[go: up one dir, main page]

JPS6371950A - information storage carrier - Google Patents

information storage carrier

Info

Publication number
JPS6371950A
JPS6371950A JP61215753A JP21575386A JPS6371950A JP S6371950 A JPS6371950 A JP S6371950A JP 61215753 A JP61215753 A JP 61215753A JP 21575386 A JP21575386 A JP 21575386A JP S6371950 A JPS6371950 A JP S6371950A
Authority
JP
Japan
Prior art keywords
information
memory film
erasing
state
memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61215753A
Other languages
Japanese (ja)
Inventor
Yoshie Kodera
小寺 喜衛
Satoru Oishi
哲 大石
Koichi Moriya
宏一 森谷
Nobuhiro Tokujiyuku
徳宿 伸弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61215753A priority Critical patent/JPS6371950A/en
Publication of JPS6371950A publication Critical patent/JPS6371950A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To provide high C/N and to increase an erasing speed by applying the intensity of the electric field different from the electric field at the time of storing information to both terminals of two electrodes while heating a memory film or applying heating thereto the restore the amount film to the initial stable state in erasing of the information. CONSTITUTION:The inverted electric field is applied to the memory film at the time of erasing to transfer the film at a high speed to the state of the other optical constant which is stable by the projection of low-output laser light and heating. More specifically, the DC voltage is applied to the electrodes 2, 4 and the condensed laser light 5 is projected onto the memory film 3. The memory film 3 is transferred easily to the other stable state to exhibit the different reflectivity by the opto-thermo energy of the laser light 5 in addition to the excitation of the energy level by the electric field impression thus the erasing of information is executed. The reproduction of the information is attained by scanning the laser light on the memory film at the level lower than the quantity of the laser light at the time of storing and erasing the information and viewing the presence or absence of a change in the reflectivity of the memory film 3 to reproduce the information. The storage of the information is executed by condensing and projecting the laser light 4 onto the memory film 3 having the reflectivity in the erasing state and changing the same to the reflectivity state which is the memory state to end the storage.

Description

【発明の詳細な説明】 〔座業上の利用分野〕 本発明は、情報の記憶・消去・今生可能な光学式メモリ
に係り、特に高密度、大容友化に好適なレーザ書き込み
、消去、再生メモリに関する。
[Detailed Description of the Invention] [Field of Sedentary Work] The present invention relates to an optical memory capable of storing, erasing, and reproducing information, and particularly relates to a laser writing, erasing, and memory device suitable for high density and large capacity storage. Concerning playback memory.

〔従来の技術〕[Conventional technology]

高密度、大容量の情報記憶担体として、果尤されたレー
ザ光を用いた光ティスフメモリがるり、かかる光デイス
クメモリーのX侵a題として、高0/N比、および配球
・消去速度の向上がめる・従来?14JC/N比が得ら
れる光デイスクメモリーとして、光学定数の異る2つの
状態間を転移させる方式については、特公昭60−23
995号公報に示されているが、情報の消去に高出力の
レーザ光を要し、かつ、消去に要する時間が、加熱と冷
却の現象を利用するため、数rrLsecが限界である
Optical disk memory using laser light has been developed as a high-density, large-capacity information storage carrier. Can you see an improvement in the conventional method? A method for transitioning between two states with different optical constants as an optical disk memory that can obtain a 14JC/N ratio was published in Japanese Patent Publication No. 60-23.
Although disclosed in Japanese Patent No. 995, a high-output laser beam is required to erase information, and the time required for erasing is limited to several rrLsec because heating and cooling phenomena are utilized.

まだ、かかる消去速度を向上させた例としては、「電子
通信学会技報Vot84.A203 ’1984年11
月」に示されているような、メモリ膜の磁界反転に伴な
うカー回転角を利用した光磁気ディスクがあるが、カー
回転角が微少なため、高0/N比が得られないなどの問
題があった。
However, an example of improving the erasing speed is "IEICE Technical Report Vot84.A203 'November 1984.
There is a magneto-optical disk that utilizes the Kerr rotation angle caused by the reversal of the magnetic field of the memory film, as shown in ``Moon'', but because the Kerr rotation angle is minute, a high 0/N ratio cannot be obtained. There was a problem.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従米技術は、−例でit情報の消去速度、また他の
例では、高C/N比について配慮されておらず、それぞ
れの利点を共有するのが困難であった・ 本発明の目的は、高0/N比で、かつ、消去速度の速い
、高密度、大容量可能な情報記憶担体を提供することに
ある。
The conventional technology described above does not take into account the IT information erasing speed in some cases, and the high C/N ratio in other cases, making it difficult to share the respective advantages.The purpose of the present invention is to The object of the present invention is to provide an information storage carrier having a high O/N ratio, a fast erasing speed, a high density, and a large capacity.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

