JPS636457A - Enzyme activity test method for immobilized enzyme membrane - Google Patents
Enzyme activity test method for immobilized enzyme membraneInfo
- Publication number
- JPS636457A JPS636457A JP61148254A JP14825486A JPS636457A JP S636457 A JPS636457 A JP S636457A JP 61148254 A JP61148254 A JP 61148254A JP 14825486 A JP14825486 A JP 14825486A JP S636457 A JPS636457 A JP S636457A
- Authority
- JP
- Japan
- Prior art keywords
- enzyme
- membrane
- electrode
- immobilized enzyme
- immobilized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の属する技術分野〕
本発明は溶液内の29質濃度を酵素電極法で定量する際
に用いられる固定化酵素膜の酵素・活性試験方法に係り
、特に試験すべき固定化酵素膜を電極に直接装着するこ
となく、このため前記膜にシワ、剥離傷などが発生せず
、したがって、再び電極に装着したときの特性を保障し
得る固定化酵素膜の酵素活性試験方法に関する。[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a method for testing the enzyme activity of an immobilized enzyme membrane used when quantifying the concentration of 29 substances in a solution using an enzyme electrode method. The enzyme activity of the immobilized enzyme membrane can be improved without directly attaching the immobilized enzyme membrane to the electrode, thereby preventing wrinkles, peeling scratches, etc. from occurring on the membrane, and thus ensuring the properties when attached to the electrode again. Concerning test methods.
酵素電極法は現在、臨床、食品、環境分野において、検
体中の被測定物質を迅速、簡便かつ高精度に定量できる
方法として広く用いられている。The enzyme electrode method is currently widely used in the clinical, food, and environmental fields as a method for quickly, easily, and highly accurately quantifying analyte substances in specimens.
ところが、固定化酵素膜の製膜過程で酵素活性がバラツ
キなく一定になるように酵素を固定化することは通常非
常に難しい。したがって、製膜後の酵素活性の検査は固
定化酵素膜の品質管理上極めて重要である。However, it is usually very difficult to immobilize an enzyme so that the enzyme activity remains constant without variation during the process of forming an immobilized enzyme membrane. Therefore, inspection of enzyme activity after membrane formation is extremely important for quality control of immobilized enzyme membranes.
従来、この種の酵素活性の評価方法は第2図(A)に示
されるように0リング22に保持された固定化酵素膜2
1を、第2図(B)に示されるように指示電極23と対
極24で構成される固体電極の電極面に装着し、第2図
(C)に示される測定セル27に挿入し、所定濃度の基
質溶液(試料液)25の出力を測定する、いわゆる酵素
電極法が知られている。第2図(C)において、26は
試料液流路である。ところが、この方法では固定化酵素
膜を電極に装着するために、膜面に力が加わり、この膜
を離したときにシワ、剥離傷などが付き易く、再び電極
に装着した場合の特性を保障できないという欠点があっ
た。Conventionally, this type of enzyme activity evaluation method uses an immobilized enzyme membrane 2 held on an O-ring 22 as shown in FIG. 2(A).
1 is attached to the electrode surface of a solid electrode consisting of an indicator electrode 23 and a counter electrode 24 as shown in FIG. 2(B), and inserted into the measurement cell 27 shown in FIG. A so-called enzyme electrode method is known in which the output of a substrate solution (sample solution) 25 of concentration is measured. In FIG. 2(C), 26 is a sample liquid flow path. However, in this method, since the immobilized enzyme membrane is attached to the electrode, force is applied to the membrane surface, which tends to cause wrinkles and peeling scratches when the membrane is separated, and it is difficult to guarantee the characteristics when attached to the electrode again. The drawback was that it couldn't be done.
本発明の目的は試験すべき固定化酵素膜を電極に直接装
着することなく、このためこの膜にシワ、剥離傷などが
発生せず、再び電極に装着したときの特性を保障し得る
、前述の公知技術に存する欠点を克服した非破壊性の固
定化酵素膜の酵素活性試験方法を提供することにある。The purpose of the present invention is to avoid attaching the immobilized enzyme membrane to be tested directly to the electrode, thereby preventing wrinkles, peeling scratches, etc. from occurring on the membrane, and ensuring the same characteristics when attached to the electrode again. An object of the present invention is to provide a non-destructive method for testing the enzyme activity of an immobilized enzyme membrane, which overcomes the drawbacks of the known techniques.
