[go: up one dir, main page]

JPS6366827B2 - - Google Patents

Info

Publication number
JPS6366827B2
JPS6366827B2 JP59047117A JP4711784A JPS6366827B2 JP S6366827 B2 JPS6366827 B2 JP S6366827B2 JP 59047117 A JP59047117 A JP 59047117A JP 4711784 A JP4711784 A JP 4711784A JP S6366827 B2 JPS6366827 B2 JP S6366827B2
Authority
JP
Japan
Prior art keywords
reaction
saturated hydrocarbon
sodium sulfite
oxygen
alkanesulfonic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59047117A
Other languages
Japanese (ja)
Other versions
JPS60193961A (en
Inventor
Yasukazu Sato
Mamoru Yamane
Hiromi Ozaki
Original Assignee
Nippon Mining Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co filed Critical Nippon Mining Co
Priority to JP4711784A priority Critical patent/JPS60193961A/en
Publication of JPS60193961A publication Critical patent/JPS60193961A/en
Publication of JPS6366827B2 publication Critical patent/JPS6366827B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、合成洗剤等の界面活性剤として優れ
た性能を有するアルカンスルホン酸塩の原料であ
るアルカンスルホン酸の製造方法に係るもので、
特には、実質的に水が存在しない系で、飽和炭化
水素に、二酸化硫黄と酸素とを光の照射下に作用
させてアルカンスルホン酸を製造する方法に関す
る。 アルカンスルホン酸塩は、石けんやアルキルベ
ンゼンスルホン酸塩等が硬水中において洗浄力を
著るしく低下させるのに比べ、リン酸塩等の洗浄
助剤が存在しない場合でも洗浄力を保持でき、ま
た、アルキルベンゼンスルホン酸塩に比べ、生分
解性に優れ、環境保全上からも好ましく、今後の
需要増大が見込まれている。 従来技術 実質的に水が存在しない系において、二酸化硫
黄及び酸素を用い飽和炭化水素を光スルホキシ化
する方法は、光源側壁に着色物質が付着し、光の
照射を著るしく妨害し、光スルホキシ化反応が減
少する欠点がある。このため、着色物質が光源側
壁面に所定量付着したら反応装置の運転を中断
し、該着色物質を取除く必要があり、非能率的で
連続的な運転が不可能であつた。従つて、アルカ
ンスルホン酸の工業的な製造は、もつぱら水の存
在下に光スルホキシ化する方法が採用されてい
る。ところでこの方法は、水がラジカル連鎖反応
を妨害し、反応効率が悪く、また、アルカンスル
ホン酸の他に、それとほぼ等モルの硫酸が副生
し、該硫酸を分離するために水を90〜140℃の温
度で蒸留して除去する際に、アルカンスルホン酸
に着臭、着色が生じる等の問題点を有している。 一方、この水の存在下に光スルホキシ化する方
法においても若干は着色物質が生成する。この着
色物質の生成を抑制するために、先ず、実質的に
酸素が存在しない状態で飽和炭化水素に二酸化硫
黄の存在下で紫外線を照射し、次いでこの照射飽
和炭化水素に酸素を導入する方法がが提案されて
いる(特公昭47−28973)。しかしこの方法は、光
スルホキシ化反応の重要な推進役である酸素ラジ
カルが十分に存在しないため、反応速度が著るし
く遅く、経済的でない。 また、生成した着色物質の光源側壁面への付着
を抑制するために、光源側壁面近傍に所定量の窒
素又は空気を流通させる方法が提案されている
(特公昭47−11740号公報)。しかし、この方法で
は、壁面への液の接触を完全に防ぐことはでき
ず、光源側壁面の汚れは避けられないし、さら
に、流通される窒素又は空気は、反応液中に溶解
している二酸化硫黄を反応系外へ駆出するために
反応液中の二酸化硫黄の濃度が高くならず反応速
度が遅くなる等の欠点を有する。 尚、実質的に水が存在しない系での着色物質の
生成の抑制及び光源側壁面への付着の防止方法に
ついての提案は見い出せない。 発明の目的 本発明者は、前記問題点を解決すべく鋭意検討
した結果、飽和炭化水素に亜硫酸ナトリウムを添
加、分散させて光スルホキシ化反応を行うと反応
速度を低下させることなく、着色物質の生成を抑
制できるという驚くべき事実を見い出した。本発
明は、かかる知見に基きなされたもので、実質的
に水が存在しない系において飽和炭化水素を光ス
ルホキシ化する際に反応速度を低下させることな
く、着色物質の光源側壁面への付着を防止して連
続的にアルカンスルホン酸を製造できる方法を提
案することを目的とする。 発明の構成 本発明は、実質的に水が存在しない系で、飽和
炭化水素に、二酸化硫黄と酸素とを光の照射下に
作用させてアルカンスルホン酸を製造する方法に
おいて、前記飽和炭化水素に亜硫酸ナトリウムを
添加して二酸化硫黄と酸素とを作用させるもの
で、特に前記亜硫酸ナトリウムの添加が飽和炭化
水素に対して、0.1重量%〜10重量%とするアル
カンスルホン酸の製造方法である。 以下に本発明について詳細に述べる。 本発明において用いることができる飽和炭化水
素は、反応系内で液体として存在するものであれ
ばいずれでもよいが、合成洗剤等の界面活性剤の
原料としての生産のためであれば、炭素数が8乃
至24のノルマルパラフインが好適である。 照射用の光源としては、高圧水銀灯、低圧水銀
灯、低圧水銀螢光灯など波長500nm以下の光を
照射できるものが使用できる。 反応温度は、飽和炭化水素の融点或いは沸点を
考慮に入れ、−20乃至200℃の範囲で適宜選定され
るが、室温で液体の飽和炭化水素を用いる場合
は、特に加熱する必要はない。反応圧力は、高い
ほど反応速度が大きくなり好ましいが0乃至50気
圧の範囲であれば十分である。 二酸化硫黄と酸素とは混合気体として用いるこ
とができ、この混合気体は消費分を補給するだけ
で反応器内に滞留させておいてもよく、或いは反
応器内を流通させてもよい。この混合気体は、二
酸化硫黄の酸素に対するモル比が1乃至1000、さ
らに好ましくは2乃至100のものを使用すること
ができる。尚、飽和炭化水素中に溶解している
SO2の濃度が高い方が飽和炭化水素溶液の極性が
大きくなり着色物質の溶解度が増加し光源側壁面
への付着量を減少させることができるため、二酸
化硫黄の酸素に、対するモル比は大きい方が好ま
しい。 一般に光スルホキシ化反応は、中心部に円筒状
の光源を設け、その周囲に飽和炭化水素液を滞留
させることができる円筒型の反応器を用いること
が好ましく、該反応器の下部から分散板を介して
飽和炭化水素液に二酸化硫黄及び酸素ガスが導入
され、前記液及び接触後のガスは一部再循環でき
るようにすることが好適である。 飽和炭化水素に添加する亜硫酸ナトリウムは、
無水であつても、7水塩等の結晶水を有するもの
を用いてもよいが、無水物の方が硫酸の生成がな
いため特に好ましく、また、これらは粉末の状態
で用いることが好ましい。水溶液として用いると
反応系に水が存在し、硫酸の生成量が増加するた
め好ましくない。この亜硫酸ナトリウムの添加は
反応器へ飽和炭化水素を導入する前にあらかじめ
行つてもよく、或いは反応器内の飽和炭化水素に
直接添加してもよい。一方添加量は飽和炭化水素
に対し0.1重量%以下とすると着色物質の光源側
壁面への付着を十分に抑制することができず、連
続的に光スルホキシ化反応を行うことができなく
なるため好ましくない。一方、亜硫酸ナトリウム
の添加量は、多ければ多い程着色物質の付着を長
時間抑制することができるが、飽和炭化水素に対
して10重量%以上となるとその抑制効果の顕著な
上昇は認められず、従つて、10重量%以下とする