上記目的は、メモリ膜が2つの電極間に設けられ、当該
メモリー膜は、光学定数の異る2つの状態をとシうる物
質で構成され、電界を加えると伴にレーザ光の照射、お
よび加熱によって、大きな光学定数の変化が生じ、高い
O/N比が得られ、さらに消去時には、反転した電界を
加えることによって、低出力のレーザ、光の照射、加熱
によって、安定な他の光学定数の状態に高速に転移させ
ることにより高消去速度が連成される・ 〔作用〕 大容量・高密度メモリーとしての要件は、基板上に形成
された案内溝に沿つ、て、レーザ光を集光させ、情報の
記憶・再生・消去を行なうことで、達成される。
The above purpose is to provide a memory film between two electrodes, and the memory film is made of a material that can switch between two states with different optical constants, and when an electric field is applied, laser light irradiation and heating are performed. This causes a large change in optical constants, resulting in a high O/N ratio. Furthermore, during erasing, by applying an inverted electric field, other stable optical constants can be changed by applying a low-power laser, light irradiation, and heating. A high erasing rate is achieved by transferring the memory to a high-speed state. [Function] The requirements for a large-capacity, high-density memory are to focus the laser beam along the guide grooves formed on the substrate. This is achieved by storing, reproducing, and erasing information.

また、物質に電界を加えることによυ、分子配向を制御
する例としては、ボリフフ化ビニリデジ(PVD壬゛)
、各種液晶等に見られ、これらは、加熱・冷却時に電界
を加え分子配向を固定するもの(PVDF)、電界の印
加時にのみ、分子配向が得られるものなどがある。轡に
イオン分極能の大きなネマチック液晶のうち、吸収端波
*(cμt、ff ’)以下のレーザ光を照射し、電圧
を印加したときにのみ、分子配向が起シ、中心対称性の
ある状態へと転移することが見出されている。(G、 
R。
In addition, an example of controlling molecular orientation by applying an electric field to a substance is polyvinylidene (PVD).
, are found in various liquid crystals, etc., and these include those in which molecular orientation is fixed by applying an electric field during heating and cooling (PVDF), and those in which molecular orientation is obtained only when an electric field is applied. Among nematic liquid crystals with large ion polarizability, molecular orientation occurs only when a laser beam with an absorption edge wave* (cμt, ff') or less is applied and a voltage is applied, creating a state with central symmetry. It has been found that it metastasizes to (G,
R.

me r ed i t A、 etal: yttt
ero rnOLec、1ttes、 15.2463
. ’84)このことは、物質の状態転移のエネルギー
のしきい値が、電界と、光エネルギーによって大偏に低
減したことを示唆している。
me r ed it A, etal: yttt
ero rnOLec, 1ttes, 15.2463
.. '84) This suggests that the energy threshold for state transition of matter is greatly reduced by the electric field and optical energy.

従来、高感度記録メモリ膜として用いられているSe、
 Sb、 Te等はイオン結合されてお9、半導体レー
ザを用いて、レーザ加熱熱することによって、中心対称
性のないアモルファス状態と、中心対称性のある結晶状
態間の光学定数差(特に屈折率差′)を記録メカニズム
とし、冷却に伴なう結合状態の固定によシ情報の安定保
存を図っている。
Se, which is conventionally used as a high-sensitivity recording memory film,
Sb, Te, etc. are ionically bonded9, and by laser heating using a semiconductor laser, the optical constant difference (especially the refractive index The recording mechanism is the difference '), and the stable storage of information is achieved by fixing the bonding state as it cools.

