[go: up one dir, main page]

JPS6364069B2 - - Google Patents

Info

Publication number
JPS6364069B2
JPS6364069B2 JP21362984A JP21362984A JPS6364069B2 JP S6364069 B2 JPS6364069 B2 JP S6364069B2 JP 21362984 A JP21362984 A JP 21362984A JP 21362984 A JP21362984 A JP 21362984A JP S6364069 B2 JPS6364069 B2 JP S6364069B2
Authority
JP
Japan
Prior art keywords
discharge
electrode
pulse
auxiliary electrode
cooling medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21362984A
Other languages
Japanese (ja)
Other versions
JPS6191983A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP21362984A priority Critical patent/JPS6191983A/en
Priority to US06/782,568 priority patent/US4686682A/en
Priority to EP85112484A priority patent/EP0177888B1/en
Priority to DE3587852T priority patent/DE3587852T2/en
Priority to CA000492327A priority patent/CA1259122A/en
Publication of JPS6191983A publication Critical patent/JPS6191983A/en
Publication of JPS6364069B2 publication Critical patent/JPS6364069B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition
    • H01S3/0385Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/041Arrangements for thermal management for gas lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0971Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser transversely excited
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition
    • H01S3/0384Auxiliary electrodes, e.g. for pre-ionisation or triggering, or particular adaptations therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、気体レーザのうち放電励起短パルス
レーザを対象とするものであつて、特にその電極
部冷却構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention is directed to discharge-excited short pulse lasers among gas lasers, and particularly relates to an electrode cooling structure thereof.

〔従来の技術〕[Conventional technology]

第3図は従来の放電励起高くり返し短パルスレ
ーザ装置を示す断面図であり、短パルスレーザの
1つであるエキシマレーザを例としたものであ
る。図において、1は高電圧電源、2はキヤパシ
ター、3は高抵抗、4はスイツチ、5はキヤパシ
ター、6はコイル、7はキヤパシター、8は開孔
電極、9は電極、10は補助電極、11は開孔電
極8に直接々触している誘電体、12は熱交換
器、13は流体ガイド、14はフアン、15はレ
ーザ筐体、16は絶縁物、17は主放電空間、1
8はガス流である。
FIG. 3 is a sectional view showing a conventional discharge-excited high repetition short pulse laser device, taking an excimer laser, which is one type of short pulse laser, as an example. In the figure, 1 is a high voltage power supply, 2 is a capacitor, 3 is a high resistance, 4 is a switch, 5 is a capacitor, 6 is a coil, 7 is a capacitor, 8 is a hole electrode, 9 is an electrode, 10 is an auxiliary electrode, 11 12 is a heat exchanger; 13 is a fluid guide; 14 is a fan; 15 is a laser housing; 16 is an insulator; 17 is a main discharge space;
8 is a gas flow.

また第4図は、上記開孔電極8の主放電空間1
7に面する方向の様子を示したものであり、図に
おいて19は開孔部、他の各符号は第3図と同じ
である。
FIG. 4 also shows the main discharge space 1 of the apertured electrode 8.
7 shows the appearance in the direction facing 7. In the figure, 19 is an opening, and the other symbols are the same as in FIG. 3.

