[go: up one dir, main page]

JPS636754A - Initial startup method of molten carbonate fuel cell - Google Patents

Initial startup method of molten carbonate fuel cell

Info

Publication number
JPS636754A
JPS636754A JP61149173A JP14917386A JPS636754A JP S636754 A JPS636754 A JP S636754A JP 61149173 A JP61149173 A JP 61149173A JP 14917386 A JP14917386 A JP 14917386A JP S636754 A JPS636754 A JP S636754A
Authority
JP
Japan
Prior art keywords
electrolyte plate
electrolyte
cell
fuel cell
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61149173A
Other languages
Japanese (ja)
Inventor
Tsuneo Nakanishi
仲西 恒雄
Kazuo Koseki
小関 和雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61149173A priority Critical patent/JPS636754A/en
Publication of JPS636754A publication Critical patent/JPS636754A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/141Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers
    • H01M8/142Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers with matrix-supported or semi-solid matrix-reinforced electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent generation of cracks in an electrolyte plate by temporarily assembling a cell so that an electrolyte plate is made free between gas separating plates, melting carbonate in the electrolyte plates, then assembling the cell by applying a specified fastening force to the electrolyte plates. CONSTITUTION:An anode 2 and a cathode 3 are arranged on each side of an electrolyte plate 1, and they are fastened from both sides with gas separating plates 4 to form a molten carbonate fuel cell. In starting initial operation, a cell is temporarily assembled so that the electrolyte plate 1 is made free by arranging a spacer 6 in the periphery of the electrolyte plate 1, and the temperature of the cell is increased to melt carbonate retained in the electrolyte plate 1. Then, the spacer 6 is removed with this state kept, and the cell is assembled by applying a specified fastening force to the electrolyte plate. Reaction gasses are supplied to operate the cell. Generation of cracks in the electrolyte plate caused by temperature increase is prevented, and initial operation is safely started.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

この発明は、熔融炭酸塩型燃料電池の初期運転始動方法
に間する。
The present invention relates to a method for starting up a molten carbonate fuel cell.

【従来技術とその問題点】[Prior art and its problems]

まず第3図により溶融炭酸塩型燃料電池の一般構造を示
す。図において1は例えぼりチウムアルミネート等のセ
ラミック粉末と電解質である炭酸リチウム、炭酸カルシ
ウム等の炭酸塩粉末を混合して固めたペースト構造の電
解質板であり、該電解質板1を挟んでその両側にはニッ
ケルあるいはニッケルとコバルト、クロム合金の多孔質
焼結板として作られたアノード電極2.カソード電極3
、およびステンレス鋼製のガス分M仮4が配置され、さ
らに各電極2,3とガス分Mj54との間には波形集電
板を介装して単セルを構成している。    ′ところ
でかかる溶融炭酸塩型燃料電池を初期運転するには、ま
ず第3図に示した電池組立体を所定の締付圧で締付けた
状態でセル温度を室温から電解質板1に保持されている
炭酸塩が溶融する温度まで昇温し、引き続きさらに電池
の運転温度まで高めた状態でアノード、カソード側へ燃
料、酸化剤の反応ガスを供給して運転に入る方法が一般
に採られている。しかしながら前記した従来の初期運転
始動方法では、しばしば昇温過程で電解質仮lが割れる
事態の発生することがある。しかもこのような事態が発
生すると、電解質板1の割れ目を通じて燃料ガスと酸化
剤ガスとが混合し合ういわゆる反応ガスのクロスリーク
が生じ、そのガス混合の程度により電池電圧の低下、さ
らには燃焼、爆発等の重大な故障に進展するおそれがあ
る。 そこで前記した電解質板の割れの原因に付いて発明者が
各種実験、考察を経て究明したところによれば、その原
因は電解質板1.電極2,3およびガス分離板4の材質
相違による温度膨張係数の相違、並びに電解質仮lに保
持されている炭酸塩が固相から液相に変わる際の体積膨
張に起因し、電池組立体を締付た状態で昇温すると前記
した温度膨張係数差、炭酸塩の溶融に伴う体積膨張によ
り電解質仮1に歪が加わって割れが発生することが判明
した。
First, FIG. 3 shows the general structure of a molten carbonate fuel cell. In the figure, 1 is an electrolyte plate with a paste structure made by mixing and solidifying ceramic powder such as lithium aluminate and electrolyte carbonate powder such as lithium carbonate or calcium carbonate. The anode electrode is made as a porous sintered plate of nickel or nickel, cobalt, and chromium alloy. Cathode electrode 3
, and a gas component M temporary 4 made of stainless steel are arranged, and a corrugated current collector plate is interposed between each electrode 2, 3 and the gas component Mj54 to constitute a single cell. 'By the way, in order to initially operate such a molten carbonate fuel cell, first, the cell assembly shown in FIG. Generally, a method is adopted in which the temperature is raised to the temperature at which the carbonate melts, and then the battery is further raised to the operating temperature, and then fuel and reactant gas of the oxidizer are supplied to the anode and cathode sides to start operation. However, in the conventional initial operation start-up method described above, the temporary electrolyte often cracks during the temperature rising process. Moreover, when such a situation occurs, so-called cross leakage of reaction gas occurs in which the fuel gas and oxidizing gas are mixed together through the cracks in the electrolyte plate 1, and depending on the degree of gas mixing, the battery voltage may drop, and furthermore, combustion may occur. There is a risk of this developing into a serious malfunction such as an explosion. According to the inventor's investigation into the cause of the electrolyte plate cracking described above through various experiments and considerations, the cause is the electrolyte plate 1. Due to the difference in temperature expansion coefficient due to the difference in the materials of the electrodes 2, 3 and the gas separation plate 4, and the volume expansion when the carbonate retained in the electrolyte changes from the solid phase to the liquid phase, the battery assembly It has been found that when the temperature is increased in a tightened state, strain is applied to the temporary electrolyte 1 due to the above-mentioned temperature expansion coefficient difference and volumetric expansion due to melting of the carbonate, causing cracks to occur.