ことが経済的である。尚、亜硫酸ナトリウムを分
散させた飽和炭化水素液は反応器内で懸濁液とな
るが、上記10重量%以下の添加量では、光の散乱
等による反応率の低下は特には認められない。 以上のような光スルホキシ化反応においては、
飽和炭化水素の反応率が0.1乃至60%、さらに好
ましくは2乃至30%になるところで反応液をとり
出す。この場合、反応率が低すぎると経済性が悪
くなり、又、反応率が高すぎるとアルカンジスル
ホン酸、アルカントリスルホン酸も生成するよう
になり、アルカンモノスルホン酸の選択性が低下
する。界面活性剤として優れた性質を有するのは
アルカンモノスルホン酸塩であり、アルカンジス
ルホン酸、アルカントリスルホン酸の生成が少な
くなるように反応を制御するのが好ましい。少量
のアルカンジスルホン酸、アルカントリスルホン
酸が生成してもそのために製品のアルカンスルホ
ン酸塩の品質が特に低下することはない。上記の
ような飽和炭化水素の光スルホキシ化において水
がほとんど共存しないため、アルカンスルホン酸
に対して硫酸の生成量は多くても15重量%程度で
ある。反応器から抜き出された反応液は、過又
は遠心分離等の固液分離手段により反応液中の亜
硫酸ナトリウムを分離し、次いでアルカリの添加
によりアルカンスルホン酸を中和して、アルカン
スルホン酸塩を析出させ、未反応の飽和炭化水素
は反応系へ循環使用することができる。尚、この
方法以外にも、反応器から抜き出された液を例え
ば、水、アルコール、アミン、アルカノールアミ
ン等の抽出溶剤で抽出処理して、反応液中のアル
カンスルホン酸を抽出回収し、抽出残液である亜
硫酸ナトリウムを分散した未反応の飽和炭化水素
をそのまま、或いは新たに亜硫酸ナトリウムを添
加して、反応器に循環し再使用を図ることもでき
る。 以上のような本発明の方法は、光スルホキシ化
の反応速度を低下することなく着色物質の光源側
壁面への付着を防止し連続的に、実質的に水の存
在しない系で光スルホキシ化反応によりアルカン
スルホン酸を効率よく製造することができる格別
の効果を奏するものである。 以下に実施例、比較例を示し、本発明の効果を
具体的に述べる。 実施例 1 内径50mmφ、高さ1000mmのガラス製の円筒形状
から成る反応器の軸芯部に石英ガラスで保護した
水銀螢光灯を設けた反応器を用いて、光スルホキ
シ化を行つた。原料として炭素数14〜16のノルマ
ルパラフイン1.2を反応器に入れ、これに無水
の亜硫酸ナトリウム9g(対ノルマルパラフイン
1重量%)を添加し、反応器下部より二酸化硫黄
60/hr、酸素6/hrの流速で導入し、1時間
光スルホキシ反応を行つた。反応終了後、反応生
成物中のアルカンスルホン酸をモノエタノールア
ミンで抽出し、アルカンスルホン酸の収率を求め
た。次いで抽出残のノルマルパラフインに新規の
ノルマルパラフインを加えて全部で1.2として
反応器に入れ、これに無水の亜硫酸ナトリウム9
gを添加して再度上記と同様の操作を行つた。こ
れを10回繰り返し行つた。この結果、反応器内の
石英ガラス製保護管には全く着色物質は付着せ
ず、又、第1表に示すようにアルカンスルホン酸
の収率の低下は見られなかつた。 実施例 2 実施例1において無水の亜硫酸ナトリウムの添
加を0.9g(対ノルマルパラフイン0.1重量%)と
した以外は全く同様の操作を行つた。この結果、
石英ガラス保護管には若干の着色物質の付着が認
められ、又第1表に示すように繰り返し回数が増
えるに従つてアルカンスルホン酸の収率も低下す
るが、比較例に比べると亜硫酸ナトリウムの添加
効果は明白に現われている。 比較例 実施例1において亜硫酸ナトリウムを添加する
ことなく他の操作は全く同一に行つた。この結
果、繰り返し回数が3回目から石英ガラス保護管
に着色物質の付着が認められ、第1表に示すよう
に、回を追うにつれてアルカンスルホン酸の収率
が急激に低下した。 【表】
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing alkanesulfonic acid, which is a raw material for alkanesulfonate having excellent performance as a surfactant for synthetic detergents, etc.
In particular, the present invention relates to a method for producing alkanesulfonic acids by causing sulfur dioxide and oxygen to act on saturated hydrocarbons under irradiation with light in a system substantially free of water. Compared to soaps, alkylbenzene sulfonates, etc. whose cleaning power is significantly reduced in hard water, alkanesulfonates can maintain their cleaning power even in the absence of cleaning aids such as phosphates, and Compared to alkylbenzene sulfonates, it has excellent biodegradability and is preferable from an environmental conservation standpoint, and demand is expected to increase in the future. Prior Art In the method of photo-sulfoxylating saturated hydrocarbons using sulfur dioxide and oxygen in a system substantially free of water, a colored substance adheres to the side wall of the light source, significantly interfering with light irradiation, and causing photo-sulfoxylation. The drawback is that the chemical reaction is reduced. For this reason, when a predetermined amount of the colored substance adheres to the side wall surface of the light source, it is necessary to stop the operation of the reaction apparatus and remove the colored substance, which is inefficient and makes continuous operation impossible. Therefore, in the industrial production of alkanesulfonic acids, a method of photo-sulfoxylation in the presence of water is employed. However, in this method, water interferes with the radical chain reaction, resulting in poor reaction efficiency.In addition to the alkanesulfonic acid, almost equimolar sulfuric acid is produced as a by-product, and in order to separate the sulfuric acid, water is When removed by distillation at a temperature of 140°C, alkanesulfonic acid has problems such as odor and coloration. On the other hand, even in this method of