[go: up one dir, main page]

JPS6367348B2 - - Google Patents

Info

Publication number
JPS6367348B2
JPS6367348B2 JP4290981A JP4290981A JPS6367348B2 JP S6367348 B2 JPS6367348 B2 JP S6367348B2 JP 4290981 A JP4290981 A JP 4290981A JP 4290981 A JP4290981 A JP 4290981A JP S6367348 B2 JPS6367348 B2 JP S6367348B2
Authority
JP
Japan
Prior art keywords
layer
refractive index
active layer
cladding layer
stripe portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4290981A
Other languages
Japanese (ja)
Other versions
JPS57157587A (en
Inventor
Hideto Furuyama
Yutaka Uematsu
Junichi Kinoshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP4290981A priority Critical patent/JPS57157587A/en
Publication of JPS57157587A publication Critical patent/JPS57157587A/en
Publication of JPS6367348B2 publication Critical patent/JPS6367348B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • H01S5/2234Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface
    • H01S5/2235Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface with a protrusion

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 本発明は、発振モードの安定化および動作寿命
の長寿命化を可能とした半導体レーザ装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor laser device capable of stabilizing oscillation mode and extending operating life.

半導体レーザ装置において最も重要視されてい
るのは、発振横モードの単一化と動作寿命の長寿
命化である。一般に、半導体レーザ装置に用いら
れる2重ヘテロ接合構造は、垂直方向への光の閉
じ込め作用はあるが、水平方向への光の閉じ込め
作用はなく、そのままでは発振時における高次横
モードが発生し易すく、電流対光出力特性に異常
な特性カーブが発生する。また、これまでの半導
体レーザ装置のほとんどは、電流注入による発光
領域である活性層が、主となる光ガイド層であ
り、端面発光近視野像の光強度最大点が活性層領
域にあつた。活性層による光ガイドは活性層のバ
ンドギヤツプに一致した波長を有する光が、光吸
収による活性層の破壊を引き起こし、素子の動作
寿命を縮め特にレーザ発振時において重要な問題
となる。
What is most important in semiconductor laser devices is unifying the oscillation transverse mode and extending the operating life. In general, the double heterojunction structure used in semiconductor laser devices has the effect of confining light in the vertical direction, but not in the horizontal direction, and if left as is, high-order transverse modes will occur during oscillation. An abnormal characteristic curve may easily occur in the current vs. light output characteristic. Furthermore, in most of the conventional semiconductor laser devices, the active layer, which is the light emitting region by current injection, is the main light guide layer, and the maximum light intensity point of the edge emission near-field image is in the active layer region. When light is guided by an active layer, light having a wavelength matching the bandgap of the active layer causes destruction of the active layer due to light absorption, shortens the operating life of the device, and becomes an important problem especially during laser oscillation.

第1図は従来一般に用いられている絶縁膜スト
ライプ型2重ヘテロ接合の半導体レーザ装置を示
す断面模式図である。GaAs基板1上にn―
GaAlAs層(第1のクラツド層)2、GaAs層
(活性層)3およびp―GaAlAs層(第2のクラ
ツド層)4が順次結晶成長され、ヘテロ接合構造
が形成されている。そして、上記第2のクラツド
層4上にはSiO2膜5が選択的に取着され、電流
狭窄のためのストライプが形成されている。な
お、図中6,7はそれぞれ電極を示している。こ
のような構造であれば、垂直方向には活性層3と
クラツド層2,4との屈折率の差により光は活性
層3に閉じ込められる。しかし、水平方向には光
の閉じ込め作用がないため、前記したように高次
横モードが発生し易い等の問題がある。また、光
強度最大点が活性層3領域にあるため、前記した
動作寿命が短くなる等の問題があつた。
FIG. 1 is a schematic cross-sectional view showing a conventional insulating film stripe type double heterojunction semiconductor laser device. n- on the GaAs substrate 1
A GaAlAs layer (first cladding layer) 2, a GaAs layer (active layer) 3, and a p-GaAlAs layer (second cladding layer) 4 are successively crystal-grown to form a heterojunction structure. A SiO 2 film 5 is selectively attached on the second cladding layer 4 to form stripes for current confinement. Note that 6 and 7 in the figure indicate electrodes, respectively. With such a structure, light is confined in the active layer 3 in the vertical direction due to the difference in refractive index between the active layer 3 and the cladding layers 2 and 4. However, since there is no light confinement effect in the horizontal direction, there are problems such as high-order transverse modes are likely to occur as described above. Furthermore, since the maximum light intensity point is located in the active layer 3 region, there are problems such as shortened operating life as described above.