従って、イオン結合の状態変化を利用するカルコゲナイ
ド化合物の=mエネルギーとして、レーザ光の光・熱エ
ネルギーに加え、1!L界を印加し、結合状態の転移エ
ネルギーのしきい値を低@ぢせ翫結合状態を制御するこ
とが可能である。特に情報の消去状態として、結晶相(
中心対称性のある構造)を電界印加と併用して得、冷却
に伴なって状態同足することによって従来の熱エネルギ
ーによる転移に比べて楠速化が達せられろ。また、記録
に際しては、レーザー光の光・熱エネルギーによる分子
振動によって、中心対称性のないアモルファス状態とし
、冷却に伴なって、記録状態が容易に達せられる。
Therefore, in addition to the optical and thermal energy of the laser beam, the =m energy of the chalcogenide compound that utilizes the change in the state of ionic bonds is 1! It is possible to control the bound state by applying an L field and lowering the threshold of the transition energy of the bound state. In particular, the crystal phase (
By using a centrally symmetrical structure in conjunction with the application of an electric field, and by achieving state equivalence upon cooling, it is possible to achieve a higher speed than in conventional transitions using thermal energy. Furthermore, during recording, an amorphous state with no center symmetry is created by molecular vibrations caused by the optical and thermal energy of the laser beam, and the recording state is easily achieved as the material is cooled.

〔実施例〕〔Example〕

以下、本発明の実施例について、説明する・第1図は、
本発明の一実施例を示す図である。
Examples of the present invention will be described below. Figure 1 shows:
FIG. 1 is a diagram showing an embodiment of the present invention.

ガラス基板1αの上に、透明を憔となるネサ膜2を形成
し、さらに、メモリ膜のalft5を有するカルコゲナ
イド化合物等からなるメモリ族3をスパッタリング形成
した。メモリ族3の上層に人tを蒸着形成し、他方の電
極4とした。かかるように構成された電極2.4に直流
電圧を加え、メモリ膜5上に集光するレーザ光5を照射
する0メそり膜3は電界印加によるエネルギーレベルの
励起に加わシ、レーザ光5による光・熱エネルギーによ
って容易に異なった反射率を示す他の安定な状態へと転
移し、情報の消去が行なわれる。情報の再生は、情報記
憶消去時のレーザ光蓋よシも低いレベルで、メモリ膜3
上を走査し、メモリ膜60反射率変化の有無を見ること
で達せられる。情報の記憶時には消去状態である反射率
を有したメモリ膜3上にレーザ光4を集光照射し、記憶
状態である反射率状態に変化させて終了する。
A transparent NESA film 2 was formed on a glass substrate 1α, and a memory group 3 made of a chalcogenide compound having an alft5 of a memory film was formed by sputtering. A layer t was deposited on the upper layer of the memory group 3 to form the other electrode 4. A direct current voltage is applied to the electrode 2.4 configured in this manner, and the laser beam 5 is irradiated onto the memory film 5. The light and heat energy caused by the light and heat can easily transition to another stable state exhibiting a different reflectance, and the information will be erased. Information can be reproduced at a lower level than the laser beam cover when erasing information, and the memory film 3
This can be achieved by scanning the top of the memory film 60 and checking for changes in the reflectance of the memory film 60. When storing information, the laser beam 4 is condensed and irradiated onto the memory film 3 having a reflectance that is in the erased state, and the process is completed by changing the reflectance state to the stored state.

第2図は、他の実施例について示した図で、闇密度・大
容量化可能な光デイスク形態にしたときの部分断面図で
ある。基板1bは厚さ1.1■のガラス基板上に、トラ
ックピッチ16μmの案内′#46をホトボリメリゼー
ションプロセス(2Pりによって形成し、以下実施例1
と同様に、ネサ膜2、メモリ膜3、電極4を形成した。
FIG. 2 is a diagram showing another embodiment, and is a partial cross-sectional view when an optical disk is formed which can achieve high density and large capacity. The substrate 1b is a glass substrate with a thickness of 1.1 mm, and a guide '#46 with a track pitch of 16 μm is formed by a photovolimerization process (2P process), as described in Example 1 below.
In the same manner as above, a NESA film 2, a memory film 3, and an electrode 4 were formed.

さらに、本実施例では、電極4の保農のため、紫外縁硬
化樹脂による保護膜7を形成した。かかるようにして構
成された情報記憶担体の記憶・再生・消去特性は、実施
例1と同様であった。また、保m膜上に接清剤を塗布す
ることで、両面使用可能な構造とすることもできる。
Furthermore, in this example, a protective film 7 made of ultraviolet-cured resin was formed to protect the electrode 4. The storage, reproduction, and erasing characteristics of the information storage carrier constructed in this manner were similar to those in Example 1. Further, by applying a cleaning agent on the moisture retaining film, it is possible to create a structure that can be used on both sides.

