裏込め土砂 6:すべり面
7:改良地盤 8;余効地盤
10:二重鋼板セル 11:外殻
12:内殼 13:リブ
14:コンクリート 20:バイブロハンマ(外5名
)
第2図FIG. 1 is a schematic explanatory diagram of the construction method of the present invention, and FIG. 2 is a schematic explanatory diagram of the conventional construction method. FIG. 3 is a perspective view of a double steel plate cell based on the construction method of the present invention, and FIG. 4 is an explanatory diagram showing an example of a method for embedding the double steel plate cell. 1: Supporting ground 2: Sandy ground 3: Rubble mound 4: Caisson 5: Backfill earth and sand 6: Slip surface 7: Improved ground 8: Remaining ground 10: Double steel plate cell 11: Outer shell 12: Inner shell 13: Rib 14: Concrete 20: Vibrohammer (5 people outside) Figure 2
Claims (1)
内挿された内殼とからなる二重鋼板セルを、既設港湾構
造物付近の地盤に複数個数打設し、該地盤を補強する工
法において、前記二重鋼板セルの下端部を支持地盤迄根
入れしかつ該セルの小孔を設けた中間部を地震時に液状
化の可能性のある砂質地盤に位置せしめること、前記外
殻と内殼との間に進入した土砂を排除することを特徴と
する既設港湾構造物の耐震補強工法。A plurality of double steel plate cells consisting of an outer shell with many small holes and an inner shell inserted into the outer shell at a predetermined interval are poured into the ground near the existing port structure, and the ground is In the reinforcing construction method, the lower end of the double steel plate cell is embedded into the supporting ground, and the middle part of the cell with a small hole is located in sandy ground that is likely to liquefy during an earthquake; A seismic reinforcement method for existing port structures that is characterized by removing earth and sand that has entered between the outer shell and the inner shell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15025886A JPS637411A (en) | 1986-06-26 | 1986-06-26 | Seismic reinforcement method for existing port structures |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15025886A JPS637411A (en) | 1986-06-26 | 1986-06-26 | Seismic reinforcement method for existing port structures |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS637411A true JPS637411A (en) | 1988-01-13 |
Family
ID=15493008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15025886A Pending JPS637411A (en) | 1986-06-26 | 1986-06-26 | Seismic reinforcement method for existing port structures |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS637411A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008038524A (en) * | 2006-08-09 | 2008-02-21 | Ohbayashi Corp | Earthquake-resistant reinforcing structure of quay |
-
1986
- 1986-06-26 JP JP15025886A patent/JPS637411A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008038524A (en) * | 2006-08-09 | 2008-02-21 | Ohbayashi Corp | Earthquake-resistant reinforcing structure of quay |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5320455A (en) | Geocell with facing panel | |
JPS6311710A (en) | Earthquake-proofing and reinforcing work for existing structure | |
JPS637411A (en) | Seismic reinforcement method for existing port structures | |
JPH0138926B2 (en) | ||
JPS63535A (en) | Earthquake-proof fortifying work for existing structure | |
GB1560703A (en) | Marine walls | |
JPS6344007A (en) | Earthquake-proof reinforcing construction for previously constructed structure | |
JPS58127822A (en) | Liquefaction preventive structure of foundation ground | |
JPH03103535A (en) | Countermeasure structure for liquefaction of building | |
US2338110A (en) | Graving dry dock and method of construction | |
JP2876471B2 (en) | Lateral flow countermeasure structure | |
JPH01226921A (en) | Earthquake-proof reinforced revetment construction | |
JP2802815B2 (en) | Embankment structure | |
JPS6062327A (en) | Construction of underwater continuous wall | |
JPH0826528B2 (en) | Seismic retrofitting method for existing port structures | |
JPS6347418A (en) | Reinforcing structure of banking ground | |
JPS58127823A (en) | Liquefaction preventive structure of foundation ground | |
JPH01271515A (en) | Aseismic reinforcing construction for structure | |
JPS626011A (en) | Scouring prevention work for caisson foundation | |
JPS6299513A (en) | Wall structure having earth pressure-reducing structure | |
JPH0426499Y2 (en) | ||
JPH0645929B2 (en) | Ground liquefaction prevention method | |
JPH0329922B2 (en) | ||
JPH08260453A (en) | Structure for placing of concrete and constructing method of wall-shaped structure | |
JP2002180480A (en) | Seawall structure to prevent lateral flow |