そこで本発明者等は、上記問題を解決するもの
として第2図に示す如き半導体レーザ装置を開発
した。この装置は前記第1のクラツド層2をメサ
エツチングしてメサストライプ部8を形成し、こ
のメサストライプ部8が形成されたクラツド層2
上に前記各層3,4を結晶成長せしめたものであ
り、活性層3を折り曲げてその中間領域において
レーザ発振させている。これは第3図aに示す水
平方向(第2図中1点鎖線A)の屈折率分布にお
いて、屈折率の高い2つの活性層が互いに従属し
たモード誘導を起こし、同図bに示すような一つ
のモードを作り出すことによる。かくして作られ
た発振モードは活性層3によつて挾まれた領域の
幅を加減することによつて、高次モードをおさえ
て基本横モードだけで発振させることができる。
さらに、この場合の発光強度の最大点が活性層3
の外にあるため、光吸収による活性層の破壊を極
力おさえることができる。
Therefore, the present inventors developed a semiconductor laser device as shown in FIG. 2 as a solution to the above problem. This device performs mesa etching on the first cladding layer 2 to form a mesa stripe portion 8, and then etches the cladding layer 2 on which the mesa stripe portion 8 is formed.
Each of the layers 3 and 4 is crystal-grown on top of the active layer 3, and the active layer 3 is bent to cause laser oscillation in an intermediate region thereof. This is because, in the refractive index distribution in the horizontal direction (dotted chain line A in Fig. 2) shown in Fig. 3a, two active layers with high refractive index induce mutually dependent mode guidance, as shown in Fig. 3b. By creating a mode. By adjusting the width of the region sandwiched by the active layer 3, the oscillation mode thus created can suppress higher-order modes and oscillate only in the fundamental transverse mode.
Furthermore, the maximum point of emission intensity in this case is the active layer 3
Since the active layer is located outside of the active layer, destruction of the active layer due to light absorption can be suppressed as much as possible.

しかしながら、この種の装置にあつては前記第
3図a,bに示した如く発光強度最大となる位置
に屈折率の低い層(第1のクラツド層2)が存在
するため、高注入レベルにおいて基板方向への発
振モードのゆらぎが生じると言う問題があつた。
However, in this type of device, a layer with a low refractive index (first cladding layer 2) exists at the position where the emission intensity is maximum as shown in FIGS. There was a problem in that the oscillation mode fluctuated in the direction of the substrate.

本発明は上記事情を考慮してなされたもので。
その目的とするところは、発振モードの安定化お
よび動作寿命の長寿命化をはかり得ると共に、発
振モードのゆらぎを確実に防止することのできる
半導体レーザ装置を提供することにある。
The present invention has been made in consideration of the above circumstances.
The purpose is to provide a semiconductor laser device that can stabilize the oscillation mode and extend its operating life, as well as reliably prevent fluctuations in the oscillation mode.

すなわち、本発明は活性層で挾まれる領域に比
較的屈折率の高い導波層を形成するようにして、
前記目的を達成せんとしたものである。
That is, the present invention forms a waveguide layer with a relatively high refractive index in the region sandwiched by the active layer,
The aim was to achieve the above objective.

