JPS6367512A - Reflected wave processing method for ultrasonic wall thickness meter - Google Patents
Reflected wave processing method for ultrasonic wall thickness meterInfo
- Publication number
- JPS6367512A JPS6367512A JP21340686A JP21340686A JPS6367512A JP S6367512 A JPS6367512 A JP S6367512A JP 21340686 A JP21340686 A JP 21340686A JP 21340686 A JP21340686 A JP 21340686A JP S6367512 A JPS6367512 A JP S6367512A
- Authority
- JP
- Japan
- Prior art keywords
- wave
- time
- wall thickness
- reflected wave
- reflected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003672 processing method Methods 0.000 title description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000007654 immersion Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
Landscapes
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は超音波を利用して被測定物の肉厚を測定する超
音波肉厚計に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an ultrasonic wall thickness meter that measures the wall thickness of an object to be measured using ultrasonic waves.
従来の技術
超音波肉厚計の使用形態としては、送受波器を被測定物
に押しあてて測定する接触式と、被?llq定物を水槽
に沈めて、水槽の水を介して超音波の送受信を実施する
水浸式とに分類できる。Conventional technology Ultrasonic wall thickness gauges are used in two ways: contact type, in which the transducer is pressed against the object to be measured; It can be classified as a water immersion type, in which the llq constant is submerged in a water tank and ultrasonic waves are transmitted and received through the water in the tank.
接触式と水浸式のいずれの使用形態においても、その動
作原理は同じであるため、ここでは水浸式を例に挙げて
説明する。Since the operating principle is the same in both the contact type and the water immersion type, the water immersion type will be explained here as an example.
第5図は水浸式の使用形態を示し、被測定物としてのパ
イプ1を水槽2に沈め、水面3の下に送受信口を差し入
れた送受波器4がらパイプ1に向けて超音波を発射し〔
以下、T波と称す〕、パイプlの表面で反射してくる表
面反射波〔以下、B波と称す〕とパイプ1の裏面で反射
してくる裏面反射波〔以下B波と称す〕とを前記送受波
器4で受信して、B波とB波の送受波器4への到来の時
間差に基づいてパイプ1の肉厚dを演算している。Figure 5 shows the usage of the water immersion type, in which a pipe 1 as an object to be measured is submerged in a water tank 2, and a transducer 4 with a transmitting/receiving port inserted under the water surface 3 emits ultrasonic waves toward the pipe 1. death〔
A surface reflected wave reflected from the surface of pipe 1 [hereinafter referred to as B wave], and a back surface reflected wave reflected from the back surface of pipe 1 [hereinafter referred to as B wave]. The wave is received by the transducer 4, and the thickness d of the pipe 1 is calculated based on the time difference between the B wave and the arrival time of the B wave to the transducer 4.
第6図は上記T波とB波とB波の送受信時刻とその波形
図を示す。B波とB波の受信の時間差しとパイプ1の内
部における超音波の伝藩速度がら肉厚dが演算されてい
る。しかし、B波とB波を比べてわかるようにB波は位
相がπだけずれているため、判定レベルv1を基準にし
て受信反射波をコンパレートしたり、またはピークを判
定してB波とB波の到来を判定した場合には、B波の検
出時刻が時間でだけ遅れる。従来では時間τをプリセッ
トしておいて、このプリセット時間で時間差しを補正し
て肉厚dを演算している。FIG. 6 shows the transmission and reception times of the T wave, B wave, and B wave and their waveform diagrams. The wall thickness d is calculated based on the time difference between the reception of the B wave and the B wave and the transmission speed of the ultrasonic wave inside the pipe 1. However, as you can see by comparing the B wave and the B wave, the phase of the B wave is shifted by π, so it is necessary to compare the received reflected waves using the judgment level v1 as a reference, or to judge the peak and distinguish between the B wave and the B wave. When it is determined that the B wave has arrived, the detection time of the B wave is delayed by a certain amount of time. Conventionally, the time τ is preset, and the wall thickness d is calculated by correcting the time difference using this preset time.
発明が解決しようとする問題点
このような従来の構成では、時間τのプリセットが必要
であるうえ、この時間τは超音波周波数によって変化す
る。そのため、超音波周波数が3.0(Ml(Z)から
5.0[MIIz)に変わった場合に時間τの設定変更
を実行しなければ、パイプ1の内部での伝播速度を3.
