[go: up one dir, main page]

JPS6366531A - Laser beam scanning optical system - Google Patents

Laser beam scanning optical system

Info

Publication number
JPS6366531A
JPS6366531A JP21244386A JP21244386A JPS6366531A JP S6366531 A JPS6366531 A JP S6366531A JP 21244386 A JP21244386 A JP 21244386A JP 21244386 A JP21244386 A JP 21244386A JP S6366531 A JPS6366531 A JP S6366531A
Authority
JP
Japan
Prior art keywords
optical system
lens
laser beam
refractive index
scanning optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21244386A
Other languages
Japanese (ja)
Inventor
Takeshi Kuwayama
桑山 武司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP21244386A priority Critical patent/JPS6366531A/en
Publication of JPS6366531A publication Critical patent/JPS6366531A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To reduce the cost of an inclination correcting optical system by linearly condensing a laser beam on the mirror surface of a deflector by a distributed index lens which has refractive index distribution only in one direction. CONSTITUTION:The distributed index lens which has refractive index distribution only in one direction is used instead of a conventional cylindrical lens. Parallel rays of the luminous flux from a laser unit 1 as the light source pass a distributed index lens 7 having refractive index distribution only in one direction, and the image of the section in the subscanning direction is formed no a rotating polygonal mirror but that in the main scanning direction is not formed and rays are parallel as they are. Thus, the distributed index lens 7 is used in an inclination correcting scanning optical system to reduce the cost of the inclination correction optical system.

Description

【発明の詳細な説明】 [技術分野] 本発明はレーザービームプリンター等に使用される走査
光学系、特に回転多面鏡又はガルバノミラ−の如きミラ
ー面を有する偏向器を用いた走査光学系に関するもので
ある。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a scanning optical system used in a laser beam printer or the like, and particularly to a scanning optical system using a deflector having a mirror surface such as a rotating polygon mirror or a galvano mirror. be.

C従来技術] レーザービームを回転多面鏡又はガルバノミラ−で走査
し感光体上に画像を形成する装置では、回転多面鏡の各
々の面が基準の角度に対し異なっていたり、又ガルバノ
ミラ−の軸に軸振れがある場合、結像ビームが感光体を
走査する位置が走査毎に異なり品位の悪い画像となる。
C. Prior Art] In a device that scans a laser beam with a rotating polygon mirror or galvanometer mirror to form an image on a photoreceptor, each surface of the rotating polygon mirror is at a different angle with respect to a reference angle, or the axis of the galvanometer mirror is If there is axial vibration, the position at which the imaging beam scans the photoreceptor differs from scan to scan, resulting in poor quality images.

この欠点を解消したのが第5図に示す倒れ補正光学系で
ある。この光学系は光源であるレーザーユニット1から
ある径の平行光束を副走査方向の断面のみを回転多面鏡
3(ガルバノミラ−の場合でも同様)に結像させるため
回転多面鏡3とレーザーユニットの間にシリンドリカル
レンズを配置し、回転多面鏡3での反射光は球面レンズ
4と子線方向と母線方向で屈折力が異なるトーリックレ
ンズ5に導かれる。主走査方向の断面の結像は第6図(
a)の様に回転多面鏡3で反射された平行光を球面レン
ズ4とトーリックレンズ5の母線方向の屈折力とで感光
体6の上に結像している。副走査方向の断面では第6図
(b)の様にレーザーユニットか“らの平行光束はシリ
ンドリカルレンズ2によって回転多面鏡3上で結像され
回転多面鏡で反射された光は発散光となり、これが球面
レンズ4とトーリックレンズ5の子線方向の屈折力とに
よって感光体上に結像されている。この様にレーザーユ
ニットから平行光束をシリンドリカルレンズによって回
転多面鏡3の上に結像していて更にその像を感光体6上
に結像していて回転多面鏡と感光体は共役関係にある。
The tilt correction optical system shown in FIG. 5 solves this drawback. This optical system is designed between the rotating polygon mirror 3 and the laser unit in order to image a parallel beam of a certain diameter from the laser unit 1, which is the light source, on the rotating polygon mirror 3 (the same applies in the case of a galvanometer mirror) in the cross-section in the sub-scanning direction. A cylindrical lens is arranged at , and the reflected light from the rotating polygon mirror 3 is guided to a spherical lens 4 and a toric lens 5 having different refractive powers in the sagittal direction and the generatrix direction. The cross-sectional image formation in the main scanning direction is shown in Figure 6 (
As shown in a), the parallel light reflected by the rotating polygon mirror 3 is imaged on the photoreceptor 6 by the refractive power of the spherical lens 4 and the toric lens 5 in the generatrix direction. In the cross section in the sub-scanning direction, as shown in FIG. 6(b), the parallel light beam from the laser unit is imaged on the rotating polygon mirror 3 by the cylindrical lens 2, and the light reflected by the rotating polygon mirror becomes diverging light. This is imaged on the photoreceptor by the refractive power of the spherical lens 4 and the sagittal direction of the toric lens 5. In this way, the parallel light beam from the laser unit is imaged onto the rotating polygon mirror 3 by the cylindrical lens. Furthermore, the image is formed on a photoreceptor 6, and the rotating polygon mirror and the photoreceptor are in a conjugate relationship.

