JPS6365611A - Formation of ferromagnetic thin film - Google Patents
Formation of ferromagnetic thin filmInfo
- Publication number
- JPS6365611A JPS6365611A JP21016086A JP21016086A JPS6365611A JP S6365611 A JPS6365611 A JP S6365611A JP 21016086 A JP21016086 A JP 21016086A JP 21016086 A JP21016086 A JP 21016086A JP S6365611 A JPS6365611 A JP S6365611A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- substrate
- temperature
- heater
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 34
- 230000005294 ferromagnetic effect Effects 0.000 title claims description 7
- 230000015572 biosynthetic process Effects 0.000 title 1
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 238000000137 annealing Methods 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 7
- 239000000956 alloy Substances 0.000 claims abstract description 3
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 3
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 3
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 3
- 239000010408 film Substances 0.000 claims description 7
- 230000001590 oxidative effect Effects 0.000 claims description 2
- 229910052684 Cerium Inorganic materials 0.000 claims 1
- 229910052779 Neodymium Inorganic materials 0.000 claims 1
- 229910052777 Praseodymium Inorganic materials 0.000 claims 1
- 229910052772 Samarium Inorganic materials 0.000 claims 1
- 229910052727 yttrium Inorganic materials 0.000 claims 1
- 238000004544 sputter deposition Methods 0.000 abstract description 9
- 230000005291 magnetic effect Effects 0.000 abstract description 8
- 239000000843 powder Substances 0.000 abstract description 8
- 238000005245 sintering Methods 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract description 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
- Thin Magnetic Films (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は磁気記録媒体や高性能小型モータなどに用い
られる最大エネルギ積(BH) maxの大きい強磁性
薄膜の形成方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for forming a ferromagnetic thin film having a large maximum energy product (BH) max used in magnetic recording media, high-performance small motors, and the like.
(従来の技術)
このような強磁性薄膜の形成方法として特開昭49−8
6895が提案されている。これは膜を付着する下地の
基板温度を20℃に冷却した状態で高速スパッタリング
を行い、数10μmの膜を形成した後アニール処理を行
う方法である。これによって保磁力iHcが35 kO
e、最大エネルギ積(BH) maxが10 MGOe
の特性を得ている。(Prior art) As a method for forming such a ferromagnetic thin film, Japanese Patent Application Laid-Open No. 49-8
6895 has been proposed. This is a method in which high-speed sputtering is performed with the substrate temperature on which the film is attached cooled to 20° C., and after a film of several tens of micrometers is formed, an annealing treatment is performed. This results in a coercive force iHc of 35 kO.
e, maximum energy product (BH) max is 10 MGOe
It has obtained the characteristics of
また、 a H,Aly等はSmCo 5の薄膜を形成
して面内方向で20 MGOeの(BH) maxを得
ているが、膜厚方向の特性は非常に小さいものである(
J、AppLPhys、、 57 (81,15Mar
ch 1985P、2149)。In addition, aH, Aly, etc. have obtained a (BH) max of 20 MGOe in the in-plane direction by forming a thin film of SmCo 5, but the characteristics in the film thickness direction are very small (
J, AppLPhys, 57 (81,15 Mar
ch 1985P, 2149).
(発明が解決しようとする問題点)
磁気を利用した装置を高性能化または小型化する場合に
は膜厚方向の最大エネルギ積(BH)maxの大きいこ
と、たとえば10 MGOe以上のものが必要である。(Problem to be solved by the invention) In order to improve the performance or downsize a device using magnetism, it is necessary to have a large maximum energy product (BH) max in the film thickness direction, for example, 10 MGOe or more. be.
しかし、従来の薄膜形成方法によってはこのような値が
得られていないのが現状である。また、基板の温度を2
0℃に保持してスパッタリングを行うには冷却装置が必
要となるため基板の形状が制限される欠点がある。However, the current situation is that such values cannot be obtained using conventional thin film forming methods. Also, the temperature of the board is 2
Since a cooling device is required to perform sputtering while maintaining the temperature at 0° C., there is a drawback that the shape of the substrate is limited.