photo-sulfoxylation in the presence of water, some colored substances are produced. In order to suppress the formation of this colored substance, there is a method in which saturated hydrocarbons are first irradiated with ultraviolet rays in the presence of sulfur dioxide in the substantial absence of oxygen, and then oxygen is introduced into the irradiated saturated hydrocarbons. has been proposed (Special Publication No. 47-28973). However, this method is not economical because there is not enough oxygen radical, which is an important promoter of the photo-sulfoxylation reaction, and the reaction rate is extremely slow. Furthermore, in order to suppress the adhesion of the generated colored substances to the side wall surface of the light source, a method has been proposed in which a predetermined amount of nitrogen or air is circulated near the side wall surface of the light source (Japanese Patent Publication No. 11740/1983). However, with this method, it is not possible to completely prevent the liquid from coming into contact with the wall surface, staining of the wall surface on the side of the light source is unavoidable, and furthermore, the nitrogen or air that is being circulated is not able to completely prevent the liquid from coming into contact with the reaction liquid. Since the sulfur is expelled out of the reaction system, the concentration of sulfur dioxide in the reaction solution does not increase and the reaction rate becomes slow. It should be noted that no proposal has been found regarding a method for suppressing the production of colored substances and preventing their adhesion to the side wall surface of the light source in a system substantially free of water. Purpose of the Invention As a result of intensive studies to solve the above-mentioned problems, the present inventor discovered that adding and dispersing sodium sulfite to saturated hydrocarbons to carry out a photo-sulfoxylation reaction can reduce the amount of colored substances without reducing the reaction rate. We have discovered the surprising fact that it is possible to suppress the formation of The present invention was made based on this knowledge, and it is possible to reduce the adhesion of colored substances to the side wall surface of the light source without reducing the reaction rate when photo-sulfoxidizing saturated hydrocarbons in a system substantially free of water. The purpose of the present invention is to propose a method that can continuously produce alkanesulfonic acid while preventing the above. Structure of the Invention The present invention provides a method for producing alkanesulfonic acid by causing sulfur dioxide and oxygen to act on a saturated hydrocarbon under irradiation of light in a system substantially free of water. This is a method for producing alkanesulfonic acid in which sodium sulfite is added to cause sulfur dioxide and oxygen to interact, and in particular, the sodium sulfite is added in an amount of 0.1% to 10% by weight based on the saturated hydrocarbon. The present invention will be described in detail below. The saturated hydrocarbon that can be used in the present invention may be any saturated hydrocarbon as long as it exists as a liquid in the reaction system, but if it is used for production as a raw material for surfactants such as synthetic detergents, carbon atoms 8 to 24 normal paraffins are preferred. As a light source for irradiation, one that can irradiate light with a wavelength of 500 nm or less can be used, such as a high-pressure mercury lamp, a low-pressure mercury lamp, and a low-pressure mercury fluorescent lamp. The reaction temperature is appropriately selected in the range of -20 to 200°C, taking