前述の目的を達成するため、本発明によれば、溶液内の
基質濃度を酵素電極法で定量する際に用いられる固定化
酵素膜を所定の濃度、容量ならびに温度の基質溶液中に
攪拌しながら浸漬し、一定時間後、この基質溶液より前
記固定化酵素膜を引き上げ、この基質溶液中に含まれる
電極活性な酵素反応生成物を電気化学的手段により定量
し、前記固定化酵素膜の酵素活性を評価することを特徴
とする。In order to achieve the above-mentioned object, according to the present invention, an immobilized enzyme membrane used when quantifying a substrate concentration in a solution by an enzyme electrode method is added to a substrate solution having a predetermined concentration, volume, and temperature while stirring. After a certain period of time, the immobilized enzyme membrane is lifted from the substrate solution, and the electrode-active enzyme reaction product contained in the substrate solution is quantified by electrochemical means to determine the enzyme activity of the immobilized enzyme membrane. It is characterized by evaluating.
すなわち、本発明は固定化酵素膜を所定の濃度、容量、
温度の基質溶液に浸漬することによって酵素反応条件を
一定とし、かつ膜に対する物理的損傷を防ぎ、また、前
記反応条件下で一定時間後に画定化酵素膜を基質溶液よ
り引き上げることにより該溶液内における酵素反応を停
止させ、酵素反応で生成した電極活性物質を電気化学的
に定量して固定化酵素膜内の酵素活性を評価しようとす
るものである。That is, the present invention provides an immobilized enzyme membrane with a predetermined concentration, volume,
Enzyme reaction conditions are kept constant by immersion in a substrate solution at a certain temperature, and physical damage to the membrane is prevented, and the delimited enzyme membrane is pulled out of the substrate solution after a certain period of time under the above reaction conditions. The purpose is to evaluate the enzyme activity within the immobilized enzyme membrane by stopping the enzyme reaction and electrochemically quantifying the electrode active substance produced by the enzyme reaction.
本発明において、固定化酵素膜中に担持される酵素は酸
化還元酵素であり、また、酵素反応生成物は過酸fヒ水
素、または酸素である。In the present invention, the enzyme supported in the immobilized enzyme membrane is an oxidoreductase, and the enzyme reaction product is arsenic peroxide or oxygen.
さらに、本発明において、電気化学的手段は酸素または
過酸化水素を選択的に透過する選択透過膜の装着された
電極を用いるポーラログラフ法または酵素電極法である
。Further, in the present invention, the electrochemical means is a polarographic method or an enzyme electrode method using an electrode equipped with a selectively permeable membrane that selectively permeates oxygen or hydrogen peroxide.
叉籐握−上
第1図は本発明方法を実施するための反応器である。固
定化酵素膜1は所定量の標準基質溶液2とともに、底部
に攪拌子5の装着されたガラス容器3の中に投入される
。さらにこのガラス容器3は恒温水7を流すためのシリ
コンチューブ6をコイル状に巻きつけた容器8の中に装
入され、これら二つの容器3.8の間には水4が満たさ
れている。この水4はガラス容器3全体をマグネチンク
スターラ10によって回転させるための潤滑液として、
および熱媒体としての機能を果たす。シリコンチューブ
6の外側は断熱材9で覆われ、これにより恒温水7の外
部への熱放散が防止される。Rattan Grip - Figure 1 above is a reactor for carrying out the method of the invention. The immobilized enzyme membrane 1 is placed together with a predetermined amount of standard substrate solution 2 into a glass container 3 equipped with a stirrer 5 at the bottom. Furthermore, this glass container 3 is inserted into a container 8 in which a silicone tube 6 for flowing constant temperature water 7 is wound into a coil, and water 4 is filled between these two containers 3.8. . This water 4 is used as a lubricant for rotating the entire glass container 3 by the magnetic stirrer 10.
and serves as a heat transfer medium. The outside of the silicon tube 6 is covered with a heat insulating material 9, thereby preventing heat dissipation of the constant temperature water 7 to the outside.
上述の反応器を用いて実験を行った結果、ガラス容器内
の基質溶液の温度変動は±0.3℃であり、固定化酵素
膜に物理的損傷を与えずに十分に基質溶液を攪拌できる
ことがわかった。As a result of experiments using the above-mentioned reactor, the temperature fluctuation of the substrate solution in the glass container was ±0.3°C, and the substrate solution could be sufficiently stirred without physically damaging the immobilized enzyme membrane. I understand.