【発明の目的】[Purpose of the invention]

この発明は上記の点にかんがみなされたものであり、初
期運転開始時の昇温過程で電解質仮に割れが生じるのを
防止して運転が確立できるようにした溶融炭酸塩型燃料
電池の初期運転始動方法を提供することを目的とする。
This invention has been made in view of the above points, and provides an initial operation start-up for a molten carbonate fuel cell that enables operation to be established by preventing the electrolyte from cracking during the temperature rise process at the start of initial operation. The purpose is to provide a method.

【発明の要点】[Key points of the invention]

上記目的を達成するために、この発明は初期運転開始に
際し、運転準備ステップとして締付圧を加えずに電解質
板をガス分離板の間へ自由状態に介装して電池を組立て
る仮組立工程と、仮組立状態のままセル温度を室温から
昇温して電解質仮に保持されている炭酸塩を溶融させる
昇温工程と、昇温状態のまま電池組立体を所定の締付圧
で締付ける本組立工程を順に行い、しかる後に反応ガス
を供給して運転を確立するようにしたものである。 ここで前記の仮組立工程では、ガス分離板の間に例えば
電解質板の板厚よりも厚いスペーサを電解質板の周域に
並置介装することにより電解質板をガス分離板の間で自
由状態に保持し、かつ本組立工程では前記スペーサを取
り外して電池組立体を締付けるようにする。 すなわち、先記した電解質仮の割れ原因を究明する実験
、考察の過程で、電解質仮は機械的な拘束を受けずに自
由な状態にあれば、ガス分離板。 電i等との温度膨張差の影響を受けないので昇温過程で
割れが発生しないことを見い出した。したがって前記起
動方法のように炭酸塩が溶融状態になるまでの昇温工程
で電解質板に締付力を加えずに自由な状態に置くことに
より電解質板の割れ発生を確実に防止できるようになる
。なお、炭酸塩が溶融状態になった後は、本組立工程で
電池組立体を締付けた上でさらに高い運転温度まで昇温
しても電解質仮に割れの発生する恐れはない。
In order to achieve the above object, the present invention includes a temporary assembly process in which the battery is assembled by inserting the electrolyte plate freely between the gas separation plates without applying any clamping pressure as a preparatory step for starting the initial operation; A heating step in which the cell temperature is raised from room temperature in the assembled state to melt the carbonate temporarily held in the electrolyte, and a main assembly step in which the battery assembly is tightened at a predetermined tightening pressure while the temperature remains elevated are sequentially carried out. After that, the reactant gas is supplied to establish operation. In the above-mentioned temporary assembly process, the electrolyte plate is held in a free state between the gas separation plates by, for example, interposing a spacer thicker than the thickness of the electrolyte plate in the circumferential area of the electrolyte plate, and In this assembly process, the spacer is removed and the battery assembly is tightened. In other words, in the process of the experiment and discussion to investigate the cause of cracking of the electrolyte tentative mentioned above, if the electrolyte tentative is in a free state without being mechanically restrained, the gas separation plate. It has been found that cracks do not occur during the temperature rising process because it is not affected by the difference in temperature expansion between it and other materials. Therefore, as in the startup method described above, by leaving the electrolyte plate in a free state without applying any clamping force during the heating process until the carbonate becomes molten, cracking of the electrolyte plate can be reliably prevented. . Note that once the carbonate is in a molten state, even if the battery assembly is tightened in the main assembly process and the temperature is raised to a higher operating temperature, there is no risk that the electrolyte will crack.

