[go: up one dir, main page]

JPS6373519A - Projection aligner - Google Patents

Projection aligner

Info

Publication number
JPS6373519A
JPS6373519A JP61217115A JP21711586A JPS6373519A JP S6373519 A JPS6373519 A JP S6373519A JP 61217115 A JP61217115 A JP 61217115A JP 21711586 A JP21711586 A JP 21711586A JP S6373519 A JPS6373519 A JP S6373519A
Authority
JP
Japan
Prior art keywords
wafer
reduction ratio
atmospheric pressure
temperature
fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61217115A
Other languages
Japanese (ja)
Inventor
Yuzo Tsuboi
壺井 裕三
Tomoaki Tsuboka
智昭 坪香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61217115A priority Critical patent/JPS6373519A/en
Publication of JPS6373519A publication Critical patent/JPS6373519A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • G03F7/70875Temperature, e.g. temperature control of masks or workpieces via control of stage temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • G03F7/70891Temperature

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To enable pattern transfer always at a predetermined reduction ratio by providing a temperature controller in the wafer stage, and controlling the wafer temperature according to the fluctuation of the reduction rate of a projection aligner, thereby offsetting the fluctuation of the reduction ratio with the thermal expansion and thermal shrinkage of the wafer. CONSTITUTION:A mask M is illuminated by a light source 11 and a condenser lens 12, and a mask pattern is projected and exposed on the surface of a wafer W by an imaging lens 13. And, the atmospheric pressure at this time is measured by a barometer 32, and in a microcomputer 31, the fluctuation of the reduction ratio at this atmospheric pressure is calculated from the characteristics of the atmospheric pressure and the reduction ratio. Further, this reduction ratio is applied to the thermal expansion coefficient of the silicon wafer to calculate a wafer size needed for correcting this fluctuation. And this calculation result is outputted to a heater controller 24 or a flow rate control valve 26 in order to control the electrical energization amount of a heater 23 or the cooling medium flow rate of a cooling pipe 25 based on the measured temperature of a thermocouple 27, thereby heating or cooling the wafer W to a required temperature through a base stand 21. For this, the wafer W is thermally expanded or thermally shrinked in response to the reduction rate. Therefore, a pattern transfer with a stable reduction rate can be achieved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造に用いる投影露光装置に関し
、特に投影光学系における像倍率の変動を修正して高精
度の投影を可能とする投影露光装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a projection exposure apparatus used for manufacturing semiconductor devices, and in particular to a projection exposure apparatus that corrects fluctuations in image magnification in a projection optical system to enable high-precision projection. Related to exposure equipment.

〔従来の技術〕[Conventional technology]

半導体装置の製造工程の一つであるフォトリソグラフィ
工程では、レチクルやフォトマスクのパターンをステッ
パ等の投影露光装置を用いて半導体ウェハ上に転写して
いる。特に、近年では半導体装置の素子パターンの微細
化、高密度化に伴って転写されるパターンのサイズも益
々微小化され、投影露光装置の縮小率も1:5や1:1
0のものが採用されている。
In a photolithography process, which is one of the manufacturing processes of semiconductor devices, a pattern of a reticle or a photomask is transferred onto a semiconductor wafer using a projection exposure device such as a stepper. In particular, in recent years, as the element patterns of semiconductor devices have become finer and denser, the size of transferred patterns has also become smaller and smaller, and the reduction ratio of projection exposure equipment has also increased to 1:5 or 1:1.
0 has been adopted.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、この種の投影露光装置を用いてレチクルやフ
ォトマスクのパターンを転写すると、露光日時の相違や
露光環境の相違によって転写パターンのサイズにばらつ
きが発生することが判明した。すなわち、特開昭60−
261137号明細書によれば、投影露光装置の環境の
温度、湿度及び大気圧の変化により投影露光装置の光学
系、つまりレンズの焦点距離が変化され、縮小倍率が時
刻や環境に伴って変化されることが原因である。
By the way, it has been found that when a pattern of a reticle or a photomask is transferred using this type of projection exposure apparatus, variations in the size of the transferred pattern occur due to differences in exposure date and time and differences in exposure environment. That is, JP-A-1986-
According to the specification of No. 261137, the optical system of the projection exposure apparatus, that is, the focal length of the lens is changed due to changes in the temperature, humidity, and atmospheric pressure of the environment of the projection exposure apparatus, and the reduction magnification is changed depending on the time and environment. This is caused by