第3図は、高感度かつ、高密度、大容量可能な光デイス
ク形態にしたときの実施例を示す部分断面図である拳基
板1bは厚さ1.2 wsのポリメチルメタクリレート
(PMMA)基板であって、射出成形法によって、案内
溝6(図示せず)が同時転写形成されたものである。こ
の基板1b上に、ネサ膜2を真空蒸着法で形成し、この
上層に前述した実施例と同様に、メモリ膜3を形成した
FIG. 3 is a partial cross-sectional view showing an embodiment of an optical disk that is capable of high sensitivity, high density, and large capacity. The substrate 1b is a polymethyl methacrylate (PMMA) substrate with a thickness of 1.2 ws. The guide groove 6 (not shown) is formed by simultaneous transfer using an injection molding method. A NESA film 2 was formed on this substrate 1b by vacuum evaporation, and a memory film 3 was formed on top of this in the same manner as in the embodiment described above.

このメモリ膜3上に、電界を効果的に加えるため、常温
で絶縁性を有し、負の温度・抵抗係数を有する有機半導
体膜8を形成し、電極4、保護膜5を形成しfc−かか
る構造とすることで、情報の記憶消去時に消費されるレ
ーザ光5の熱エネルギーの一部を効率よくメモリ膜3に
加えることが出来るすなわち、実施例12では、メモリ
膜3の両端は、比較的熱体24率の大きな無機物で構成
されるため・メモリ腺6以外への熱損失が大となp量感
度化が得られにくい・本実施例では、無機物に比べて熱
伝尋率が小さな高分子材料を基板1bとして用い−さら
に、他方の面には、有機半導体膜8を形成することで、
熱エネルギーの損失を防ぎ、^感度化が達成できる。有
機半導体族8としては、ポリーP−フェニレンなどの全
共役π電子糸高分子、アントラセンなどの面状共役系高
分子、ポリ鋼フタロシアニンなどの金属キレート型高分
子、ポリビニルカルバソールと、トリニトロフルオレノ
ンからなる電荷移動錯体型高分子などを用いることが出
来る。
On this memory film 3, in order to effectively apply an electric field, an organic semiconductor film 8 which is insulating at room temperature and has a negative temperature/resistance coefficient is formed, and an electrode 4 and a protective film 5 are formed. With this structure, a part of the thermal energy of the laser beam 5 consumed when erasing information can be efficiently applied to the memory film 3. That is, in Example 12, both ends of the memory film 3 are Because it is composed of an inorganic substance with a high thermal conductivity rate, heat loss to areas other than the memory gland 6 is large, making it difficult to obtain P amount sensitivity.In this example, the thermal conductivity is small compared to inorganic substances. By using a polymer material as the substrate 1b and further forming an organic semiconductor film 8 on the other surface,
Loss of thermal energy is prevented and sensitivity can be achieved. Examples of organic semiconductor group 8 include fully conjugated π-electron thread polymers such as poly-P-phenylene, planar conjugated polymers such as anthracene, metal chelate polymers such as polysteel phthalocyanine, polyvinyl carbazole, and trinitrofluorenone. A charge transfer complex type polymer consisting of the following can be used.

以上の実施例で詳細に述べたように、光学特性の変化比
が犬きく得られるカルコゲナイド化合物(Se −Sb
 −Bi 、 TeOx )を用いることが出来、高0
/N比が得られる。また、電界をバイアスエネルギーと
して用いることで、メモリ膜に加わる熱エネルギーが小
さくて撫め、加熱・冷却に必要な時間短縮が得られ、消
去速度の向上が得られる・本実り例では、情報記憶担体
の形態として、ディスク形態について示したが、その他
、テープ状−カード状、チップ状の形態としても同様の
効果が得られることは云うまでもない。
As described in detail in the above examples, chalcogenide compounds (Se-Sb
-Bi, TeOx) can be used, and high
/N ratio is obtained. In addition, by using an electric field as bias energy, the thermal energy applied to the memory film is small, reducing the time required for heating and cooling, and improving the erasing speed. Although a disk form is shown as the form of the carrier, it goes without saying that similar effects can be obtained using other forms such as tape, card, and chip.

また、本実施例では、カルコゲナイド化合物について述
べたが、他のイオン結合、配位結合した物質についても
同様の効果が見出されることは云うまでもない。
Further, in this example, a chalcogenide compound has been described, but it goes without saying that similar effects can be found with other ionic or coordinate bonded substances.