以下、本発明の詳細を図示の実施例によつて説
明する。
Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第4図は本発明の一実施例の概略構造を示す断
面模式図である。なお、第2図と同一部分には同
一符号を付して、その詳しい説明は省略する。こ
の実施例が前記第2図に示したものと異なる点は
前記メサストライプ部8の上部を前記クラツド層
2,4より高い屈折率を有したGaAlAs層(導波
層)9で形成したことである。なお、この構成は
基板1上に第1のクラツド層2および導波層9を
順次結晶成長せしめたのち、上記クラツド層2に
至る深さまでメサエツチングして得られる。
FIG. 4 is a schematic cross-sectional view showing a schematic structure of an embodiment of the present invention. Note that the same parts as in FIG. 2 are given the same reference numerals, and detailed explanation thereof will be omitted. The difference between this embodiment and the one shown in FIG. 2 is that the upper part of the mesa stripe section 8 is formed of a GaAlAs layer (waveguide layer) 9 having a higher refractive index than the cladding layers 2 and 4. be. This structure is obtained by sequentially growing crystals of the first cladding layer 2 and the waveguide layer 9 on the substrate 1, and then performing mesa etching to a depth up to the cladding layer 2.

このような構成であれば、第1のクラツド層
2、導波層9、活性層3および第2のクラツド層
4の各屈折率をそれぞれ、n1、n2、n3、n4とする
と、これらの屈折率の関係はn3>n2>n4=n1とな
る。したがつて、垂直方向(図中1点鎖線B)お
よび水平方向(図中1点鎖線C)の各屈折率分布
はそれぞれ第5図a,bに示す如くなる。すなわ
ち、レーザ発振の光強度最大となる位置に比較的
屈折率の高い層(導波層9)があるため、前記し
た高注入レベルにおける発振モードのゆらぎが解
消される。また、第5図bに示した水平方向の屈
折率分布を見ると明らかなように、屈折率の高い
層が高次モードより基本モードを優先するように
なつているため、基本モードのより一層の安定化
をはかり得る。したがつて、前記第2図に示した
装置の効果、つまり発振モードの安定化および動
作寿命の長寿命化をはかり得る等の効果を奏する
のは勿論のこと、発振モードのゆらぎを確実に防
止し得ると言う効果を奏する。
With such a configuration, let the refractive index of the first cladding layer 2, waveguide layer 9, active layer 3, and second cladding layer 4 be n 1 , n 2 , n 3 , and n 4 , respectively. , the relationship between these refractive indices is n 3 > n 2 > n 4 = n 1 . Therefore, the refractive index distributions in the vertical direction (dotted chain line B in the figure) and the horizontal direction (dotted chain line C in the figure) are as shown in FIGS. 5a and 5b, respectively. That is, since the layer with a relatively high refractive index (waveguide layer 9) is located at the position where the light intensity of laser oscillation is maximum, the fluctuation of the oscillation mode at the high injection level described above is eliminated. Also, as is clear from the horizontal refractive index distribution shown in Figure 5b, the layer with a high refractive index gives priority to the fundamental mode over the higher-order modes, so the fundamental mode becomes more can be stabilized. Therefore, the device not only achieves the effects shown in FIG. 2, that is, stabilizes the oscillation mode and extends the operating life, but also reliably prevents fluctuations in the oscillation mode. It has the effect that it can.

第6図は他の実施例の概略構造を示す断面模式
図である。なお、第4図と同一部分には同一符号
を付して、その詳しい説明は省略する。この実施
例が先に説明した実施例と異なる点は、前記第1
のクラツド層2と活性層3との間に屈折率n5(n5
=n1=n4)の第3のクラツド層10を形成したこ
とである。
FIG. 6 is a schematic cross-sectional view showing the schematic structure of another embodiment. Note that the same parts as in FIG. 4 are given the same reference numerals, and detailed explanation thereof will be omitted. This embodiment differs from the previously described embodiment in that the first
A refractive index n 5 (n 5
= n 1 = n 4 ).