(本発明の目的)
この発明は上記の問題点を解決した最大工ネルギ積(B
H) maxの高い薄膜の形成方法を提供するものであ
る。(Objective of the present invention) This invention solves the above-mentioned problems and solves the problems described above.
H) A method for forming a thin film with high max is provided.
(問題点を解決するための手段)
このため1本発明は、希土類RとCoとの合金FttR
をスパッタリングによって形成する際に基板温度を15
0℃〜350℃に保持して薄膜を形成した後、真空中も
しくは非酸化性雰囲気中にて6sogoo℃でアニール
を行うようにしである。(Means for solving the problem) For this reason, the present invention provides an alloy FttR of rare earth R and Co.
When forming by sputtering, the substrate temperature was set to 15
After forming a thin film while maintaining the temperature at 0° C. to 350° C., annealing is performed at 60° C. in vacuum or in a non-oxidizing atmosphere.
(作用)
上記のように基板温度を150℃〜350℃にすること
によって形成された薄膜の構造は非晶質もしくは微細結
晶となり、この後の650’C〜800℃のアニールに
よって十分な結晶化が計れるため、高エネルギ積の磁気
特性を有する薄膜が得られる。(Function) The structure of the thin film formed by raising the substrate temperature to 150°C to 350°C as described above becomes amorphous or microcrystalline, and is sufficiently crystallized by subsequent annealing at 650°C to 800°C. can be measured, resulting in a thin film having magnetic properties with a high energy product.
(実施例) 以下この発明を実施例によって詳細に説明する。(Example) The present invention will be explained in detail below with reference to Examples.
第1実施例
第1図はこの発明の薄膜形成に用いたDC2極マグネト
ロンスパッタリング装置の概略図である。真空容器1の
中には薄膜中のSmの原子比が2096になるようにS
m粉末とCo粉末とを混合した後真空中で焼結して得た
ターゲット2、ターゲットから35mmの距離に対向さ
せた基板3.基板の取付は台4.シャッタ5.基板背後
に設置した基板加熱用ヒータ6が配置されている。まず
、真空容器内をI X 10−5 Torr以下に排気
した後、ヒータ6に交流電流を通じて、基板、基板取付
は台及びターゲットなどを400℃以上に約2時間加熱
してベーキングを行い、この後100℃以下になるまで
冷却した。First Embodiment FIG. 1 is a schematic diagram of a DC bipolar magnetron sputtering apparatus used for forming a thin film according to the present invention. Inside the vacuum container 1, S is added so that the atomic ratio of Sm in the thin film is 2096.
A target 2 obtained by mixing M powder and Co powder and sintering in vacuum, and a substrate 3 facing the target at a distance of 35 mm. Mount the board on stand 4. Shutter 5. A heater 6 for heating the substrate is placed behind the substrate. First, after evacuating the inside of the vacuum chamber to below IX 10-5 Torr, an alternating current is passed through the heater 6 to heat the substrate, the base for mounting the substrate, the target, etc. to 400°C or higher for about 2 hours to perform baking. It was then cooled to below 100°C.
つぎに、 Arガス導入パルプ8を開いてArガスを導
入し、圧力を0.02〜0.04Torrに調整した後
、シャッタ5を閉じた状態でターゲット2に350V〜
350vの直流電圧を印加して約20mA/dのターゲ
ット電流を約20分間通じて予備スパッタリングを行い
、ターゲット表面の酸化物を除去した。この後バイアス
電源9を調整して負の直流電圧60Vを印加してシャッ
タを開き、20〜25 mA/ cdのターゲット電流
を1時間通じてスパッタリングを行い薄膜を形成した。Next, the Ar gas introducing pulp 8 is opened to introduce Ar gas, and after adjusting the pressure to 0.02 to 0.04 Torr, a voltage of 350 V to 350 V is applied to the target 2 with the shutter 5 closed.