〔発明の効果〕〔Effect of the invention〕

不発明によれば、高0/N比、^速消去が可能で、かつ
1簡単な構成で尚密度・大容葉配球可能な情報記憶担体
を提供できる。
According to the present invention, it is possible to provide an information storage carrier that has a high O/N ratio, is capable of fast erasing, and has a simple structure and is capable of achieving high density and large capacity distribution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す部分断面図、第2図
は、他の実施例を示す部分町面図、第5図はさらに他の
実施例を示す部分断面図である。 1・・・・・・基板 2・・・・・・透明’Sa他 3・・・・・・メモリ膜 4・・・・・・1!他 5・・・・・・レーザ光 6・・・・・・案内溝 7・・・・・・保!a膜 8・・・・・・有機中導体 9・・・・・・スイッチ 一一\ 代理人弁理士 /J%  川 肋 男 第1図 q 第2図 7、 第 3 図
FIG. 1 is a partial cross-sectional view showing one embodiment of the present invention, FIG. 2 is a partial cross-sectional view showing another embodiment, and FIG. 5 is a partial cross-sectional view showing still another embodiment. 1...Substrate 2...Transparent 'Sa and others 3...Memory film 4...1! Others 5...Laser beam 6...Guide groove 7...Keep it! a Membrane 8...Organic medium conductor 9...Switch 11\Representative Patent Attorney/J% Kawakou Oshio Figure 1q Figure 2 7, Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、光学的に情報の記録再生する方式において、情報記
録部が2つの電極と該電極間に設けられたメモリ膜とか
らなり、該メモリ膜は、光学定数の異る2つの状態がと
りうる物質であり、情報記録部を加熱し、該メモリの光
学定数を一つの状態から他の安定な状態へ変化させて情
報を記憶させ、光学定数の変化により、情報を光学的に
再生し、情報の消去においては、該メモリ膜に加熱しな
がら、2つの電極の両端に情報の記憶時と異る電界の強
度、もしくは加熱を加え、該メモリ膜を元の安定な状態
にするように構成したことを特徴とする情報記憶担体。
1. In a system for optically recording and reproducing information, the information recording section consists of two electrodes and a memory film provided between the electrodes, and the memory film can take two states with different optical constants. It is a substance that stores information by heating the information recording section and changing the optical constants of the memory from one state to another stable state.The change in optical constants allows the information to be optically reproduced and the information is stored. In erasing, the memory film was heated and a different electric field strength or heat was applied to both ends of the two electrodes than when information was stored, so that the memory film returned to its original stable state. An information storage carrier characterized by:
JP61215753A 1986-09-16 1986-09-16 information storage carrier Pending JPS6371950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61215753A JPS6371950A (en) 1986-09-16 1986-09-16 information storage carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61215753A JPS6371950A (en) 1986-09-16 1986-09-16 information storage carrier

Publications (1)

Publication Number Publication Date
JPS6371950A true JPS6371950A (en) 1988-04-01

Family

ID=16677650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61215753A Pending JPS6371950A (en) 1986-09-16 1986-09-16 information storage carrier

Country Status (1)

Country Link
JP (1) JPS6371950A (en)

Similar Documents

Publication Publication Date Title
Mansuripur et al. Principles and techniques of optical data storage
JPH045052Y2 (en)
JPH01118231A (en) Apparatus and method for storing data
JPH0350341B2 (en)
KR100303966B1 (en) Optical information recording medium
JP3076412B2 (en) Optical information recording medium and optical information recording / reproducing method
JPS62231437A (en) Optical recording medium and optical recording method
JP2822531B2 (en) Magneto-optical recording medium and magneto-optical recording / erasing method
JPS6371950A (en) information storage carrier
JPS5994734A (en) Optical recording medium
JP2619627B2 (en) Optical memory recording and playback device
JPS60231931A (en) Optical reversible recording method
JPS5979436A (en) Information recording/reproducing and erasing method
JP3635206B2 (en) Magneto-optical recording / reproducing apparatus
JPS63122032A (en) field effect optical disk
JPH01113936A (en) Member for recording information
JP2565884B2 (en) Magneto-optical storage element
JPS62256244A (en) Optical information recording medium
JPS61273761A (en) magneto-optical disk
JPH0721570A (en) Optical recording medium
JPH0558910B2 (en)
JPS62287447A (en) information recording medium
JPS6327781B2 (en)
JPS62100740A (en) Optical recording medium
JP2000057626A (en) Optical recording medium