into account the melting point or boiling point of the saturated hydrocarbon, but when using a saturated hydrocarbon that is liquid at room temperature, there is no particular need for heating. The higher the reaction pressure, the higher the reaction rate, which is preferable, but a range of 0 to 50 atmospheres is sufficient. Sulfur dioxide and oxygen can be used as a gas mixture, and this gas mixture may be left in the reactor only to replenish the consumed amount, or it may be allowed to flow through the reactor. This mixed gas may have a molar ratio of sulfur dioxide to oxygen of 1 to 1000, more preferably 2 to 100. Furthermore, it is dissolved in saturated hydrocarbons.
The higher the concentration of SO 2 , the greater the polarity of the saturated hydrocarbon solution, which increases the solubility of colored substances and reduces the amount of adhesion to the side wall of the light source, so the molar ratio of sulfur dioxide to oxygen is large. is preferable. Generally, for photo-sulfoxylation reactions, it is preferable to use a cylindrical reactor that is equipped with a cylindrical light source in the center and can retain a saturated hydrocarbon liquid around it, and a dispersion plate is inserted from the bottom of the reactor. Preferably, sulfur dioxide and oxygen gases are introduced into the saturated hydrocarbon liquid via the saturated hydrocarbon liquid, such that the liquid and the gas after contact can be partially recycled. Sodium sulfite added to saturated hydrocarbons is
Even if it is anhydrous, it may be used that has water of crystallization such as heptahydrate, but anhydrous is particularly preferable because it does not generate sulfuric acid, and it is preferable to use these in the form of powder. When used as an aqueous solution, water is present in the reaction system and the amount of sulfuric acid produced increases, which is not preferable. This addition of sodium sulfite may be carried out before introducing the saturated hydrocarbon into the reactor, or it may be added directly to the saturated hydrocarbon in the reactor. On the other hand, if the amount added is less than 0.1% by weight based on the saturated hydrocarbon, it will not be possible to sufficiently suppress the adhesion of colored substances to the side wall surface of the light source, making it impossible to carry out the photo-sulfoxylation reaction continuously, which is not preferable. . On the other hand, the larger the amount of sodium sulfite added, the longer the adhesion of colored substances can be suppressed, but when the amount exceeds 10% by weight based on the saturated hydrocarbon, no significant increase in the suppressing effect is observed. Therefore, it is economical to keep the content to 10% by weight or less. Note that the saturated hydrocarbon liquid in which sodium sulfite is dispersed becomes a suspension in the reactor, but when the amount added is below 10% by weight, no particular reduction in the reaction rate due to light scattering etc. is observed. In the above photo-sulfoxylation reaction,
The reaction solution is taken out when the reaction rate of the saturated hydrocarbon reaches 0.1 to 60%, more preferably 2 to 30%. In this case, if the reaction rate is too low, the economic efficiency will be poor, and if the reaction rate is too high, alkanedisulfonic acid and alkane trisulfonic acid will also be produced, resulting in a decrease in the selectivity of the alkane monosulfonic acid. Alkane monosulfonic acid salts have excellent properties as surfactants, and it is preferable to control the reaction so as to reduce the production of alkanedisulfonic acids and alkane trisulfonic acids. Even if a small amount of