Preliminary sputtering was performed by applying a DC voltage of 350 V and passing a target current of about 20 mA/d for about 20 minutes to remove oxides on the target surface. Thereafter, the bias power supply 9 was adjusted, a negative DC voltage of 60 V was applied, the shutter was opened, and a target current of 20 to 25 mA/cd was applied to perform sputtering for 1 hour to form a thin film.
この場合の基板温度はヒータ6にわずかに電流を通じて
予熱し350℃とした。つぎにシャッタを閉じて真空容
器内をI X 10−5Torr以下の圧力に排気し、
ヒータ6に電流を通じて基板を700℃に加熱し、この
温度で60分間保持した後、室温まで冷却した。このよ
うにして形成した薄膜の膜厚方向に超電導コイルを用い
て80kOeの外部磁界を印加し。In this case, the substrate temperature was set to 350° C. by passing a slight current through the heater 6 to preheat it. Next, close the shutter and evacuate the inside of the vacuum container to a pressure of I x 10-5 Torr or less,
The substrate was heated to 700° C. by passing an electric current through the heater 6, held at this temperature for 60 minutes, and then cooled to room temperature. An external magnetic field of 80 kOe was applied in the thickness direction of the thin film thus formed using a superconducting coil.
磁気特性を測定した結果、 14MGOeの最大エネ
ルギ積(BH) maxの値が得られた。この薄膜のS
m濃度を調べるため組成分析を行ったところSmの原子
比は18%で残りCoとなっておりほぼSmCo5系の
組成となっていた。As a result of measuring the magnetic properties, a maximum energy product (BH) max value of 14MGOe was obtained. The S of this thin film
A compositional analysis was performed to check the m concentration, and the atomic ratio of Sm was 18%, with the remainder being Co, making the composition almost SmCo5-based.
さらに、基板温度を100〜400℃の範囲で薄膜を作
成した。基板温度が100〜250℃の範囲ではヒータ
による予熱を行うことなしに、ターゲット電流の大きさ
で調整した。この後600〜850℃の種々の温度でア
ニールを行った後、前記と同様にして(BH) max
を求め、基板温度とアニール温度についてプロットした
ところ第2図に示す結果が得られた。図中の数字は(B
H) maxの値であり、線で囲んだ範囲Aは(BH)
maxが10 MGOeを越える値が得られた条件で
ある。この範囲内で形成された薄膜は結晶化が最適にな
ったものと考えられる。 なお、最大エネルギ積(BH
) ma:cに対する組成の影響を調べるためにSm粉
末とCo粉末の混合割合を種々変えた焼結ターゲットを
作製し、基板温度を250℃とし、他の条件は前記と同
様にしてスパッタリングを行って薄膜を形成した。この
後真空中にて700℃1時間のアニールを施した。Sm
の原子比が25%及び3596の薄膜の最大エネルギ積
は12〜13 MGOeであったが、 Smの原子比が
13%及び4096の薄膜では10MGOe以下と低い
値であった。Furthermore, thin films were created with the substrate temperature in the range of 100 to 400°C. When the substrate temperature was in the range of 100 to 250° C., the target current was adjusted without preheating with a heater. After this, annealing was performed at various temperatures from 600 to 850°C, and then (BH) max
When the substrate temperature and annealing temperature were plotted, the results shown in FIG. 2 were obtained. The numbers in the figure are (B
H) is the value of max, and the range A surrounded by the line is (BH)
These are the conditions under which a value of max exceeding 10 MGOe was obtained. It is considered that the thin film formed within this range has optimal crystallization. In addition, the maximum energy product (BH
) In order to investigate the influence of composition on ma:c, sintered targets were prepared with various mixing ratios of Sm powder and Co powder, and sputtering was performed at a substrate temperature of 250 °C and other conditions as above. A thin film was formed. Thereafter, annealing was performed at 700° C. for 1 hour in a vacuum. Sm
The maximum energy product of a thin film with an Sm atomic ratio of 25% and 3596 was 12 to 13 MGOe, but a thin film with an Sm atomic ratio of 13% and 4096 had a low value of 10 MGOe or less.