特に、この縮小率の変化は、大気圧の変化によるところ
が大であり、前記明細書にも記載の特性図によれば、第
3図のように大気圧の増大とともに縮小率(基準サイズ
に対して大きくなる場合を正(プラス)とする)が大き
くなり、投影像が大きくなることが判る。
In particular, changes in this reduction rate are largely due to changes in atmospheric pressure, and according to the characteristic diagram described in the above specification, as shown in Figure 3, as atmospheric pressure increases, the reduction rate (with respect to the standard size) It can be seen that the projected image becomes larger and the projected image becomes larger.

このため、前記明細書の装置では、大気圧等の変化に伴
って光学系の光軸距離を変化調節する構成を採用してい
るが、これでは投影露光装置が複雑化し、かつ微小な寸
法の調整を行うためには制御系を高精度に作動させる必
要がある等、実用上困難な問題が存在している。
For this reason, the apparatus described in the above specification adopts a configuration in which the optical axis distance of the optical system is changed and adjusted according to changes in atmospheric pressure, etc., but this makes the projection exposure apparatus complicated and requires small dimensions. In order to make adjustments, there are practical problems such as the need to operate the control system with high precision.

本発明の目的は、投影露光装置の縮小率の変動に対処し
て常に安定した縮小率を確保するとともに、投影露光装
置の構成を複雑化することなく、しかも制御を簡単に行
うことができる投影露光装置を提供することにある。
An object of the present invention is to provide a projection exposure apparatus that can cope with fluctuations in the reduction ratio of a projection exposure apparatus, always ensure a stable reduction ratio, and that can be easily controlled without complicating the configuration of the projection exposure apparatus. The purpose of the present invention is to provide an exposure device.

〔問題点を解決するための手段〕 本発明の投影露光装置は、ウェハを支持するウェハステ
ージに温度コントローラを設けるとともに、この温度コ
ントローラを光学系の縮小率変化に対応して制御可能と
し、露光時におけるウェハの温度を変化し得るように構
成している。
[Means for Solving the Problems] The projection exposure apparatus of the present invention includes a temperature controller on the wafer stage that supports the wafer, and enables the temperature controller to be controlled in response to changes in the reduction ratio of the optical system. The structure is such that the temperature of the wafer can be changed at any given time.

〔作用〕[Effect]

ウェハチャックに設けた温度コントローラを、大気圧等
の光学系の縮小率を変化させる要因の変化に伴って制御
し、これに対応してウェハの温度を変化させることによ
り、光学系の縮小率変化とともにウェハが熱膨張或いは
熱収縮してその寸法が変化される。これにより、ウェハ
に投影された投影パターンの寸法は、ウェハが常温に戻
された時点では常に所定の寸法となり、投影パターンの
実質的な縮小率を安定なものとして高精度のパターン転
写を実現することができる。
The temperature controller installed on the wafer chuck is controlled in accordance with changes in factors that change the reduction rate of the optical system, such as atmospheric pressure, and the wafer temperature is changed accordingly, thereby changing the reduction rate of the optical system. At the same time, the wafer thermally expands or contracts, changing its dimensions. As a result, the dimensions of the projected pattern projected on the wafer will always be the predetermined dimensions when the wafer is returned to room temperature, making the actual reduction rate of the projected pattern stable and achieving high-precision pattern transfer. be able to.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の一実施例を概念的に示す斜視図であり
、この投影露光装置は、パターン転写を直接行う光学系
1と、パターン転写されるシリコン等の半導体ウェハW
を支持するウェハステージ2と、制御系3とで構成して
いる。
FIG. 1 is a perspective view conceptually showing an embodiment of the present invention, and this projection exposure apparatus includes an optical system 1 that directly performs pattern transfer, and a semiconductor wafer W such as silicon to which the pattern is transferred.
The wafer stage 2 supports the wafer stage 2, and the control system 3.

前記光学系1は、水銀ランプ等からなる光B11、コン
デンサレンズ12.結像レンズ13等を備え、レチクル
やフォトマスクMのパターンをウェハチャック2上のウ
ェハW表面に所要の縮小率で投影できる。
The optical system 1 includes a light beam B11 composed of a mercury lamp or the like, a condenser lens 12. It is equipped with an imaging lens 13 and the like, and can project the pattern of the reticle or photomask M onto the surface of the wafer W on the wafer chuck 2 at a required reduction ratio.