000(s/slとすれば、0.2(m■)の誤差が生
じる。Problems to be Solved by the Invention In such a conventional configuration, it is necessary to preset the time τ, and the time τ changes depending on the ultrasonic frequency. Therefore, if the setting of time τ is not changed when the ultrasonic frequency changes from 3.0 (Ml(Z) to 5.0 [MIIz), the propagation velocity inside the pipe 1 will change to 3.0 [MIIz].
000 (s/sl), an error of 0.2 (m) will occur.
本発明は時間τのプリセット操作がいらず、超音波周波
数が変化した場合においても無調整で正確な肉厚を求め
ることができる反射波処理方法を提供することを目的と
する。SUMMARY OF THE INVENTION An object of the present invention is to provide a reflected wave processing method that does not require a presetting operation of the time τ and can obtain accurate wall thickness without adjustment even when the ultrasonic frequency changes.
問題点を解決するための手段
本発明の超音波肉厚計における反射波処理方法は、被測
定物の表面と裏面でそれぞれ反射して受信部に到来する
表面反射波と裏面反射波との時間差に基づいて前記被測
定物の肉厚を演算するに際し、表面反射波と裏面反射波
のうちの一方の反射波の受信予想期間には他方の反射波
の受信予想期間とは受信部の出力信号の極性を反転させ
1時々の受信部の出力信号から各反射波の到来を検出す
ることを特徴とする。Means for Solving the Problems The reflected wave processing method in the ultrasonic wall thickness gauge of the present invention is based on the time difference between the front reflected wave and the back reflected wave that are reflected from the front and back surfaces of the object to be measured and arrive at the receiving section. When calculating the wall thickness of the object to be measured based on It is characterized by inverting the polarity of the signal and detecting the arrival of each reflected wave from the output signal of the receiving section from time to time.
作用
この構成によると、受信部の出力信号は表面反射波受信
時と裏面反射波受信時とで位相が揃うため、従来のよう
な時間τのプリセットが必要でない。Effect: According to this configuration, the output signal of the receiver has the same phase when receiving the front reflected wave and when receiving the back reflected wave, so there is no need to preset the time τ as in the conventional case.
実施例
以下、本発明の反射波処理方法を具体的な実施例に基づ
いて説明する。EXAMPLES Hereinafter, the reflected wave processing method of the present invention will be explained based on specific examples.
第1図は本発明の反射波処理方法を採用した超音波肉厚
計を示し、ここでは演算された肉厚に基づいて引き抜き
制御部5を運転して、引き抜き成形中のパイプ1の引き
抜き速度を制御するために利用されている。FIG. 1 shows an ultrasonic wall thickness meter employing the reflected wave processing method of the present invention, in which the drawing controller 5 is operated based on the calculated wall thickness to increase the drawing speed of the pipe 1 during pultrusion forming. is used to control.
超音波信号源6は超音波信号の出力時期がタイミング回
路7で制御されており、送受波器4を介して第2図(a
)のように一定間隔ごとにT波を発射している。パイプ
1で第2図(b)のように時間差をもって反射してきた
B波とB波は、増幅器8を介してコンパレータ9に印加
される。コンパレータ9では基準レベルv1と受信部の
出力信号としての前記増幅器8の出力信号v0とを比較
して■1≦■oを検出するするたびに出力レベルが第5
図(d)のように変化する。In the ultrasonic signal source 6, the output timing of the ultrasonic signal is controlled by a timing circuit 7, and the output timing of the ultrasonic signal is controlled by a timing circuit 7.
), it emits T waves at regular intervals. The B wave and the B wave reflected from the pipe 1 with a time difference as shown in FIG. 2(b) are applied to a comparator 9 via an amplifier 8. The comparator 9 compares the reference level v1 with the output signal v0 of the amplifier 8 as the output signal of the receiving section, and every time it detects ■1≦■o, the output level increases to the fifth level.
It changes as shown in figure (d).