【発明の実施例】[Embodiments of the invention]

まず第1図、第2図に本発明の方法における仮組立工程
での電池の組立状態を示す、なお図中で第3図に対応す
る同一部材には同じ符号が付しである。すなわち板圧1
.5 mmの電解質仮1の周囲四箇所にはあらかじめ僅
かな切欠部1aが形成されており、この切欠部1aに電
解質板lの板圧より0.3■厚い板圧148■のスペー
サ6を挿入し、電解質板lとともに上下のガス分離vi
、4の間に介装する。 したがってこの仮組立状態では電解質板lは下側のガス
分離板4の上にs2置されているだけで上側のガス分離
板との間に拘束されることなく自由状態に在る。 さて)3融炭酸塩型燃料電池の初期運転開始に際しては
、運転に入る前の準備工程として、まず仮組立工程では
締付力を加え無い状態で第1図、第2図に示したように
電池を仮組立てする。続く昇温工程では仮組立の状態の
ままセル温度を室温から52Q℃まで昇温する。この昇
温セル温度になると電解質板1に保持されている炭酸塩
は完全に溶融状態になる6次の本組立工程に移り、昇温
状態のまま前記のスペーサ6を電池組立体より取り外し
た上で所定の締付圧2 kg/ cdを加えて電池を本
組立し、さらにセル温度を電池運転温度である(50℃
まで高める。ここで運転の準(faB勢が整い、次に電
池のアノード、カソード側に燃料、酸化剤ガスを供給し
て初期運転を確立する。 −方、前記の起動方法により実際に溶融炭酸塩型燃料電
池の実機運転を行ったところによれば、運転確立後の開
回路電圧は1080儒Vを示した。こねにより反応ガス
のクロスリークの発生はなく、したがって電解質仮には
昇温過程での割れ発生が解く健全な状態を維持している
ことがT11!認さ、れた。 すなわち昇温過程で万一電解’xiに割れが生じると、
先述したように電解質仮の割れ目を通じてカスのクロス
リークが生じて反応ガスが混合し、力・つその混合の程
度に応じて開回路電圧が前記の(1よりも低下するよう
になるし、ガスのクロスリークが全く無ければ開回路電
圧は上記の値を示すことになり、これにより電解質仮の
健全性を開回路電圧により判別できる。 〔発明の効果] 以上述べたようにこの発明によれば、燃料電拗5  の
初期運転開始に際し、運転準備工程として締付圧を加え
ずに電解質仮をガス分離板の間へ自由状1  態に介装
して電池を組立てる仮組立工程と、仮組立状態のままセ
ル温度を室温から昇温して電解質仮に保持されている炭
酸塩を溶融させる昇温工程と、昇温状態のまま電池組立
体を所定の締付圧で締付ける本組立工程を順に行い、し
かる後に反応ガスを供給して運転に入るようにしたこと
により、電池の昇1過程で電解質板に割れが発生するの
を確実に防止することができ、がくして反応ガスのクロ
スリークにより電池電圧の低下1反応ガスの混合に起因
する燃焼、爆発等のトラブル発生を未然に防いで安全に
初期運転を開始することができる。
First, FIGS. 1 and 2 show the assembled state of a battery in the temporary assembly step in the method of the present invention. In the figures, the same members corresponding to FIG. 3 are given the same reference numerals. In other words, plate pressure 1
.. Slight notches 1a are formed in advance at four locations around the 5 mm temporary electrolyte plate 1, and a spacer 6 with a plate thickness of 148cm, which is 0.3cm thicker than the plate thickness of the electrolyte plate 1, is inserted into this notch 1a. and upper and lower gas separation vi together with electrolyte plate l
, 4. Therefore, in this temporarily assembled state, the electrolyte plate 1 is only placed s2 on the lower gas separation plate 4 and is in a free state without being restrained between it and the upper gas separation plate. Now, when starting the initial operation of a tri-fused carbonate fuel cell, as a preparatory step before starting operation, first, in the temporary assembly step, as shown in Figures 1 and 2, without applying any tightening force. Temporarily assemble the battery. In the subsequent temperature raising step, the cell temperature is raised from room temperature to 52Q° C. in the temporarily assembled state. When this heated cell temperature is reached, the carbonate held in the electrolyte plate 1 is completely molten.The process moves on to the 6th main assembly process, where the spacer 6 is removed from the battery assembly while the temperature is rising. The battery was assembled by applying a predetermined tightening pressure of 2 kg/cd, and the cell temperature was adjusted to the battery operating temperature (50°C).
