JPS6364601B2 - - Google Patents
Info
- Publication number
- JPS6364601B2 JPS6364601B2 JP57187578A JP18757882A JPS6364601B2 JP S6364601 B2 JPS6364601 B2 JP S6364601B2 JP 57187578 A JP57187578 A JP 57187578A JP 18757882 A JP18757882 A JP 18757882A JP S6364601 B2 JPS6364601 B2 JP S6364601B2
- Authority
- JP
- Japan
- Prior art keywords
- air
- cooling
- rotor
- blade
- seal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明はガスタービンに係り、特に、空気冷却
式のガスタービン動翼に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to gas turbines, and more particularly to air-cooled gas turbine rotor blades.
ガスタービンの熱効率はタービン入口温度の高
温化によつて著じるしく向上する。このため燃焼
ガスであるタービン作動ガス通路上にある動翼、
静翼、及び動翼を回転支持しているロータ等を効
率良く冷却することは、タービンの効率向上に有
効である。この冷却効率は各部の冷却構造と冷媒
の流量によつて大きく左右される。一般に、ガス
タービンでは、タービンと直結された圧縮機によ
つて生成される燃焼用圧縮空気の1部を抽気する
ことによつて冷却している。従つて、タービンの
総合効率上からは、極力少ない流量で有効に冷却
することが望ましい。
The thermal efficiency of a gas turbine is significantly improved by increasing the turbine inlet temperature. For this reason, the rotor blades on the turbine working gas passage, which is combustion gas,
Efficiently cooling the stator blades and the rotor that rotatably supports the rotor blades is effective in improving the efficiency of the turbine. This cooling efficiency is greatly influenced by the cooling structure of each part and the flow rate of the refrigerant. Generally, a gas turbine is cooled by extracting a portion of the combustion compressed air generated by a compressor directly connected to the turbine. Therefore, from the viewpoint of the overall efficiency of the turbine, it is desirable to effectively cool the turbine with as little flow rate as possible.
以下、従来のガスタービンの冷却構造の1例に
ついて、第1図により説明する。同図は動翼及び
静翼が組込まれている部分だけを取上げ、部分的
に断面をとつて示してある。動翼2は通常、図に
示すように、ロータへの植設部となるダブテイル
31、シヤンク3及び作動ガス通路6内に突出し
たバケツト21からなる。バケツト21の内部に
は複雑な冷却流路22が構成され、その出口23
はバケツト先端のくぼみ24、あるいは、フイル
ム冷却用の吹出し孔25となつて、翼外面に開口
されて直接作動ガス通路に通じている。このバケ
ツト内部流路22に対して、図示した例では、冷
却空気が矢印33で示すように、ロータ1の中心
部からダブテイル31の部分に形成したヘツダ3
2で分岐され、シヤンク3を経て導入されてい
る。第2図は第1図に示した動翼冷却流路22の
断面形状と、両側に接する動翼について、−
矢視図を示してある。図のように、シヤンク3の
中央部は重量を軽減するために削除されており、
動翼を周方向に配列することによつて隣接するシ
ヤンク間に支柱34、前後の側壁35、プラツト
ホーム36、及びダブテイル31によつて囲まれ
たシヤンク室37が形成されている。そして、プ
ラツトホーム36の隣りとの合わせ面にはシール
ピン38が設けてあり、外側の作動ガス通路6か
らシヤンク室37への高温ガスの侵入を防止して
いる。一方、静翼4についても、その内部には動
翼と類似した冷却流路41が形成されており、静
翼についてはこのほか中心部に管42が設けてあ
り、この管42からダイヤフラム5の内部を経て
流出孔51に至り、ダイヤフラム5とロータ1間
に囲まれて形成された中間室52に連通するシー
ル空気通路53を設けてある。この流路53を通
してシール空気を中間室52に供給し、回転体と
静止体間の間隙を通して作動ガス通路6から高温
ガスが中間室52内に流出しないように、シール
フイン54及び55を設け、且つ、作動ガス通路
方向へ一定の空気を供給すると共に、ラビリンス
シール56のリーク空気を補給している。このリ
ーク空気は後流側のシールフイン57の部分で作
動ガスのリーク防止用シール空気となつて作動ガ
ス通路6内に流入している。 An example of a conventional cooling structure for a gas turbine will be described below with reference to FIG. The figure shows only the part where the moving blades and stationary blades are incorporated, and is partially shown in cross section. As shown in the figure, the rotor blade 2 usually consists of a dovetail 31 serving as a part to be attached to the rotor, a shank 3, and a bucket 21 protruding into the working gas passage 6. A complicated cooling channel 22 is configured inside the bucket 21, and an outlet 23 thereof is configured.