積分器10はタイミング回路7からの信号〔第2図(f
)〕の支持によってT波の発射時刻から一定時1tll
t 、後に基準電圧■7の積分を開始しており、コン
パレータ9がB波の到来を検出すると、肉厚演算部11
はそのときの積分器10の積分値をデジタル変換してい
るA/D変換器12の出力値を第1のサンプルホールド
値5H1(第2図(g)参照〕として取り込む。The integrator 10 receives the signal from the timing circuit 7 [Fig.
)] at a constant time of 1tll from the T-wave emission time.
t, the integration of the reference voltage 7 is started later, and when the comparator 9 detects the arrival of the B wave, the wall thickness calculation unit 11
takes in the output value of the A/D converter 12 which digitally converts the integral value of the integrator 10 at that time as the first sample hold value 5H1 (see FIG. 2(g)).
前記増幅器8は、第3図に表わす等価回路の演算増幅器
OPで構成されている。この演算増幅器oPは第1の出
力端子13と第2の出力端子14を有しており、ゲイン
をA、入力信号レベルをElとすると、第1の出力端子
13と接地15の間には(A・EI)の信号が発生し、
これと同時に第2の出力端子14と接地間15の間には
−(A−EI)の信号が発生している。16は入力イン
ピーダンス、17.18は出力インピーダンスである。The amplifier 8 is constituted by an operational amplifier OP of the equivalent circuit shown in FIG. This operational amplifier oP has a first output terminal 13 and a second output terminal 14, and if the gain is A and the input signal level is El, then between the first output terminal 13 and the ground 15 ( A/EI) signal is generated,
At the same time, a -(A-EI) signal is generated between the second output terminal 14 and the ground 15. 16 is an input impedance, and 17.18 is an output impedance.
増幅器8の出力に設けられたアナログスイッチ19は、
前記コンパレータ9がB波の到来を検出して一定時間t
1が経過するまでは、第1の出力端子13の(A−EI
)をコンパレータ9の入力に印加しており、前記の一定
時間t1の経過後はタイミング回路7の信号〔第2図(
e)〕によって切り換えられて第2の出力端子14の−
(A−EI)をコンパレータ9の入力に印加している。The analog switch 19 provided at the output of the amplifier 8 is
The comparator 9 detects the arrival of the B wave and waits for a certain period of time t.
1 elapses, the first output terminal 13 (A-EI
) is applied to the input of the comparator 9, and after the above-mentioned fixed time t1 has elapsed, the signal of the timing circuit 7 [Fig. 2 (
e)] and the - of the second output terminal 14 is switched.
(A-EI) is applied to the input of comparator 9.
このように、アナログスイッチ19を切り換えているた
め、B波はコンパレータ9の入力には第2図(c)のよ
うに第2図(b)のそれとは極性の反転した波形となっ
て印加されており、従来のようなπの位相差なしにB波
の到来を検出できる。Since the analog switch 19 is switched in this way, the B wave is applied to the input of the comparator 9 as a waveform with the polarity reversed from that in FIG. 2(b), as shown in FIG. 2(c). Therefore, the arrival of the B wave can be detected without a phase difference of π unlike the conventional method.
コンパレータ9がB波の到来を検出すると、肉厚演算部
11はそのときのA/D変換器12の出力値を第2のサ
ンプルホールド値SH,とじて取り込み、(SHl−5
R2)をB波とB波との時間差tに対応するデータとし
て、パイプ1の内部での伝播速度とでパイプ1の肉厚(
d)を演算して、肉厚表示部20と前記引き抜き制御部
5とに実測値として出力している。When the comparator 9 detects the arrival of the B wave, the wall thickness calculation unit 11 takes in the output value of the A/D converter 12 at that time as the second sample hold value SH, and (SHl-5
R2) is the data corresponding to the time difference t between the B wave and the B wave, and the wall thickness of the pipe 1 (
d) is calculated and outputted to the wall thickness display section 20 and the drawing control section 5 as an actual measurement value.
上記実施例では、アナログスイッチ19はB波の到来検
出から一定時間t1の時刻に切り換えたが。In the above embodiment, the analog switch 19 is switched at a certain time t1 after the detection of the arrival of the B wave.
この時間t工はB波の受信予想期間の始端部以前であれ
ば何れに設定することもできる。This time t can be set to any time before the start of the expected reception period of the B wave.