従って回転多面鏡が倒れても感光体6上で結像位蓋は変
らない。
Therefore, even if the rotating polygon mirror falls down, the imaging position on the photoreceptor 6 does not change.

従来、この補正光学系ではレーザーユニットからの平行
光束を副走査方向の断面で回転多面鏡6上に結像させる
ためシリンドリカルレンズを使用しているが、シリンド
リカルレンズの加工は球面レンズの加工法と異なり特殊
な治工具と加工法が必要で、加工コストも高くなる、又
光軸の位置及び母線方向を粘度良く出すのも容易ではな
い。
Conventionally, this correction optical system uses a cylindrical lens to image the parallel light beam from the laser unit on the rotating polygon mirror 6 in a cross section in the sub-scanning direction, but the processing of the cylindrical lens is similar to the processing method of a spherical lens. Differently, special jigs and tools and machining methods are required, which increases the machining cost, and it is also difficult to determine the position of the optical axis and the direction of the generatrix with good viscosity.

[発明の目的コ 本発明の目的は、上述した従来の走査光学系を改良する
ことにあり、その為に本発明においては上述した従来の
シリンドリカルレンズに代えて、一方向のみ屈折率分布
を持った屈折率分布型レンズを用いたものである。以下
、図面を用いて本発明を詳述する。
[Purpose of the Invention] The purpose of the present invention is to improve the conventional scanning optical system described above, and for this purpose, in the present invention, instead of the conventional cylindrical lens described above, a lens having a refractive index distribution in only one direction is used. This uses a graded refractive index lens. Hereinafter, the present invention will be explained in detail using the drawings.

第1図及び第2図(a)(b)は本発明の一実施例を示
す図で、1は光源であるレーザーユニット、7は一方向
にだけ屈折率分布をもった屈折率分布型レンズ、3は回
転多面鏡、4は球面レンズ、5はトーリックレンズ、6
は感光体である。
Figures 1 and 2 (a) and (b) are diagrams showing an embodiment of the present invention, in which 1 is a laser unit as a light source, and 7 is a gradient index lens that has a gradient index in only one direction. , 3 is a rotating polygon mirror, 4 is a spherical lens, 5 is a toric lens, 6
is a photoreceptor.

光源であるレーザーユニット1からの平行光束は一方向
にだけ屈折率分布をもった屈折分布型レンズ7を通る事
により副走査方向の断面は回転多面鏡上に結像し、主走
査方向の断面は結像しないで平行のままである。即ち、
第1図に示す様に、従来例におけるシリンドリカルレン
ズ2に代って屈折率分布型レンズ7を使用したものであ
る。
The parallel light beam from the laser unit 1, which is a light source, passes through the refractive index distribution type lens 7 which has a refractive index distribution in only one direction, so that the cross section in the sub-scanning direction is imaged on the rotating polygon mirror, and the cross-section in the main scanning direction is formed as an image on the rotating polygon mirror. remain parallel without being imaged. That is,
As shown in FIG. 1, a gradient index lens 7 is used in place of the cylindrical lens 2 in the conventional example.