This is a recess 24 at the tip of the bucket or a blowout hole 25 for cooling the film, which is opened on the outer surface of the blade and directly communicates with the working gas passage. In the illustrated example, the cooling air flows from the center of the rotor 1 to the header 3 formed in the dovetail 31 portion of the bucket internal flow path 22, as shown by the arrow 33.
It is branched at 2 and introduced through shank 3. FIG. 2 shows the cross-sectional shape of the rotor blade cooling channel 22 shown in FIG. 1 and the rotor blades in contact with both sides.
A directional view is shown. As shown, the center part of shank 3 has been removed to reduce weight.
By arranging the rotor blades in the circumferential direction, a shank chamber 37 surrounded by a strut 34, front and rear side walls 35, a platform 36, and a dovetail 31 is formed between adjacent shanks. A seal pin 38 is provided on the mating surface of the platform 36 with the adjacent one to prevent hot gas from entering the shank chamber 37 from the outer working gas passage 6. On the other hand, the stator blade 4 also has a cooling flow path 41 similar to the rotor blade formed therein, and the stator blade also has a pipe 42 provided in the center, and the diaphragm 5 is connected to the stator blade 4 from this pipe 42. A sealing air passage 53 is provided which reaches the outflow hole 51 through the inside and communicates with an intermediate chamber 52 surrounded and formed between the diaphragm 5 and the rotor 1. Seal air is supplied to the intermediate chamber 52 through this passage 53, and seal fins 54 and 55 are provided to prevent high temperature gas from flowing out into the intermediate chamber 52 from the working gas passage 6 through the gap between the rotating body and the stationary body, and , supplies a constant amount of air in the direction of the working gas passage, and replenishes leakage air from the labyrinth seal 56. This leak air flows into the working gas passage 6 as seal air for preventing leakage of the working gas at the seal fin 57 on the downstream side.
このように機内には多くの冷却流路が構成され
ており、これらの冷却空気はすべて作動ガス中に
混入するようになつているため、低温空気の混入
によつて、タービン作動ガスの温度は降下し、熱
効率の低下をもたよす。また、吹出しフイルム冷
却は翼表面での作動ガスの流れを乱し同様にター
ビン効率に影響するため、極力避けた冷却構造が
望ましい。更に、フインシールのシール空気流量
には作動ガス流出防止に必要なシール特性があつ
て、単に流れ方向を確保するだけの量では不足で
かなりの流量が必要であり、ラビリンスシールか
らのリーク空気と合わせて、ほとんど、冷却には
供しない無駄な空気である。今後更にガスタービ
ンの高温化を図るためには、このような無駄な空
気を極力少なくして節約を図つた冷却システムが
必要である。 In this way, many cooling channels are configured inside the machine, and all of these cooling air is mixed into the working gas, so the temperature of the turbine working gas decreases due to the mixing of low-temperature air. This leads to a decrease in thermal efficiency. Furthermore, since blown film cooling disturbs the flow of working gas on the blade surface and similarly affects turbine efficiency, it is desirable to have a cooling structure that avoids it as much as possible. Furthermore, the sealing air flow rate of the fin seal has the sealing characteristics necessary to prevent the leakage of working gas, and the amount that simply ensures the flow direction is insufficient, and a considerable flow rate is required, and combined with the leakage air from the labyrinth seal. This is mostly wasted air that is not used for cooling. In order to further increase the temperature of gas turbines in the future, a cooling system that reduces wasteful air as much as possible and saves money is required.
本発明の目的は高温化に適したガスタービン空
冷翼を提供するにある。
An object of the present invention is to provide a gas turbine air-cooled blade suitable for high temperatures.
本発明の要点は、バケツト内の冷却流路をロー
タとタービン作動ガス通路間の中間室に開口する
ことにより、バケツトの冷却に供した空気をシー
ル空気として再利用することにある。
The gist of the present invention is to reuse the air used for cooling the bucket as sealing air by opening the cooling passage in the bucket to an intermediate chamber between the rotor and the turbine working gas passage.