天産±−1
実施例1の反応器を用い、固定化酵素膜としてアルコー
ルオキシダーゼ(A OD)膜、基質溶液として10%
EtOH−pH7,0リン酸緩衝液1ml、設定温度3
0℃の条件で反応させた。AODは式(1)%式%(1
)
に示されるように、エタノールをアセトアルデヒドに酸
化し、その際、酸素を消費して過酸化水素を生成させる
酵素である。基質溶液内に生成した過酸化水素濃度は第
2図に示される固体電極にアセチルローズ膜を装着し、
指示電極23に0.64Vを印加して反応途中の基質溶
液10μlを測定セル27に注入し、その際に流れる過
酸化水素の酸化電流値により決定した。Tensan ±-1 Using the reactor of Example 1, an alcohol oxidase (AOD) membrane was used as the immobilized enzyme membrane, and 10% as the substrate solution.
1 ml of EtOH-pH 7.0 phosphate buffer, set temperature 3
The reaction was carried out at 0°C. AOD is calculated using formula (1)% formula% (1
), it is an enzyme that oxidizes ethanol to acetaldehyde, consuming oxygen and producing hydrogen peroxide. The hydrogen peroxide concentration generated in the substrate solution was determined by attaching an acetyl rose membrane to the solid electrode shown in Figure 2.
0.64 V was applied to the indicator electrode 23, and 10 μl of the substrate solution in the middle of the reaction was injected into the measurement cell 27, and the value was determined based on the oxidation current value of hydrogen peroxide flowing at that time.
第3図は基質溶液内に生成する過酸化水素濃度の経時変
化を表わしたグラフである。生成過酸化水素濃度は時間
に対して直線的に増大していることから、酵素反応が擬
−次反応で進行していることが第3図かられかる。FIG. 3 is a graph showing changes over time in the concentration of hydrogen peroxide produced in the substrate solution. Since the concentration of hydrogen peroxide produced increases linearly with time, it can be seen from FIG. 3 that the enzyme reaction proceeds as a pseudo-order reaction.
さらに固定化酵素膜としてグルコースオキシダーゼ(C
OD)膜、基質溶液として500■/d!グルコース−
pH7,0リン酸緩衝液を用いて実験を行った。COD
は式(2)、すなわち、に示されるようにグルコースを
グルコン酸に酸化し、AODと同様に酸素を消費して過
酸化水素を生成させる。生成過酸化水素濃度はAODと
同様、0乃至60分の範囲で時間に対して直線的に増大
することがわかった。Furthermore, glucose oxidase (C
OD) 500■/d as membrane and substrate solution! Glucose-
Experiments were conducted using pH 7.0 phosphate buffer. COD
oxidizes glucose to gluconic acid as shown in formula (2), ie, consumes oxygen and produces hydrogen peroxide similarly to AOD. It was found that the hydrogen peroxide concentration produced increased linearly with time in the range of 0 to 60 minutes, similar to AOD.
以上の結果より各固定化酵素膜について一定時間の生成
過酸化水素濃度を測定することによって膜内の酵素活性
を評価することができる。From the above results, the enzyme activity within each immobilized enzyme membrane can be evaluated by measuring the concentration of hydrogen peroxide produced over a certain period of time.
大施五主
AOD膜に関する実施例2の実験結果に鑑み、反応時間
を30分、基質溶液を200μ2とし、複数枚のAOD
膜について生成過酸化水素濃度を測定した。さらに、そ
れぞれのAOD膜を電極に装着し、酵素電極法で出力を
測定し、生成過酸化水素濃度との関係を検討した。この
結果を第4図に示す。In view of the experimental results of Example 2 regarding the five main AOD membranes, the reaction time was 30 minutes, the substrate solution was 200μ2, and multiple AOD membranes were used.
The hydrogen peroxide concentration produced on the membrane was measured. Furthermore, each AOD membrane was attached to an electrode, the output was measured using an enzyme electrode method, and the relationship with the generated hydrogen peroxide concentration was investigated. The results are shown in FIG.
第4図において、縦軸は上述の条件下での生成過酸化水
素濃度、横軸は酵素電極法で20%エタノールの出力で
ある。ただし、酵素電極の出力は電極自体の過酸化水素
に対する感度の変動を補正するための60ppm過酸化
水素溶液の出力で割った値を採用した。In FIG. 4, the vertical axis is the concentration of hydrogen peroxide produced under the above conditions, and the horizontal axis is the output of 20% ethanol using the enzyme electrode method. However, the output of the enzyme electrode was divided by the output of a 60 ppm hydrogen peroxide solution to correct for fluctuations in the sensitivity of the electrode itself to hydrogen peroxide.