このような構成であれば、垂直方向(図中1点
鎖線D)および水平方向(図中1点鎖線E)の屈
折率分布はそれぞれ第7図a,bに示す如くなり
先の実施例を同様の効果を奏する。また、活性層
3から導波層9へのキヤリアリークを防止できる
等の利点がある。
With such a configuration, the refractive index distribution in the vertical direction (dotted chain line D in the figure) and horizontal direction (dotted chain line E in the figure) becomes as shown in FIGS. It has a similar effect. Further, there is an advantage that carrier leakage from the active layer 3 to the waveguide layer 9 can be prevented.

なお、本発明は上述した各実施例に限定される
ものではない。例えば、前記第1乃至第3のクラ
ツド層の各屈折率n1、n4、n5は必ずしも等しいも
のでなくてもよく、n5≧n4≧n1なる関係を満足す
るものであればよい。また各層の厚みやメサスト
ライプ部の形状等は仕様に応じて適宜定めればよ
い。さらに、前記基板および各層を形成する半導
体組成物としてはGaAs―GaAlの他にInP―
InGaAsPにも適用できるのは勿論のことである。
その他、本発明の要旨を逸脱しない範囲で、種々
変形して実施することができる。
Note that the present invention is not limited to the embodiments described above. For example, the refractive indices n 1 , n 4 , n 5 of the first to third cladding layers do not necessarily have to be equal, as long as they satisfy the relationship n 5 ≧n 4 ≧n 1 . good. Further, the thickness of each layer, the shape of the mesa stripe portion, etc. may be determined as appropriate according to specifications. Furthermore, in addition to GaAs-GaAl, the semiconductor composition forming the substrate and each layer is InP-
Of course, it can also be applied to InGaAsP.
In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置の概略構成をなす断面模式
図、第2図は本発明の基本となるGaAs―
GaAlAsレーザ装置の概略構成を示す断面模式
図、第3図a,bは上記レーザ装置の作用を説明
するための模式図、第4図は本発明の一実施例の
概略構成を示す断面模式図、第5図a,bは上記
実施例の作用を説明するための模式図、第6図は
他の実施例の概略構成を示す断面模式図、第7図
a,bは上記他の実施例の活用を説明するための
模式図である。 1…半導体基板、2…第1のクラツド層、3…
活性層、4…第2のクラツド層、8…メサストラ
イプ部、9…導波層、10…第3のクラツド層。
Figure 1 is a schematic cross-sectional view showing the general configuration of a conventional device, and Figure 2 is a GaAs-- which is the basis of the present invention.
A schematic cross-sectional view showing the general structure of a GaAlAs laser device, FIGS. 3a and 3b are schematic views for explaining the operation of the laser device, and FIG. 4 is a schematic cross-sectional view showing the schematic structure of an embodiment of the present invention. , FIGS. 5a and 5b are schematic diagrams for explaining the operation of the above embodiment, FIG. 6 is a cross-sectional schematic diagram showing the schematic configuration of another embodiment, and FIGS. 7a and 7b are schematic diagrams for explaining the operation of the above embodiment. It is a schematic diagram for explaining the utilization of. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... First cladding layer, 3...
Active layer, 4... Second cladding layer, 8... Mesa stripe portion, 9... Waveguide layer, 10... Third cladding layer.