上記実施例では、B波の受信予想期間にはコンパレータ
9に印加する増幅器8の出力信号の極性が−(A−Et
)であったが、これはB波の受信予想期間に−(A−E
t)とし、B波の受信予想期間に(A−Et)としても
同様である。In the above embodiment, during the expected reception period of the B wave, the polarity of the output signal of the amplifier 8 applied to the comparator 9 is -(A-Et
), but this is -(A-E) during the expected reception period of B wave.
t) and (A-Et) during the expected reception period of the B wave.
上記実施例では基準レベルv0で受信部の出力信号をコ
ンパレートしたが、これは受信部の出力信号の変曲点を
検出してもB波とB波の到来を検出できる。In the above embodiment, the output signal of the receiving section is compared at the reference level v0, but it is also possible to detect the arrival of the B wave and the B wave even if the inflection point of the output signal of the receiving section is detected.
第3図ではパイプ1の周方向の1個所についてのみ肉厚
を測定したが、これは第4図に示すようにパイプ1の周
方向の複数個所に送受波器48〜4dを配設し、この送
受波器48〜4dをスキャン回路21を介して超音波信
号源6と増幅器8に接続し、制御信号22で制御される
スキャン回路21が、使用する送受波器4a〜4dの一
つを時分割で順次選択するよう構成することによって、
複数個所の肉厚を測定できる。In FIG. 3, the wall thickness was measured only at one location in the circumferential direction of the pipe 1, but as shown in FIG. The transducers 48 to 4d are connected to the ultrasonic signal source 6 and the amplifier 8 via the scan circuit 21, and the scan circuit 21, which is controlled by the control signal 22, selects one of the transducers 4a to 4d to be used. By configuring it to select sequentially in time division,
Can measure wall thickness at multiple locations.
発明の詳細
な説明したように本発明は、表面反射波と裏面反射波の
うちの一方の反射波の受信予想期間には他方の反射波の
受信予想期間とは受信部の出力信号の極性を反転させ1
時々の受信部の出力信号から各反射波の到来を検出する
ため、受信部の出力信号では表面反射波と裏面反射波と
の位相が揃うため、従来のように裏面反射波の位相反転
誤差を補正するプリセット時間を必要とせず、超音波周
波数などが変化しても無調整で正確な肉厚を測定できる
ものである。As described in detail, in the present invention, the expected reception period of one of the front reflected wave and the back reflected wave is different from the expected reception period of the other reflected wave. Reverse 1
Since the arrival of each reflected wave is detected from the output signal of the receiving section from time to time, the phase of the front reflected wave and the back reflected wave are aligned in the output signal of the receiving section. It does not require a preset time for correction, and can accurately measure wall thickness without adjustment even if the ultrasonic frequency changes.
第1図〜第3図は本発明の具体的な一実施例を示し、第
1図は引き抜き成形パイプの製造装置の要部構成図、第
2図は第1図の要部波形図、第3図は第1図における増
幅器の等価回路図、第4図は他の実施例の要部構成図、
第5図は超音波肉厚計の動作原理の説明図、第6図は従
来の反射波処理方法を説明する送受信波の波形図である
。
1・・・パイプ〔被測定物〕、4・・・送受波器、6・
・・超音波信号源、7・・・タイミング回路、8・・・
増幅器、9・・・コンパレータ、11・・・肉厚演算部
、13.14・・・増幅器の第1.第2の出力端子、1
9・・・アナログスイッチ、S・・・表面反射波、B・
・・裏面反射波、V、・・・増幅器の出力信号〔受信部
の出力信号〕。
代理人 森 本 義 弘
第2図
第S図
第を図1 to 3 show a specific embodiment of the present invention, FIG. 1 is a configuration diagram of the main parts of a pultruded pipe manufacturing apparatus, FIG. 2 is a waveform diagram of the main parts of FIG. 1, and FIG. 3 is an equivalent circuit diagram of the amplifier in FIG. 1, FIG. 4 is a main part configuration diagram of another embodiment,
FIG. 5 is an explanatory diagram of the operating principle of the ultrasonic wall thickness meter, and FIG. 6 is a waveform diagram of transmitted and received waves illustrating a conventional reflected wave processing method. 1... Pipe [object to be measured], 4... Transducer/receiver, 6...