また、 Sm濃度が18原子%の膜が得られる前記ター
ゲットに50〜500Wの高周波電圧を印加して形成し
た後7&で1時間アニールした薄膜についても12MG
Oeの最大エネルギ積が得られた。さらに、薄膜を形成
した後。Furthermore, a thin film formed by applying a high frequency voltage of 50 to 500 W to the target to obtain a film with an Sm concentration of 18 at %, and then annealed for 1 hour at 7&msp; was also 12 MG.
A maximum energy product of Oe was obtained. Furthermore, after forming a thin film.
アニールを施す際に膜が酸化されないH2ガスやArガ
ス雰囲気中で処理した場合も10 MGOe以上の最大
エネルギ積の値が得られた。Even when annealing was performed in an H2 gas or Ar gas atmosphere in which the film is not oxidized, a maximum energy product value of 10 MGOe or more was obtained.
第2実施例
薄膜中のPrの原子比が2096になるようにPr粉末
とCo粉末とを混合して真空中で焼結しターゲットを作
製し、第1実施例と同様に直流2極スパツタリングで薄
膜を形成した。この後高真空中にて7誹もで1時間のア
ニールを施した。磁気測定を行い最大エネルギ積を求め
たところ基板温度150℃、250℃、350℃で12
MGOeの値を得た。Second Example A target was prepared by mixing Pr powder and Co powder so that the atomic ratio of Pr in the thin film was 2096 and sintering in vacuum, and using DC bipolar sputtering as in the first example. A thin film was formed. Thereafter, annealing was performed in a high vacuum for 1 hour at 7 increments. When we performed magnetic measurements and found the maximum energy product, it was 12 at substrate temperatures of 150°C, 250°C, and 350°C.
The value of MGOe was obtained.
(発明の効果)
以上説明したようにこの発明によればスパッタリング時
の基板の温度を冷却または高温に加熱する必要がないた
め、基板の形状に制限なく最大エネルギ積(BH) m
axΦ大きい薄膜が得られる。(Effects of the Invention) As explained above, according to the present invention, there is no need to cool down or heat the substrate to a high temperature during sputtering, and therefore the maximum energy product (BH) m is not limited to the shape of the substrate.
A thin film with a large axΦ can be obtained.
このため、磁気を別層した高性能小型モータ及び磁気記
録媒体への適用が可能な強磁性薄膜を得ることができる
。Therefore, it is possible to obtain a ferromagnetic thin film that can be applied to high-performance small motors and magnetic recording media with separate magnetic layers.