以下、本発明の1実施例を第3図によつて説明
する。図示した動翼は外形状を変えることなく内
部の冷却流路構成だけを変えたもので、第1図に
示したガスタービンに適用できるので、動翼外の
部分のタービン構成図は省略した。すなわち、本
発明では、動翼7内の冷却流路71の出口72
を、シヤンク間に形成されるシヤンク室37に開
口し、さらに、シヤンク側壁35のシールフイン
55よりも内径側に流出孔73を開口するように
構成したものである。この構成により、冷却空気
はダブテイル部のヘツダ32から矢印74のよう
に、バケツト内の冷却流路71に流入し、先端部
で流れの向きを逆転してシヤンク室37に流入し
た後、流出孔73からロータ1とダイヤフラム5
間に形成された中間室52に流出して、作動ガス
流出防止用シール空気及びラビリンスシールのリ
ーク空気として供せられる。すなわち、本発明は
バケツトの冷却空気を回収してシール空気として
流用することにより、従来に要したシール空気の
大部分を節約でき、冷却空気混入によるタービン
作動ガスの温度低下を軽減できる。また、冷却流
路の出口圧力が作動ガス圧力の影響を受けず、且
つ、各流路共共通の一定圧にすることができ、こ
の圧力は流出孔73の流路面積によつて調整しう
るため、動翼の冷却に要する空気流量の制御を容
易、且つ、精度よくできる利点がある。更に、上
記の一定圧力値を動翼入口の圧力以上の適当な値
に設定することにより、回収空気をプラツトホー
ム36から、わずかに作動ガス通路に流出させる
ことによつて、従来、要したシールピン38を省
略することができる。実施例のバケツト内流路で
は、2本の流路を1本に合流させて戻し、且つ、
1本のフイルム冷却用流路を加えて構成した場合
を示してあるが、本発明は流路出口の1部あるい
は全部を中間室に開口する以外の流路構成、冷却
空気のバケツト内への導入系路等を制約するもの
ではなく、また、シヤンク室37を経ないで、例
えば、支柱37を利用して中間室52に導出する
場合にも適用しうる。
Hereinafter, one embodiment of the present invention will be described with reference to FIG. The illustrated rotor blade has only the internal cooling passage configuration changed without changing its outer shape, and can be applied to the gas turbine shown in FIG. 1, so the turbine configuration diagram of the portion outside the rotor blade is omitted. That is, in the present invention, the outlet 72 of the cooling channel 71 in the rotor blade 7
is opened into the shank chamber 37 formed between the shank, and an outflow hole 73 is opened on the inner diameter side of the seal fin 55 of the shank side wall 35. With this configuration, cooling air flows from the header 32 in the dovetail portion into the cooling flow path 71 in the bucket as shown by the arrow 74, reverses the flow direction at the tip, flows into the shank chamber 37, and then flows through the outflow hole. 73 to rotor 1 and diaphragm 5
The air flows out into an intermediate chamber 52 formed between the two, and is used as seal air for preventing the working gas from flowing out and as leak air for the labyrinth seal. That is, the present invention can save most of the conventionally required sealing air by collecting the cooling air from the bucket and reusing it as sealing air, thereby reducing the temperature drop in the turbine working gas due to mixing of the cooling air. Further, the outlet pressure of the cooling flow path is not affected by the working gas pressure and can be kept at a common constant pressure for each flow path, and this pressure can be adjusted by the flow path area of the outflow hole 73. Therefore, there is an advantage that the air flow rate required for cooling the rotor blades can be easily and precisely controlled. Furthermore, by setting the above-mentioned constant pressure value to an appropriate value higher than the pressure at the rotor blade inlet, the recovered air is allowed to flow slightly from the platform 36 into the working gas passage, thereby reducing the seal pin 38 that was previously required. can be omitted. In the bucket internal flow path of the example, two flow paths are merged into one and returned, and
Although a configuration is shown in which one film cooling channel is added, the present invention is also applicable to a channel configuration other than opening a part or all of the channel outlet into the intermediate chamber, and a structure in which cooling air is introduced into the bucket. This does not restrict the introduction path, etc., and it can also be applied to the case where, for example, the support 37 is used to lead out to the intermediate chamber 52 without passing through the shank chamber 37.
本発明によれば、動翼冷却用の空気を回収して
有効に活用することにより、少ない冷却空気流量
で高効率のガスタービンが得られる。
According to the present invention, a highly efficient gas turbine can be obtained with a small flow rate of cooling air by recovering and effectively utilizing air for cooling rotor blades.
第1図は従来のガスタービンの動翼及び静翼ま
わりを示す部分図、第2図は第1図の−矢視
断面図、第3図は本発明による動翼の1実施例の
部分断面図である。
7……動翼、37……シヤンク室、38……シ
ールピン、52……中間室、54……シールフイ
ン、55……シールフイン、56……ラビリンス
シール、71……冷却流路、72……出口、73
……流出孔。
Fig. 1 is a partial view showing the rotor blades and stationary blades of a conventional gas turbine, Fig. 2 is a cross-sectional view taken along the - arrow in Fig. 1, and Fig. 3 is a partial cross-section of one embodiment of the rotor blade according to the present invention. It is a diagram. 7... Moving blade, 37... Shank chamber, 38... Seal pin, 52... Intermediate chamber, 54... Seal fin, 55... Seal fin, 56... Labyrinth seal, 71... Cooling channel, 72... Outlet , 73
...Outflow hole.