increase to At this point, the pre-operation (faB) is ready, and then fuel and oxidant gas are supplied to the anode and cathode sides of the battery to establish initial operation. According to the actual operation of the battery, the open circuit voltage after operation was established was 1080 FV.There was no cross leakage of the reaction gas due to kneading, and therefore the electrolyte did not crack during the heating process. T11! It was confirmed that a healthy state in which the electrolytic
As mentioned earlier, cross-leakage of waste occurs through the temporary cracks in the electrolyte, and the reaction gases mix, and depending on the degree of force and force mixing, the open circuit voltage decreases from the above (1), and the gas If there is no cross leak at all, the open circuit voltage will show the above value, and thereby the temporary health of the electrolyte can be determined from the open circuit voltage. [Effects of the Invention] As described above, according to the present invention When starting the initial operation of the fuel cell 5, there is a temporary assembly process in which the battery is assembled by inserting the electrolyte in a free state between the gas separation plates without applying any clamping pressure as a preparatory process, and a preliminary assembly process in which the battery is assembled in a free state between the gas separation plates. A temperature raising step in which the cell temperature is raised from room temperature to melt the carbonate temporarily held in the electrolyte, and a main assembly step in which the battery assembly is tightened with a predetermined tightening pressure while the temperature remains elevated are sequentially performed. By supplying the reactive gas and starting operation later, it is possible to reliably prevent cracks from occurring in the electrolyte plate during the battery rising process, which in turn reduces the battery voltage due to cross leakage of the reactive gas. It is possible to safely start the initial operation by preventing troubles such as combustion and explosion caused by the mixture of reaction gases.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の仮組立ステップにおける電池の
仮組立状態を示す断面図、第2図は第1図における電解
質仮およびスペーサの平面展開図、第3図は溶融炭酸塩
型燃料電池の一般構造を示す、  断面図である。各図
において、 1:tSif賞板、1a:切欠部、2ニアノード電極。 3:カソード電極、4:ガス分離板、5:波形集tvi
、6=スペーサ。 ′f理大人弁理士山 口   舅 第2図
FIG. 1 is a sectional view showing the pre-assembled state of the battery in the pre-assembly step of the method of the present invention, FIG. 2 is a plan development view of the temporary electrolyte and spacer in FIG. 1, and FIG. 3 is a molten carbonate fuel cell. FIG. 2 is a cross-sectional view showing the general structure of. In each figure, 1: tSif award plate, 1a: notch, 2 near-node electrodes. 3: cathode electrode, 4: gas separation plate, 5: waveform collection tvi
, 6 = spacer. 'fAdult Patent Attorney Yamaguchi Father-in-law 2nd figure

Claims (1)