第4図のグラフより生成過酸化水素濃度を測定すれば、
電極に装着したときのセンサ出力が推定できる。したが
って、本発明による固定化酵素膜の酵素活性の評価試験
が酵素;掻における出力のバラツ牛低減に有効であるこ
とがわかる。If the concentration of hydrogen peroxide produced is measured from the graph in Figure 4,
The sensor output when attached to the electrode can be estimated. Therefore, it can be seen that the enzyme activity evaluation test of the immobilized enzyme membrane according to the present invention is effective in reducing the variation in the output of enzymes.
また、前述の実施例では生成する過酸化水素濃度を測定
化学種としたが、反応前後の溶存酸素濃度差、すなわち
酵素反応で消費される酸素濃度を測定してもよい。その
際第1図のガラス容器3の内部は不活性ガスで置換し、
密閉する必要がある。Furthermore, in the above-mentioned embodiments, the concentration of hydrogen peroxide produced was used as the chemical species to be measured, but the difference in dissolved oxygen concentration before and after the reaction, that is, the concentration of oxygen consumed in the enzymatic reaction, may also be measured. At that time, the inside of the glass container 3 shown in FIG. 1 was replaced with inert gas,
Must be sealed.
さらに酸素濃度の検出には指示電極23の印加電圧を0
.60Vとするボーラロ型酸素電極を用いる。Furthermore, to detect the oxygen concentration, the voltage applied to the indicator electrode 23 is set to 0.
.. A Bolaro type oxygen electrode with a voltage of 60V is used.
上述の本発明によれば、固定化酵素膜を所定の濃度、容
量、温度の基質溶液に一定時間浸漬し、電極活性な反応
生成物を電気化学的手段により定量することにより、固
定化酵素膜に物理的損傷を与えずに、かつ正確な酵素活
性の評価を行うことができる。その結果、酵素活性評価
のための膜のロスがなくなるのみならず、全数試験によ
るスクリーニングが可能となる。According to the present invention described above, the immobilized enzyme membrane is immersed in a substrate solution of a predetermined concentration, volume, and temperature for a certain period of time, and the electrode-active reaction product is quantified by electrochemical means. Enzyme activity can be accurately evaluated without causing physical damage to the enzyme. As a result, not only is there no loss of membranes for evaluating enzyme activity, but it is also possible to perform screening using a complete test.
第1図は本発明方法を実施するための反応器の断面図で
あり、第2図(A)、(B)、(C)は従来公知の酵素
電極の測定系の構成図であり、第3図は生成過酸化水素
濃度の経時変化を表したグラフであり、第4図は生成過
酸化水素濃度と酵素電極の出力との関係を表したグラフ
である。
■、21・・固定化酵素膜、2・・基質溶液、3・・ガ
ラス容器、 5・・攪拌子、6・・シリコンチューブ
、7・・恒温水、10・・マグネテインクスターラー、FIG. 1 is a cross-sectional view of a reactor for carrying out the method of the present invention, and FIGS. FIG. 3 is a graph showing the change over time in the concentration of hydrogen peroxide produced, and FIG. 4 is a graph showing the relationship between the concentration of hydrogen peroxide produced and the output of the enzyme electrode. ■, 21: Immobilized enzyme membrane, 2: Substrate solution, 3: Glass container, 5: Stirrer, 6: Silicone tube, 7: Constant temperature water, 10: Magneto stirrer,
Claims (3)
いられる固定化酵素膜を所定の濃度、容量ならびに温度
の基質溶液中に撹拌しながら浸漬し、一定時間後、この
基質溶液より前記固定化酵素膜を引き上げ、この基質溶
液中に含まれる電極活性な酵素反応生成物を電気化学的
手段により定量し、前記固定化酵素膜の酵素活性を評価
することを特徴とする固定化酵素膜の酵素活性試験方法
。(1) An immobilized enzyme membrane used when quantifying the substrate concentration in a solution using the enzyme electrode method is immersed in a substrate solution of a predetermined concentration, volume, and temperature with stirring, and after a certain period of time, the membrane is immersed in a substrate solution. An immobilized enzyme characterized in that the enzyme activity of the immobilized enzyme membrane is evaluated by pulling up the immobilized enzyme membrane and quantifying the electrode-active enzyme reaction product contained in the substrate solution by electrochemical means. Membrane enzyme activity testing method.