Claims (1)

【特許請求の範囲】 1 半導体基板と、この基板上に屈折率n1の第1
のクラツド層および屈折率n2の導波層を順次結晶
成長せしめこれらを上記基板或いは第1のクラツ
ド層に至る深さまでメサエツチングしてなる刃状
メサストライプ部と、このメサストライプ部上に
成長形成された屈折率n3の活性層と、この活性層
上に成長形成された屈折率n4の第2のクラツド層
とを具備し、前記各屈折率をn3>n2>n4≧n1なる
関係にしたことを特徴とする半導体レーザ装置。 2 前記活性層は、前記メサストライプ部の高さ
よりも膜厚の薄い屈折率n5の第3のクラツド層を
介して前記メサストライプ部上に成長形成された
ものであり、前記屈折率をn3>n2>n5≧n4≧n1
る関係にしたことを特徴とする特許請求の範囲第
1項記載の半導体レーザ装置。
[Claims] 1. A semiconductor substrate, and a first semiconductor substrate having a refractive index n 1 on this substrate.
A cladding layer and a waveguide layer having a refractive index of n 2 are sequentially crystal-grown, and these are mesa-etched to a depth that reaches the substrate or the first cladding layer to form an edge-shaped mesa stripe portion, and a mesa stripe portion is grown on the mesa stripe portion. an active layer with a refractive index of n 3 and a second cladding layer with a refractive index of n 4 grown on the active layer, each refractive index being such that n 3 > n 2 > n 4 ≧n A semiconductor laser device characterized by having a relationship of 1 . 2. The active layer is grown on the mesa stripe portion through a third cladding layer having a refractive index n 5 that is thinner than the height of the mesa stripe portion, and has a refractive index n 3. The semiconductor laser device according to claim 1, wherein the relationship is 3 > n 2 > n 5 ≧n 4 ≧n 1 .
JP4290981A 1981-03-24 1981-03-24 Semiconductor laser device Granted JPS57157587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4290981A JPS57157587A (en) 1981-03-24 1981-03-24 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4290981A JPS57157587A (en) 1981-03-24 1981-03-24 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPS57157587A JPS57157587A (en) 1982-09-29
JPS6367348B2 true JPS6367348B2 (en) 1988-12-26

Family

ID=12649150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4290981A Granted JPS57157587A (en) 1981-03-24 1981-03-24 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS57157587A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317935U (en) * 1989-07-05 1991-02-21
JPH09220962A (en) * 1996-02-16 1997-08-26 Central Motor Co Ltd Cup holder support structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317935U (en) * 1989-07-05 1991-02-21
JPH09220962A (en) * 1996-02-16 1997-08-26 Central Motor Co Ltd Cup holder support structure

Also Published As

Publication number Publication date
JPS57157587A (en) 1982-09-29

Similar Documents

Publication Publication Date Title
KR100341946B1 (en) Patterned mirror vertical surface emitting laser and its manufacturing method
US4328469A (en) High output power injection lasers
US4329660A (en) Semiconductor light emitting device
KR19990072352A (en) Self-pulsation type semiconductor laser
US4432091A (en) Semiconductor laser device
US6987285B2 (en) Semiconductor light emitting device in which high-power light output can be obtained with a simple structure including InGaAsP active layer not less than 3.5 microns and InGaAsP and InP cladding
KR100381985B1 (en) Vertical cavity surface emitting laser (VCSEL) and its manufacturing method
US4546481A (en) Window structure semiconductor laser
US4926431A (en) Semiconductor laser device which is stable for a long period of time
US6075802A (en) Lateral confinement laser
JPS6367348B2 (en)
US5136601A (en) Semiconductor laser
JP4309636B2 (en) Semiconductor laser and optical communication device
JP2723888B2 (en) Semiconductor laser device
JP5163355B2 (en) Semiconductor laser device
US6707835B2 (en) Process for producing semiconductor laser element including S-ARROW structure formed by etching through mask having pair of parallel openings
JPH0638543B2 (en) Optoelectronic device
JPS58225681A (en) Semiconductor laser element
JPH0671121B2 (en) Semiconductor laser device
JPS621277B2 (en)
JPH0376287A (en) Broad area laser
US4860299A (en) Semiconductor laser device
JPH06334255A (en) Semiconductor laser and fabrication thereof
JPH0422033B2 (en)
JPH01132191A (en) Semiconductor laser element