第1図はこの発明の強磁性薄膜の形成に用いた装置の概
略図、第2図は最大エネルギ積(BH)maXと薄膜形
成条件との関係を示した図である。
2はターゲット、3は基板、6は携沖1察ヒータである
。
第1図
5、シャッタ −0.ヒータ電源箱 2 回
基板温度(°C)FIG. 1 is a schematic diagram of the apparatus used for forming the ferromagnetic thin film of the present invention, and FIG. 2 is a diagram showing the relationship between the maximum energy product (BH) maX and the thin film forming conditions. 2 is a target, 3 is a board, and 6 is a portable heater. Figure 1 5, shutter -0. Heater power supply box 2 times Board temperature (°C)
Claims (1)
なる希土類金属RとCoからなる合金薄膜を、基板温度
150℃〜350℃にてスパッタリングを行い、Rの原
子比が15〜35%を占めるように形成し、真空中もし
くは非酸化性雰囲気中において650℃〜800℃でア
ニールすることを特徴とする強磁性薄膜の形成方法。A thin alloy film made of a rare earth metal R made of at least one of Sm, Pr, Ce, Nd, and Y and Co is sputtered at a substrate temperature of 150°C to 350°C, and the atomic ratio of R is 15 to 35%. A method for forming a ferromagnetic thin film, which comprises forming the ferromagnetic thin film as described above and annealing it at 650°C to 800°C in vacuum or in a non-oxidizing atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21016086A JPS6365611A (en) | 1986-09-05 | 1986-09-05 | Formation of ferromagnetic thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21016086A JPS6365611A (en) | 1986-09-05 | 1986-09-05 | Formation of ferromagnetic thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6365611A true JPS6365611A (en) | 1988-03-24 |
JPH0571165B2 JPH0571165B2 (en) | 1993-10-06 |
Family
ID=16584756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21016086A Granted JPS6365611A (en) | 1986-09-05 | 1986-09-05 | Formation of ferromagnetic thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6365611A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5062938A (en) * | 1990-01-16 | 1991-11-05 | International Business Machines Corporation | High coercivity low noise cobalt alloy magnetic recording medium and its manufacturing process |
US7905991B2 (en) * | 2004-11-12 | 2011-03-15 | Oerlikon Trading Ag, Trubbach | Vacuum treatment system |
-
1986
- 1986-09-05 JP JP21016086A patent/JPS6365611A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5062938A (en) * | 1990-01-16 | 1991-11-05 | International Business Machines Corporation | High coercivity low noise cobalt alloy magnetic recording medium and its manufacturing process |
US7905991B2 (en) * | 2004-11-12 | 2011-03-15 | Oerlikon Trading Ag, Trubbach | Vacuum treatment system |
Also Published As
Publication number | Publication date |
---|---|
JPH0571165B2 (en) | 1993-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105989983B (en) | Permanent magnet | |
JPH0742553B2 (en) | Permanent magnet material and manufacturing method thereof | |
Lommel et al. | Rotatable anisotropy in composite films | |
JPH0883713A (en) | Thin film magnet, manufacture thereof and cylindrical ferromagneetic thin film | |
US20200365301A1 (en) | Rare-earth cobalt permanent magnet, method of manufacturing the same, and device | |
JP2016536789A (en) | Magnetic material | |
JPH0616445B2 (en) | Permanent magnet material and manufacturing method thereof | |
US20170117074A1 (en) | Mn-X-BASED MAGNETIC MATERIAL | |
JPS6365611A (en) | Formation of ferromagnetic thin film | |
JP7305554B2 (en) | RTB permanent magnet material and method for preparing same | |
JP3305790B2 (en) | Manufacturing method of thin film permanent magnet | |
JPS60171709A (en) | Sputtering thermally regulated with high anisotropic magnetic material | |
Liu et al. | Remanence enhancement and exchange coupling in PrCo/Co films | |
JP3106484B2 (en) | Method of forming rare earth alloy thin film magnet | |
CN100369200C (en) | Method for preparing ferromagnetic manganese-silicon thin film by magnetron sputtering on silicon substrate | |
JPH01119009A (en) | Formation of ferromagnetic thin film | |
JPH01119008A (en) | Formation of ferromagnetic thin film | |
JPH11288812A (en) | High coercive force r-irone-b thin-film magnet and manufacture thereof | |
JPH04219912A (en) | Formation of rare-earth thin film magnet | |
JPH07120596B2 (en) | Method of forming ferromagnetic thin film | |
JPH06151226A (en) | Film magnet forming method | |
EP0660338A1 (en) | Permanent magnet material of high coercive force Pr-Co alloy and permanent magnet material of thin film and method of manufacturing the same | |
Nakano et al. | Preparation of Nd–Fe–B films via a low-temperature process | |
Mohseni et al. | Interdiffusion processes in high-coercivity RF-sputtered alnico thin films on Si substrates | |
Kim et al. | Magnetic properties of NdFeB thin film obtained by diffusion annealing |