前記ウェハステージ2は所謂XYステージとして構成さ
れるとともに、第2図にその断面構造を示すように、こ
こでは基台21の表面に、図外の真空源に連通ずる多数
個の吸着孔22を開設した構成とし、ウェハWをこれら
吸着孔22で基台21の表面上に吸着固定することがで
きる。また、この基台21の内部には、ヒータ23を埋
設し、ヒータコントローラ24によってヒータ23に通
じる電流量が変化され、これに対応して基台21乃至ウ
ェハWを所要温度に加熱できるように構成している。ま
た、基台21には冷却パイプ25を延設し、ここには図
外の冷却源に還流する冷却媒体の流通量をコントロール
する流量コントロールバルブ26を介挿している。更に
、基台21には温度を測定するための熱電対27を配設
している。
The wafer stage 2 is constructed as a so-called XY stage, and as shown in its cross-sectional structure in FIG. With the open configuration, the wafer W can be suctioned and fixed onto the surface of the base 21 using these suction holes 22. Further, a heater 23 is buried inside the base 21, and the amount of current flowing to the heater 23 is changed by a heater controller 24, so that the base 21 to the wafer W can be heated to a required temperature accordingly. It consists of Further, a cooling pipe 25 is extended from the base 21, and a flow rate control valve 26 is inserted therein to control the amount of cooling medium flowing back to a cooling source (not shown). Further, the base 21 is provided with a thermocouple 27 for measuring temperature.

更に、前記制御系3は、マイクロコンピュータ31を主
体に構成し、その入力インタフェースには前記熱電対2
7とともに大気圧を測定する気圧計32を接続し、また
出力インタフェースには前記ヒータ23のヒータコント
ローラ24及び冷却パイプ25の流量コントロールバル
ブ26を夫々接続している。そして、このマイクロコン
ピュータ31には、予め大気圧と光学系1の縮小率の相
関特性、半導体ウェハの温度とその熱膨張率の相関特性
をデータとして人力させ、所要のプログラムを構成して
いる。
Furthermore, the control system 3 is mainly composed of a microcomputer 31, and its input interface includes the thermocouple 2.
7 and a barometer 32 for measuring atmospheric pressure, and the heater controller 24 of the heater 23 and the flow rate control valve 26 of the cooling pipe 25 are connected to the output interface, respectively. The microcomputer 31 is manually input with the data of the correlation between the atmospheric pressure and the reduction ratio of the optical system 1, and the correlation between the temperature of the semiconductor wafer and its coefficient of thermal expansion, and configures a necessary program.

この構成の投影露光装置によれば、光源11及びコンデ
ンサレンズ12でマスクMを照明し、結像レンズ13に
よってウェハステージ2上に支持されているウェハWの
表面にマスクパターンを投影露光することができる。そ
して、このときの大気圧を気圧計32で測定し、気圧デ
ータをマイクロコンピュータ31に入力する。すると、
マイクロコンピュータ31では、第3図の大気圧と縮小
率の特性から、この気圧における縮小率の変動を計算す
る。更に、この縮小率をシリコンウェハの熱膨張率に当
てはめて所要の計算を行い、この縮小率の変化を修正す
るのに必要なウェハ寸法を算出する。そして、この算出
結果をヒータコントローラ24或いは流量コントロール
バルブ26に出力し、熱電対27の測定温度に基づいて
ヒータ23の通電量や冷却パイプ25の冷却媒体通流量
をコントロールしてウェハステージ2の基台21を介し
てウェハWを所要温度に加熱或いは冷却する。
According to the projection exposure apparatus having this configuration, the mask M can be illuminated by the light source 11 and the condenser lens 12, and the mask pattern can be projected and exposed onto the surface of the wafer W supported on the wafer stage 2 by the imaging lens 13. can. Then, the atmospheric pressure at this time is measured with the barometer 32, and the atmospheric pressure data is input into the microcomputer 31. Then,
The microcomputer 31 calculates the fluctuation of the reduction rate at this atmospheric pressure from the characteristics of atmospheric pressure and reduction rate shown in FIG. Furthermore, necessary calculations are performed by applying this reduction rate to the coefficient of thermal expansion of the silicon wafer, and the wafer dimensions necessary to correct the change in this reduction rate are calculated. Then, this calculation result is output to the heater controller 24 or the flow rate control valve 26, and the amount of electricity supplied to the heater 23 and the amount of coolant flowing through the cooling pipe 25 are controlled based on the temperature measured by the thermocouple 27, and the base of the wafer stage 2 is controlled. The wafer W is heated or cooled to a required temperature via the table 21.