この場合、主走査方向の断面の結像光路を第2図(a)
に、副走査方向の断面の結像光路を第2図(b)に示す
。屈折率分布型レンズはTλ十とかCs中とかLi中の
イオンを含んだ平面ガラスを500〜600℃の硝酸カ
リウム(KNO3)の溶融塩中に入れておくとイオン交
換が起こる。
In this case, the imaging optical path in the cross section in the main scanning direction is shown in Figure 2(a).
FIG. 2(b) shows a cross-sectional imaging optical path in the sub-scanning direction. In the gradient index lens, ion exchange occurs when a flat glass containing ions of Tλ0, Cs, or Li is placed in a molten salt of potassium nitrate (KNO3) at 500 to 600°C.

表面からの距藺によってイオン交換の程度が異なり、厚
みの方向にだけ屈折率分布が生ずる。この平面ガラスを
必要な大きさに切断し、切断される両端を研磨すればシ
リンドリカルレンズと同じ役割を果たす。その結像状態
を第3図に、又、屈折率分布型レンズの分布の様子を第
4図に示す。
The degree of ion exchange differs depending on the distance from the surface, and a refractive index distribution occurs only in the thickness direction. By cutting this flat glass to the required size and polishing both cut ends, it can function in the same way as a cylindrical lens. The image formation state is shown in FIG. 3, and the distribution of the gradient index lens is shown in FIG. 4.

第4図で、縦軸は屈折率nを示し、横軸のX方向、X方
向はX方向が主走査方向を、X方向が副走査方向を示す
。屈折率分布型レンズはイオン交換した一枚のガラスか
ら多数のレンズを切出すことかでき、1個当りのコスト
も安くなる。又、製造上、光軸はガラス板の中心にあり
、かつ母線もガラスの両面に平行になり、母線方向を合
わせたり光軸を出す工程は必要がない。
In FIG. 4, the vertical axis indicates the refractive index n, the horizontal axis indicates the X direction, the X direction indicates the main scanning direction, and the X direction indicates the sub scanning direction. With gradient index lenses, many lenses can be cut out from a single sheet of ion-exchanged glass, and the cost per lens is low. Furthermore, in manufacturing, the optical axis is located at the center of the glass plate, and the generatrix is also parallel to both surfaces of the glass, so there is no need for a process to align the generatrix direction or to bring out the optical axis.

以上説明した社に、倒れ補正走査光学系中のシリンドリ
カルレンズを一方向にだけ屈折率分布をもつ屈折率分布
型レンズを使用することにより倒れ補正光学系のコスト
を下げることがてきる。
As described above, the cost of the tilt correction optical system can be reduced by using a gradient index lens having a refractive index distribution in only one direction as the cylindrical lens in the tilt correction scanning optical system.

4(2!口の商工な説明 第1図及び第2図(a)(b)は本発明に係る走査光学
系の一実施例を示す図、第3図及び第4図は本発明の走
査光学系に用いられる屈折率分布型レンズを説明する為
の図、第5図及び第6図(a)(b)は従来の走査光学
系の一実施例を示す図。
4 (2! Business and Industry Explanation) Figures 1 and 2 (a) and (b) are diagrams showing an embodiment of the scanning optical system according to the present invention, and Figures 3 and 4 are diagrams showing the scanning optical system of the present invention. FIGS. 5 and 6 (a) and (b) are diagrams for explaining a gradient index lens used in an optical system, and are diagrams showing an example of a conventional scanning optical system.

1−一一一レーザーユニット、3−m=一回転多面鏡、
4−一一一球面レンズ、5−一一一トーリックレンズ、
6−−−−感光体、7−−−−屈折率分布型レンズ。
1-111 laser unit, 3-m = one rotation polygon mirror,
4-111 spherical lens, 5-111 toric lens,
6---Photoreceptor, 7---Gradient refractive index lens.