Claims (1)
れた中間室52にシール空気を送り動翼とダイヤ
フラムとに設けたシールフイン55,54間から
作動ガスが前記中間室内に侵入するのを防止する
ようにしたガスタービン動翼において、前記動翼
内に前記ロータの中心部から冷却空気を送入する
冷却流路71を形成し、この流路を流れて温度上
昇した冷却空気の一部を前記中間室へ導入する流
出口72,73を設けたことを特徴とするガスタ
ービン空冷翼。1. Sending seal air to the intermediate chamber 52 surrounded by the rotor blades 2, diaphragm 5, and rotor 1 to prevent working gas from entering the intermediate chamber from between the seal fins 55 and 54 provided on the rotor blades and the diaphragm. In the gas turbine rotor blade, a cooling flow path 71 is formed in the rotor blade to feed cooling air from the center of the rotor, and a part of the cooling air whose temperature has increased by flowing through this flow path is transferred to the rotor blade. A gas turbine air-cooled blade characterized in that it is provided with outlet ports 72 and 73 that lead into an intermediate chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18757882A JPS5979006A (en) | 1982-10-27 | 1982-10-27 | Air cooling blade of gas turbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18757882A JPS5979006A (en) | 1982-10-27 | 1982-10-27 | Air cooling blade of gas turbine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5979006A JPS5979006A (en) | 1984-05-08 |
JPS6364601B2 true JPS6364601B2 (en) | 1988-12-13 |
Family
ID=16208548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18757882A Granted JPS5979006A (en) | 1982-10-27 | 1982-10-27 | Air cooling blade of gas turbine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5979006A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH033501U (en) * | 1989-05-25 | 1991-01-14 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3416447B2 (en) * | 1997-03-11 | 2003-06-16 | 三菱重工業株式会社 | Gas turbine blade cooling air supply system |
FR2877034B1 (en) * | 2004-10-27 | 2009-04-03 | Snecma Moteurs Sa | ROTOR BLADE OF A GAS TURBINE |
NL2000578C2 (en) | 2007-04-10 | 2008-10-13 | Cordstrap B V | Buckle for securing goods. |
US8235652B2 (en) * | 2007-12-29 | 2012-08-07 | General Electric Company | Turbine nozzle segment |
CN102269016A (en) * | 2011-07-09 | 2011-12-07 | 潍坊雷诺特动力设备有限公司 | Clapboard steam seal for steam power device |
US9011078B2 (en) * | 2012-01-09 | 2015-04-21 | General Electric Company | Turbine vane seal carrier with slots for cooling and assembly |
CN105927292B (en) * | 2016-06-02 | 2018-10-16 | 东方电气集团东方汽轮机有限公司 | A kind of packing pressure plate structure with seal bond function |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5710704A (en) * | 1980-06-25 | 1982-01-20 | Hitachi Ltd | Gas turbine blade |
-
1982
- 1982-10-27 JP JP18757882A patent/JPS5979006A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH033501U (en) * | 1989-05-25 | 1991-01-14 |
Also Published As
Publication number | Publication date |
---|---|
JPS5979006A (en) | 1984-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6077034A (en) | Blade cooling air supplying system of gas turbine | |
US6099244A (en) | Cooled stationary blade for a gas turbine | |
US6398486B1 (en) | Steam exit flow design for aft cavities of an airfoil | |
JP2580356B2 (en) | Cooled turbine blade | |
EP0911486B1 (en) | Gas turbine stationary blade cooling | |
JP3978143B2 (en) | Stator blade cooling structure and gas turbine | |
US6435814B1 (en) | Film cooling air pocket in a closed loop cooled airfoil | |
US6036436A (en) | Gas turbine cooling stationary vane | |
JP3631500B2 (en) | Integrated steam / air cooler for gas turbine and method of operating a cooler for gas turbine | |
US5399065A (en) | Improvements in cooling and sealing for a gas turbine cascade device | |
JP2971386B2 (en) | Gas turbine vane | |
US6506013B1 (en) | Film cooling for a closed loop cooled airfoil | |
US6468031B1 (en) | Nozzle cavity impingement/area reduction insert | |
JPS6119804B2 (en) | ||
US5813827A (en) | Apparatus for cooling a gas turbine airfoil | |
GB2298246A (en) | Turbine-blad-tip-sealing arrangement comprising a shroud band | |
JPS6364601B2 (en) | ||
JPH0552102A (en) | Gas turbine | |
JP5078766B2 (en) | Turbine stationary blade structure | |
JP3165611B2 (en) | Gas turbine cooling air introduction device | |
US6832891B2 (en) | Device for sealing turbomachines | |
JPH1037704A (en) | Stator blade of gas turbine | |
JPS62153504A (en) | Shrouding segment | |
JPH0463901A (en) | Gas turbine cooling blade | |
RU2035594C1 (en) | Nozzle set for turbine of gas-turbine engine |