次に動作について説明する。まず回路系につい
て述べる。高電圧電源1から供給される電荷は、
まずキヤパシター2に蓄積される。次いでスイツ
チ4が導通状態になるとキヤパシター2からスイ
ツチ4、さらにアースラインを介してキヤパシタ
ー5、コイル6を経てキヤパシター2にもどると
いう電流ループによつて、キヤパシター2に蓄積
されていた電荷はキヤパシター5に移行される。
この迅速な電荷の移行にともなつて開孔電極8と
電極9の間(以下主放電々極間と呼ぶ)および開
孔電極8と補助電極10との間(以下補助放電々
極間と呼ぶ)の電圧が急峻に上昇する。補助放電
の開始電圧は主放電の開始電圧より低いので、ま
ず開孔電極8に設けられた開孔部19において誘
電体表面に補助放電(沿面放電)が起こる。該補
助放電で生成する電子の一部および該放電から発
生する紫外線光により光電離されて生成する電子
が、主放電をグロー状の均一な放電とするための
種となり、次いで主放電空間17においてパルス
的に主放電が起こりレーザ媒質が励起され、その
結果レーザ光が取り出される。該レーザ光のパル
ス幅は主放電のパルス幅によるが一例をあげれ
ば、短パルスレーザの1つであるところのエキシ
マレーザにおいては数+nsecである。スイツチ1
1としては通常サイラトロンが用いられ、上記の
レーザパルス発振が数Hzないし数KHz、通常は数
百Hzのくり返し速度でくり返し行なわれる。
Next, the operation will be explained. First, let's talk about the circuit system. The charge supplied from the high voltage power supply 1 is
First, it is accumulated in capacitor 2. Next, when the switch 4 becomes conductive, the electric charge accumulated in the capacitor 2 is transferred to the capacitor 5 due to a current loop in which the current flows from the capacitor 2 to the switch 4, via the ground line, through the capacitor 5, through the coil 6, and back to the capacitor 2. will be migrated.
With this rapid charge transfer, the gap between the aperture electrode 8 and the electrode 9 (hereinafter referred to as the main discharge electrode gap) and the gap between the open hole electrode 8 and the auxiliary electrode 10 (hereinafter referred to as the auxiliary discharge electrode gap) ) voltage rises sharply. Since the starting voltage of the auxiliary discharge is lower than the starting voltage of the main discharge, an auxiliary discharge (creeping discharge) first occurs on the dielectric surface in the aperture 19 provided in the apertured electrode 8. A part of the electrons generated in the auxiliary discharge and electrons generated by photoionization by the ultraviolet light generated from the discharge become seeds for making the main discharge into a glow-like uniform discharge, and then in the main discharge space 17. A main discharge occurs in a pulsed manner to excite the laser medium, and as a result, laser light is extracted. The pulse width of the laser beam depends on the pulse width of the main discharge, and for example, in an excimer laser, which is one of short pulse lasers, it is several nanoseconds. switch 1
1, a thyratron is usually used, and the above-mentioned laser pulse oscillation is repeated at a repetition rate of several Hz to several KHz, usually several hundred Hz.

次に流体系について述べる。一般にパルス的に
主放電が起こつた後は主放電空間17は、熱的に
も電荷分布の点からも不均一な状態になつてお
り、次のパルス主放電がアークになり易いため、
次のパルス主放電が起こる前に主放電空間17の
レーザガスを置き換えておく必要がある。このた
めフアン14や流体ガイド13および、レーザガ
スの放電による温度上昇を防ぐための熱交換器1
2が配設されており、通常主放電空間における流
速が毎秒数十mという高速なガス流18が達成さ
れている。
Next, we will discuss the fluid system. Generally, after a pulsed main discharge occurs, the main discharge space 17 is in a non-uniform state both thermally and in terms of charge distribution, and the next pulsed main discharge is likely to become an arc.
It is necessary to replace the laser gas in the main discharge space 17 before the next pulsed main discharge occurs. For this purpose, the fan 14, the fluid guide 13, and the heat exchanger 1 for preventing temperature rise due to laser gas discharge are used.
2 are disposed, and a high-speed gas flow 18 with a flow velocity of several tens of meters per second in the main discharge space is normally achieved.

本従来例においては、開孔電極8および誘電体
11の冷却は上記ガス流18による乱流熱伝達と
背面の補助電極10を介して、該背面空間で形成
される自然対流による熱伝達によつてしか行なわ
れない。しかも、開孔電極8側は沿面補助放電お
よび主放電が起つている間は逆に熱入力面とな
る。
In this conventional example, the open-hole electrode 8 and the dielectric 11 are cooled by turbulent heat transfer by the gas flow 18 and heat transfer by natural convection formed in the back space via the auxiliary electrode 10 on the back side. It is only done once. Moreover, the open-hole electrode 8 side becomes a heat input surface while the creeping auxiliary discharge and the main discharge occur.