このため、ウェハWは縮小率に対応して熱膨張或いは熱
収縮される。即ち、大気圧が増大して縮小率が増大した
ときにはウェハWを過熱して熱膨張させる。このため、
この状態で投影されるパターンが大きくても、ウェハが
常温に戻されたときには所定のパターン寸法を得ること
ができる。同様に、大気圧が減少して縮小率が低下した
ときにはウェハを冷却して収縮させて投影露光を行えば
よく、これによりウェハの常温時には所定のパターン寸
法を得ることができる。
Therefore, the wafer W is thermally expanded or contracted in accordance with the reduction ratio. That is, when the atmospheric pressure increases and the reduction rate increases, the wafer W is heated and thermally expanded. For this reason,
Even if the pattern projected in this state is large, a predetermined pattern size can be obtained when the wafer is returned to room temperature. Similarly, when the atmospheric pressure decreases and the reduction rate decreases, the wafer may be cooled and contracted to perform projection exposure, thereby making it possible to obtain a predetermined pattern size when the wafer is at room temperature.

したがって、大気圧等の影響による光学系の縮小率の変
動に関わらず、常に所定の縮小率での投影露光を可能と
し、安定した縮小率のパターン転写を実現できる。
Therefore, regardless of fluctuations in the reduction ratio of the optical system due to the influence of atmospheric pressure, etc., projection exposure can always be performed at a predetermined reduction ratio, and pattern transfer with a stable reduction ratio can be realized.

ここで、前記実施例は本発明の一実施例に過ぎず、ヒー
タや冷却パイプ等の温度コントローラを始とする各部の
構成は種々に変更できることは言うまでもない。
Here, the above-mentioned embodiment is only one embodiment of the present invention, and it goes without saying that the configuration of each part including the temperature controller such as the heater and the cooling pipe can be changed in various ways.

また、前記実施例では大気圧の変動に伴う縮小率の変化
に対処する例を示したが、環境温度や環境湿度等による
縮小率の変動に対しても同様に適用させることができる
Furthermore, although the above-mentioned embodiment shows an example in which changes in the reduction ratio due to changes in atmospheric pressure are dealt with, the present invention can be similarly applied to changes in the reduction ratio due to environmental temperature, environmental humidity, and the like.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明は、投影露光装置のウェハステージ
に温度コントローラを設け、投影露光装置の縮小率の変
動に伴ってウェハの温度を制御しているので、縮小率の
変動をウェハの熱膨張、熱収縮によって相殺でき、環境
の変化に関わらず常に所定の縮小率でのパターン転写を
実現でき、特に微細パターンを高精度に転写形成する上
で有効である。
As described above, in the present invention, a temperature controller is provided on the wafer stage of a projection exposure apparatus, and the temperature of the wafer is controlled in accordance with changes in the reduction ratio of the projection exposure apparatus. , can be offset by thermal contraction, and pattern transfer can always be achieved at a predetermined reduction ratio regardless of changes in the environment, which is particularly effective for highly accurate transfer formation of fine patterns.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の概念構成を示す斜視図、 会 第2図はウェハステージの断面図、 第3図は大気圧と縮小率の相関を示す図である。 1・・・光学系、2・・・ウェハステージ、3・・・制
御系、11・・・光源、12・・・コンデンサレンズ、
13・・・結像レンズ、21・・・基台、22・・・吸
着孔、23・・・ヒータ、24・・・ヒータコントロー
ラ、25・・・冷却パイプ、26・・・流量コントロー
ルパルプ、27・・・熱電対、31・・・マイクロコン
ピュータ、32・・・気圧計、M・・・フォトマスク(
レチクル)、W・・・半導体ウェハ(シリコンウェハ)
。 第1図
FIG. 1 is a perspective view showing the conceptual configuration of an embodiment of the present invention, FIG. 2 is a sectional view of a wafer stage, and FIG. 3 is a diagram showing the correlation between atmospheric pressure and reduction ratio. DESCRIPTION OF SYMBOLS 1... Optical system, 2... Wafer stage, 3... Control system, 11... Light source, 12... Condenser lens,
13... Imaging lens, 21... Base, 22... Adsorption hole, 23... Heater, 24... Heater controller, 25... Cooling pipe, 26... Flow rate control pulp, 27...Thermocouple, 31...Microcomputer, 32...Barometer, M...Photomask (
reticle), W... semiconductor wafer (silicon wafer)
. Figure 1