Claims (1)

【特許請求の範囲】[Claims] (1)レーザービームを回転多面鏡又はガルバノミラー
等の偏向器により走査し、この偏向されたレーザービー
ムで感光体の如き被走査面を走査する走査光学系におい
て、一方向のみ屈折率分布を持った屈折率分布型レンズ
によりレーザービームを前記偏向器のミラー面上に線状
に集光する事を特徴とするレーザービーム走査光学系。
(1) In a scanning optical system in which a laser beam is scanned by a deflector such as a rotating polygon mirror or a galvano mirror, and this deflected laser beam scans a scanned surface such as a photoreceptor, the scanning optical system has a refractive index distribution in only one direction. A laser beam scanning optical system characterized in that a laser beam is focused linearly onto a mirror surface of the deflector using a gradient index lens.
JP21244386A 1986-09-09 1986-09-09 Laser beam scanning optical system Pending JPS6366531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21244386A JPS6366531A (en) 1986-09-09 1986-09-09 Laser beam scanning optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21244386A JPS6366531A (en) 1986-09-09 1986-09-09 Laser beam scanning optical system

Publications (1)

Publication Number Publication Date
JPS6366531A true JPS6366531A (en) 1988-03-25

Family

ID=16622696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21244386A Pending JPS6366531A (en) 1986-09-09 1986-09-09 Laser beam scanning optical system

Country Status (1)

Country Link
JP (1) JPS6366531A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5166944A (en) * 1991-06-07 1992-11-24 Advanced Laser Technologies, Inc. Laser beam scanning apparatus and method
JP2005062358A (en) * 2003-08-08 2005-03-10 Seiko Epson Corp Optical scanning apparatus and image forming apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636622A (en) * 1979-09-04 1981-04-09 Canon Inc Scanning optical system having inclination correcting function
JPS58219507A (en) * 1982-06-15 1983-12-21 Nippon Sheet Glass Co Ltd One-dimensional lens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636622A (en) * 1979-09-04 1981-04-09 Canon Inc Scanning optical system having inclination correcting function
JPS58219507A (en) * 1982-06-15 1983-12-21 Nippon Sheet Glass Co Ltd One-dimensional lens

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5166944A (en) * 1991-06-07 1992-11-24 Advanced Laser Technologies, Inc. Laser beam scanning apparatus and method
US5646766A (en) * 1991-06-07 1997-07-08 Advanced Laser Technologies, Inc. Laser beam scanning apparatus and method
JP2005062358A (en) * 2003-08-08 2005-03-10 Seiko Epson Corp Optical scanning apparatus and image forming apparatus

Similar Documents

Publication Publication Date Title
CA1087006A (en) Optical system for rotating mirror line scanning apparatus
EP0386226B1 (en) Optical scanner
US4900138A (en) Composite gradient index and curved surface anamorphic lens and applications
US4620768A (en) Optical scanning system
US4583816A (en) Preobjective hologon scanner system
US5828481A (en) Mid-objective laser scanner
JPH035562B2 (en)
JPH06230307A (en) Laser scanning device and scanning lens
JPS6366531A (en) Laser beam scanning optical system
US4464011A (en) Light beam scanning apparatus and the method
KR20010014242A (en) Anamorphic scan lens for laser scanner
JP2727580B2 (en) Optical scanning device
JPH04242215A (en) Optical scanner
JPS61156217A (en) Optical-beam scanning device
JP2583716B2 (en) Optical system laser beam scanner
EP0836106B1 (en) Light-beam scanning apparatus comprising divergent or convergent light-shaping means
JPH0543090B2 (en)
KR890006859Y1 (en) Correction lens system of laser beam scanning device
JPH05107495A (en) Scanning optical device
KR890006858Y1 (en) Scanner hologram
JPH0618801A (en) Beam diameter adjustment method for optical scanning device
JPS5837616A (en) Optical beam scanner
JP3330649B2 (en) Anamorphic fθ lens and optical scanning device
JPH05249400A (en) Laser scanning device
JPS62127818A (en) Optical light beam scanner