... Ultrasonic signal source, 7... Timing circuit, 8...
Amplifier, 9... Comparator, 11... Thickness calculation unit, 13.14... First of the amplifier. second output terminal, 1
9...Analog switch, S...Surface reflected wave, B...
...Back surface reflected wave, V, ...Amplifier output signal [receiver output signal]. Agent Yoshihiro Morimoto Figure 2 Figure S Figure
Claims (1)
到来する表面反射波と裏面反射波との時間差に基づいて
前記被測定物の肉厚を演算するに際し、表面反射波と裏
面反射波のうちの一方の反射波の受信予想期間には、他
方の反射波の受信予想期間とは、受信部の出力信号の極
性を反転させ、時々の受信部の出力信号から各反射波の
到来を検出する超音波肉厚計における反射波処理方法。1. When calculating the wall thickness of the object to be measured based on the time difference between the front reflected wave and the back reflected wave that are reflected from the front and back surfaces of the object and arrive at the receiver, The expected reception period of one of the reflected waves is different from the expected reception period of the other reflected wave.The polarity of the output signal of the receiving section is inverted, and the arrival of each reflected wave is determined from the output signal of the receiving section from time to time. A method for processing reflected waves in an ultrasonic wall thickness meter that detects
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21340686A JPS6367512A (en) | 1986-09-10 | 1986-09-10 | Reflected wave processing method for ultrasonic wall thickness meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21340686A JPS6367512A (en) | 1986-09-10 | 1986-09-10 | Reflected wave processing method for ultrasonic wall thickness meter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6367512A true JPS6367512A (en) | 1988-03-26 |
JPH0433371B2 JPH0433371B2 (en) | 1992-06-02 |
Family
ID=16638695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21340686A Granted JPS6367512A (en) | 1986-09-10 | 1986-09-10 | Reflected wave processing method for ultrasonic wall thickness meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6367512A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6196459A (en) * | 1984-10-17 | 1986-05-15 | Kawasaki Steel Corp | Division type ultrasonic probe transmitting/receiving circuit |
-
1986
- 1986-09-10 JP JP21340686A patent/JPS6367512A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6196459A (en) * | 1984-10-17 | 1986-05-15 | Kawasaki Steel Corp | Division type ultrasonic probe transmitting/receiving circuit |
Also Published As
Publication number | Publication date |
---|---|
JPH0433371B2 (en) | 1992-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5360268A (en) | Ultrasonic temperature measuring apparatus | |
US6305233B1 (en) | Digital speed determination in ultrasonic flow measurements | |
JPH0568668B2 (en) | ||
US6865137B2 (en) | Method for pulse offset calibration in time of flight ranging systems | |
JPH1048009A (en) | Ultrasound temperature current meter | |
JP3427762B2 (en) | Ultrasonic flow meter | |
JPS6367512A (en) | Reflected wave processing method for ultrasonic wall thickness meter | |
JPH08271322A (en) | Ultrasonic liquid level measurement method | |
JP3224295B2 (en) | Temperature measurement device using ultrasonic waves | |
JP2002090452A (en) | Ultrasonic range finder | |
JP3958834B2 (en) | Ultrasonic flow meter | |
JP3646493B2 (en) | Ultrasonic sensor device | |
JP2000329597A5 (en) | ||
JP2008180566A (en) | Flow velocity or flow rate measuring device, and program therefor | |
JP7246021B2 (en) | ultrasonic flow meter | |
JPH01187485A (en) | Ultrasonic distance measuring method | |
WO1992019983A1 (en) | Ultrasonic measurement apparatus | |
JPH0117090B2 (en) | ||
JPH06118169A (en) | Acoustic position measuring device | |
JPH0447771B2 (en) | ||
JPH01118790A (en) | Ultrasonic distance measuring instrument | |
JP2001264136A (en) | Ultrasonic flowmeter | |
JPS6373106A (en) | Measuring method of thickness by ultrasonic wave | |
JP2002071411A (en) | Ultrasonic flowmeter | |
JPH01143991A (en) | Ultrasonic distance measuring instrument |