Claims (1)

【特許請求の範囲】 1、ウェハステージに支持したウェハに対してフォトマ
スク等のパターンを光学系を用いて投影転写する投影露
光装置において、前記ウェハステージに温度コントロー
ラを設けるとともに、前記光学系の縮小率変化に対応し
て前記温度コントローラを制御し、この露光時における
ウェハの温度を変化調節し得るように構成したことを特
徴とする投影露光装置。 2、温度コントローラはウェハステージに設けたヒータ
及び冷却パイプを有し、これらヒータ及び冷却パイプに
通流する電流や冷却媒体を大気圧の変動に基づいてコン
トロールしてなる特許請求の範囲第1項記載の投影露光
装置。
[Claims] 1. In a projection exposure apparatus that projects and transfers a pattern of a photomask or the like onto a wafer supported on a wafer stage using an optical system, the wafer stage is provided with a temperature controller, and the optical system is equipped with a temperature controller. A projection exposure apparatus characterized in that the temperature controller is controlled in response to changes in the reduction ratio, and the temperature of the wafer during exposure can be varied and adjusted. 2. The temperature controller has a heater and a cooling pipe provided on the wafer stage, and the current and cooling medium flowing through these heaters and cooling pipes are controlled based on fluctuations in atmospheric pressure, as claimed in claim 1. The projection exposure apparatus described.
JP61217115A 1986-09-17 1986-09-17 Projection aligner Pending JPS6373519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61217115A JPS6373519A (en) 1986-09-17 1986-09-17 Projection aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61217115A JPS6373519A (en) 1986-09-17 1986-09-17 Projection aligner

Publications (1)

Publication Number Publication Date
JPS6373519A true JPS6373519A (en) 1988-04-04

Family

ID=16699088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61217115A Pending JPS6373519A (en) 1986-09-17 1986-09-17 Projection aligner

Country Status (1)

Country Link
JP (1) JPS6373519A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223693A (en) * 2007-03-14 2008-09-25 Aisan Ind Co Ltd Pcv valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223693A (en) * 2007-03-14 2008-09-25 Aisan Ind Co Ltd Pcv valve

Similar Documents

Publication Publication Date Title
US11378893B2 (en) Lithographic apparatus and device manufacturing method involving a heater
US4720732A (en) Pattern transfer apparatus
KR100816837B1 (en) Lithographic apparatus
US5953106A (en) Projection optical system, exposure apparatus and semiconductor-device manufacturing method using the system
US4730900A (en) Projection optical apparatus
US20040156026A1 (en) Exposure apparatus and exposure method
JPH09270384A (en) Temperature control device and exposure device
JP2794587B2 (en) Projection exposure equipment
JPH11354401A (en) Projection aligner and projection exposure method
US20010006422A1 (en) Stage system in projection exposure apparatus
JP2000277415A (en) Aligner
JPS6373519A (en) Projection aligner
WO2012067239A1 (en) Member for mounting and temperature controlled mounting device
JPH0422118A (en) Semiconductor aligner
JP2003195476A (en) Pattern forming device and its method
KR100555467B1 (en) Reticle stage of exposure apparatus equipped with temperature sensor and alignment correction method using same
JP2010267684A (en) Method and apparatus for exposure, and substrate temperature regulator
US6617555B1 (en) Imaging stabilization apparatus and method for high-performance optical systems
JP2876406B2 (en) Exposure apparatus and exposure method
JPH10223520A (en) Substrate holder and aligner
JPH1197339A (en) Aligner
JPS627128A (en) Projection optical device
JP2025033665A (en) Temperature adjustment apparatus, lithography apparatus, and method for manufacturing an article
JPS60122951A (en) Optical device
JPH0480912A (en) Exposing device