定化酵素膜中に担持される酵素が酸化還元酵素であり、
酵素反応生成物が過酸化水素、または酸素である試験方
法。(2) In the method according to claim 1, the enzyme supported in the immobilized enzyme membrane is an oxidoreductase,
A test method in which the enzymatic reaction product is hydrogen peroxide or oxygen.
気化学的手段が酸素、あるいは過酸化水素を選択的に透
過する選択透過膜の装着された電極を用いるポーラログ
ラフ法または酵素電極法を用いる試験方法。(3) In the method described in claim 1, the electrochemical means may include a polarographic method or an enzyme electrode method using an electrode equipped with a selectively permeable membrane that selectively permeates oxygen or hydrogen peroxide. Test method used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61148254A JPS636457A (en) | 1986-06-26 | 1986-06-26 | Enzyme activity test method for immobilized enzyme membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61148254A JPS636457A (en) | 1986-06-26 | 1986-06-26 | Enzyme activity test method for immobilized enzyme membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS636457A true JPS636457A (en) | 1988-01-12 |
Family
ID=15448672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61148254A Pending JPS636457A (en) | 1986-06-26 | 1986-06-26 | Enzyme activity test method for immobilized enzyme membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS636457A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019111551A1 (en) * | 2017-12-06 | 2019-06-13 | 株式会社アドバンテスト | Temperature measuring device, reactor, and device and method for evaluating degree of activity of enzyme |
WO2020005810A1 (en) * | 2018-06-28 | 2020-01-02 | Basf Se | Methods of measuring enzyme activity in coating compositions |
-
1986
- 1986-06-26 JP JP61148254A patent/JPS636457A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019111551A1 (en) * | 2017-12-06 | 2019-06-13 | 株式会社アドバンテスト | Temperature measuring device, reactor, and device and method for evaluating degree of activity of enzyme |
JP2019100950A (en) * | 2017-12-06 | 2019-06-24 | 株式会社アドバンテスト | Temperature measurement device, reactor, enzyme activity assessment device, and assessment method |
WO2020005810A1 (en) * | 2018-06-28 | 2020-01-02 | Basf Se | Methods of measuring enzyme activity in coating compositions |
CN112513287A (en) * | 2018-06-28 | 2021-03-16 | 巴斯夫欧洲公司 | Method for measuring enzyme activity in coating compositions |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0035480B1 (en) | Enzyme electrode using electrolytic oxygen | |
Cammann et al. | Chemical sensors and biosensors—principles and applications | |
JP2646848B2 (en) | Glucose sensor measurement method | |
US4127448A (en) | Amperometric-non-enzymatic method of determining sugars and other polyhydroxy compounds | |
EP0020623B1 (en) | Analytical process and means for measuring the amount of hydrogen peroxide in aqueous media and of organic substrates generating hydrogen peroxide by enzymatic oxidation | |
Wangsa et al. | Fiber-optic biosensors based on the fluorometric detection of reduced nicotinamide adenine dinucleotide | |
US4065357A (en) | Detection of catalase-containing bacteria | |
US3838034A (en) | Apparatus for detection of catalase-containing bacteria | |
Wang et al. | A polishable amperometric biosensor for bilirubin | |
JPS61128152A (en) | biochemical sensor | |
CN101896619A (en) | Rapid-read gated amperometry | |
Karube et al. | Amperometric determination of ammonia gas with immobilized nitrifying bacteria | |
Belghith et al. | An enzyme electrode for on‐line determination of ethanol and methanol | |
US4350763A (en) | Method for determining biochemical oxygen demand | |
JPH046907B2 (en) | ||
Pemberton et al. | An assay for the enzyme N-acetyl-β-D-glucosaminidase (NAGase) based on electrochemical detection using screen-printed carbon electrodes (SPCEs) | |
JPS636457A (en) | Enzyme activity test method for immobilized enzyme membrane | |
Xu et al. | Reusable amperometric immunosensor for the determination of cortisol | |
Monroe | Amperometric immunoassay | |
Kriz et al. | SIRE-technology. Part I. Amperometric biosensor based on flow injection of the recognition element and differential measurements | |
Duffy et al. | A conductometric device for monitoring of enzyme-catalyzed reactions | |
JPH01228498A (en) | Rapid determination of concentration of microorganism and apparatus therefor | |
Morelis et al. | Rapid and sensitive discriminating determination of acetylcholinesterase activity in amniotic fluid with a choline sensor | |
Kojima et al. | Enzyme electrode for determination of glycerophosphate by combined use of glycerophosphate oxidase and peroxidase | |
Jiang et al. | Study on a new fiber optic glucose biosensor |