alkanedisulfonic acid or alkanetrisulfonic acid is produced, the quality of the alkanesulfonate product will not be particularly deteriorated. Since almost no water coexists in the photo-sulfoxylation of saturated hydrocarbons as described above, the amount of sulfuric acid produced is at most about 15% by weight based on the alkanesulfonic acid. The reaction liquid taken out from the reactor is separated from sodium sulfite by solid-liquid separation means such as filtration or centrifugation, and then the alkanesulfonic acid is neutralized by the addition of alkali to form an alkanesulfonic acid salt. can be precipitated, and unreacted saturated hydrocarbons can be recycled to the reaction system. In addition to this method, the liquid extracted from the reactor is extracted with an extraction solvent such as water, alcohol, amine, alkanolamine, etc., and the alkanesulfonic acid in the reaction liquid is extracted and recovered. The unreacted saturated hydrocarbon in which sodium sulfite is dispersed as a residual liquid can be recycled as it is, or with new sodium sulfite added thereto, and recycled to the reactor for reuse. The method of the present invention as described above prevents the adhesion of colored substances to the side wall surface of the light source without reducing the reaction rate of photosulfoxylation, and continuously performs the photosulfoxylation reaction in a system substantially free of water. This provides a special effect in that alkanesulfonic acid can be efficiently produced. Examples and comparative examples will be shown below to specifically describe the effects of the present invention. Example 1 Photo-sulfoxidation was carried out using a cylindrical glass reactor with an inner diameter of 50 mmφ and a height of 1000 mm, and a mercury fluorescent lamp protected by quartz glass was installed at the core of the reactor. 1.2% of normal paraffin having 14 to 16 carbon atoms was put into a reactor as a raw material, 9 g of anhydrous sodium sulfite (1% by weight of normal paraffin) was added, and sulfur dioxide was added from the bottom of the reactor.
The photo-sulfoxy reaction was carried out for 1 hour by introducing oxygen at a flow rate of 60/hr and oxygen at a flow rate of 6/hr. After the reaction was completed, the alkanesulfonic acid in the reaction product was extracted with monoethanolamine, and the yield of the alkanesulfonic acid was determined. Next, new normal paraffin was added to the normal paraffin remaining after the extraction, the total amount was 1.2, and the mixture was put into a reactor, and anhydrous sodium sulfite 9
g was added and the same operation as above was performed again. This was repeated 10 times. As a result, no colored substances adhered to the quartz glass protective tube in the reactor, and as shown in Table 1, no decrease in the yield of alkanesulfonic acid was observed. Example 2 The same procedure as in Example 1 was carried out except that 0.9 g of anhydrous sodium sulfite (0.1% by weight relative to normal paraffin) was added. As a result,
Some colored substances were observed on the quartz glass protective tube, and as shown in Table 1, the yield of alkanesulfonic acid decreased as the number of repetitions increased, but compared to the comparative example, the yield of sodium sulfite The additive effect is clearly visible. Comparative Example The other operations were performed in exactly the same manner as in Example 1 without adding sodium sulfite. As a result, adhesion of colored substances to the quartz glass protective tube was observed from the third repetition, and as shown in Table 1, the yield of alkanesulfonic acid sharply decreased as the repetition progressed. 【table】