【特許請求の範囲】 1)炭酸塩を保持した電解質板を挟んでその両側にアノ
ード電極、カソード電極、およびガス分離板を配して成
る溶融炭酸塩型燃料電池の初期運転開始に際し、運転準
備ステップとして締付圧を加えずに電解質板をガス分離
板の間へ自由状態に介装して電池を組立てる仮組立工程
と、仮組立状態のままセル温度を室温から昇温して電解
質板に保持されている炭酸塩を溶融させる昇温工程と、
昇温状態のまま電池組立体を所定の締付圧で締付ける本
組立工程を順に行い、しかる後に反応ガスを供給して運
転を確立するようにしたことを特徴とする溶融炭酸塩型
燃料電池の初期運転起動方法。 2)特許請求の範囲第1項記載の初期運転起動方法にお
いて、仮組立工程の際に電解質板の周域に電解質板の板
厚より厚いスペーサを並置してガス分離板の間に介装し
、本組立工程で前記スペーサを取り外すことを特徴とす
る溶融炭酸塩型燃料電池の初期運転起動方法。
[Claims] 1) Preparation for operation at the initial start of operation of a molten carbonate fuel cell comprising an anode electrode, a cathode electrode, and a gas separation plate arranged on both sides of an electrolyte plate holding carbonate. The steps include a temporary assembly process in which the battery is assembled by freely inserting the electrolyte plate between the gas separation plates without applying any tightening pressure, and a temporary assembly process in which the cell temperature is raised from room temperature in the temporarily assembled state to be held by the electrolyte plate. a heating step to melt the carbonate that is
A molten carbonate fuel cell characterized in that the main assembly process of tightening the battery assembly at a predetermined tightening pressure while in a heated state is performed in order, and then a reaction gas is supplied to establish operation. How to start up initial operation. 2) In the initial operation start-up method described in claim 1, a spacer thicker than the thickness of the electrolyte plate is juxtaposed around the electrolyte plate during the temporary assembly process, and is interposed between the gas separation plates. A method for starting initial operation of a molten carbonate fuel cell, comprising removing the spacer during an assembly process.
JP61149173A 1986-06-25 1986-06-25 Initial startup method of molten carbonate fuel cell Pending JPS636754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61149173A JPS636754A (en) 1986-06-25 1986-06-25 Initial startup method of molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61149173A JPS636754A (en) 1986-06-25 1986-06-25 Initial startup method of molten carbonate fuel cell

Publications (1)

Publication Number Publication Date
JPS636754A true JPS636754A (en) 1988-01-12

Family

ID=15469394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61149173A Pending JPS636754A (en) 1986-06-25 1986-06-25 Initial startup method of molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPS636754A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037675A (en) * 1983-08-09 1985-02-27 Agency Of Ind Science & Technol Molten carbonate fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037675A (en) * 1983-08-09 1985-02-27 Agency Of Ind Science & Technol Molten carbonate fuel cell

Similar Documents

Publication Publication Date Title
US5928807A (en) Integrated seal for a PEM fuel cell
CN105340116B (en) Fuel cell and its manufacturing method
EP1569292B1 (en) Fuel cell assembly
EP1293006A2 (en) Fuel cell stack assembly
EP2819230B1 (en) Solid oxide fuel cell and manufacturing method and manufacturing apparatus for same
JPS636754A (en) Initial startup method of molten carbonate fuel cell
CN109964350B (en) Electrochemical reaction unit, electrochemical reaction battery, and method for producing electrochemical reaction unit
JP6252741B2 (en) Method for manufacturing solid oxide fuel cell module and method for manufacturing solid oxide fuel cell device
JP6164566B2 (en) Solid oxide fuel cell device
JP6195220B2 (en) SOLID OXIDE FUEL CELL DEVICE, MANUFACTURING METHOD THEREOF, AND MANUFACTURING DEVICE
US20070148522A1 (en) Solid oxide fuel cell with sealed structure
JP2015011810A (en) Method and apparatus for manufacturing solid oxide fuel cell device
EP2819229B1 (en) Solid oxide fuel cell system
EP2819231A1 (en) Solid oxide fuel cell and manufacturing method and manufacturing apparatus for same
JPH0434860A (en) Fused carbonate type fuel cell
JPS58119168A (en) Fused carbonate cell lamination starting system
JPH0337265B2 (en)
JP2678080B2 (en) Starting method of molten carbonate fuel cell
JPS6391961A (en) Molten carbonate type fuel cell
KR19980036680A (en) Secondary Battery Manufacturing Method
JP6179873B2 (en) Solid oxide fuel cell device
Russell et al. High rate lithium/thionyl chloride bipolar battery development
JPH0963628A (en) Solid oxide fuel cell
RU2093929C1 (en) Initial starting process for cell with molten carbonate electrolyte
JP6120252B2 (en) Solid oxide fuel cell device