Claims (1)

【特許請求の範囲】 1 実質的に水が存在しない系で、飽和炭化水素
に、二酸化硫黄と酸素とを光の照射下に作用させ
てアルカンスルホン酸を製造する方法において、
前記飽和炭化水素に亜硫酸ナトリウムを添加して
二酸化硫黄と酸素とを作用させることを特徴とす
るアルカンスルホン酸の製造方法。 2 上記亜硫酸ナトリウムの添加が飽和炭化水素
に対して、0.1重量%〜10重量%であることを特
徴とする特許請求の範囲第1項記載のアルカンス
ルホン酸の製造方法。
[Claims] 1. A method for producing alkanesulfonic acid by causing sulfur dioxide and oxygen to act on a saturated hydrocarbon under irradiation of light in a system substantially free of water, comprising:
A method for producing alkanesulfonic acid, which comprises adding sodium sulfite to the saturated hydrocarbon to cause sulfur dioxide and oxygen to interact with each other. 2. The method for producing alkanesulfonic acid according to claim 1, wherein the sodium sulfite is added in an amount of 0.1% to 10% by weight based on the saturated hydrocarbon.
JP4711784A 1984-03-14 1984-03-14 Production of alkanesulfonic acid Granted JPS60193961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4711784A JPS60193961A (en) 1984-03-14 1984-03-14 Production of alkanesulfonic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4711784A JPS60193961A (en) 1984-03-14 1984-03-14 Production of alkanesulfonic acid

Publications (2)

Publication Number Publication Date
JPS60193961A JPS60193961A (en) 1985-10-02
JPS6366827B2 true JPS6366827B2 (en) 1988-12-22

Family

ID=12766220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4711784A Granted JPS60193961A (en) 1984-03-14 1984-03-14 Production of alkanesulfonic acid

Country Status (1)

Country Link
JP (1) JPS60193961A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475337U (en) * 1990-11-08 1992-07-01
TWI497555B (en) * 2013-02-18 2015-08-21 Sumitomo Heavy Industries Microwave ion source and its starting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475337U (en) * 1990-11-08 1992-07-01
TWI497555B (en) * 2013-02-18 2015-08-21 Sumitomo Heavy Industries Microwave ion source and its starting method

Also Published As

Publication number Publication date
JPS60193961A (en) 1985-10-02

Similar Documents

Publication Publication Date Title
JPS58126824A (en) Neutralization for reactant mixture using oxygen as catalyst
US2433396A (en) Process for production of sulfonic acids
JPS6366827B2 (en)
US4643813A (en) Process for producing alkanesulfonic acids
US2321022A (en) Chemical compound and process
US3306931A (en) Production of alkali metal alkyl sulfonates
CN102906069B (en) Preparation method of dicyclohexyl disulfide
EP0411209B1 (en) Decolorization of alkanesulfonic and arenesulfonic acids
KR100209997B1 (en) Process for preparing cumene hydroperoxide
CA1085879A (en) Continuous process for the removal of non-paraffinic hydrocarbons from paraffinic hydrocarbons
JPH0571586B2 (en)
JPS61267546A (en) Production of alkanesulfonic acid
JPH0564945B2 (en)
US2352097A (en) Production of organic compounds containing sulphur, chlorine, and oxygen
US5608103A (en) Preparation of alkanesulphonic acids by photooxidation of sulpher-containing derivatives
JPS59196859A (en) Method for producing alkanesulfonic acid
US5698830A (en) Process for the preparation of alkanesulphonic acids
US3578575A (en) Photonitrosation of normal paraffins
US3775275A (en) Photonitrosation of normal paraffins
JPS61267544A (en) Production of alkanesulfonic acid
JPS59196858A (en) Method for producing alkanesulfonate
JPS59204168A (en) Production of alkanesulfonate
JPH01221359A (en) Production of sulfonated alkane
US5096625A (en) Process for the sulphoxidation of n-paraffins
US2519403A (en) Sulfonyl derivatives of di-tertiaryalkyl peroxides and a method for their production