エキシマレーザを例として熱入力のオーダを試
算してみると、レーザパルスエネルギー200(m
j/パルス)、くり返し速度1KHzで平均出力
200wの機種を考えると、通常レーザ発振効率は
1%であるから、キヤパシター2に蓄えられるエ
ネルギーは20kwとなる。回路系におけるオーミ
ツクな損失が半分とすれば、10kwがガスに投入
される。その内わずか数%が開孔電極部の加熱源
になるとしても数百wのオーダに達する。
When calculating the order of heat input using an excimer laser as an example, the laser pulse energy is 200 (m
j/pulse), average output at a repetition rate of 1KHz
Considering a 200W model, the laser oscillation efficiency is usually 1%, so the energy stored in the capacitor 2 is 20kW. If the ohmic loss in the circuit system is halved, 10kW will be injected into the gas. Even if only a few percent of this becomes a heating source for the open-hole electrode portion, it reaches the order of several hundred watts.

一方乱流熱伝達率を試算してみると、例えば
(甲藤好郎、伝熱概論、養賢堂版、116p(1982))
から、カルマンのアナロジ式を用いれば、ヌツセ
ルト数(NU xと記す)、レイノルズ数(Re xと記
す)、ブラントル数(Prと記す)、局所熱伝達率hx
と記す)、流体(一般のエキシマレーザのガス組
成はヘリウムが90%以上であるので、試算におい
てはヘリウムガスとする)の熱伝導率(λHeと記
す)、開孔電極のガス流上流側の端から、今局所
熱伝導率を試算しようとしている開孔電極上のあ
る部分までの距離(Xと記す)の諸変数を用いて NU x=hx・X/λHe=0.0296Rx0.8 e・Pr/{1 +B(Rx-0.1 e)(Pr−1)} (1) B=0.86(1+lo〔(1+5Pr)/6〕/(Pr−1))(
2) と書くことができる。
On the other hand, if you try to calculate the turbulent heat transfer coefficient, for example (Yoshiro Koto, Introduction to Heat Transfer, Yokendo Edition, 116p (1982))
From, using Kalman's analogy formula, we can obtain the Nutsselt number (denoted as N U x ), the Reynolds number (denoted as R e x ), the Brunttle number (denoted as P r ), and the local heat transfer coefficient h x
), the thermal conductivity of the fluid (denoted as λ He), the thermal conductivity of the fluid (denoted as λ He ), and the gas flow upstream side of the open-hole electrode. Using various variables such as the distance ( denoted as .8 e・Pr/{1 +B(R x-0.1 e )(P r −1)} (1) B=0.86(1+l o [(1+5P r )/6]/(P r −1))(
2) can be written as

Heの圧力を通常のエキシマレーザの動作圧3
気圧とし、ガス流速をも通常のエキシマレーザで
の流速から20m/secとし、開孔電極形状を幅
0.06m、レーザ光軸方向の長さ0.6mとする。今、
距離xのポイントとして0.03m、すなわち電極幅
の中央を設定すると、レイノルズ数(Re x)は1.6
×104となり、また気体のプラントル数は約0.7ヘ
リウムの熱伝導率は0.13Kcal/mhr℃であるか
ら、局所熱伝達係数hxは2.6×102kcal/m2hr℃と
算出される。
The pressure of He is the operating pressure of a normal excimer laser 3
The atmospheric pressure was set to 20 m/sec, and the gas flow velocity was changed from the flow velocity of a normal excimer laser to 20 m/sec, and the aperture electrode shape was changed to a width
0.06m, and the length in the laser optical axis direction is 0.6m. now,
If we set 0.03 m as the point of distance x, that is, the center of the electrode width, the Reynolds number (R e x ) is 1.6
×10 4 , and the Prandtl number of the gas is approximately 0.7, and the thermal conductivity of helium is 0.13 Kcal/ mhr °C, so the local heat transfer coefficient h x is calculated as 2.6 × 10 2 kcal/ m2 h r °C. Ru.

今、ヘリウム温度と開孔電極温度との差を20℃
とすると、取り去られる熱量は約200wとなり、
先述の熱入力と同等もしくはそれ以下にしか満た
ない。一方、上記設定温度差20℃においては、例
えば開孔電極がニツケル(エキシマレーザではも
つとも望ましい材料とされている)製であるとす
ると、その線膨張率0.15×10-4から開孔電極は0.2
mmも伸びる事になる。一般に開孔電極は誘電体に
密着させる構造がとられているので、誘電体上を
開孔電極がスムーズにすべらず上記の伸びは開孔
電極の“そり”となつて表われることが多い。
Now, the difference between the helium temperature and the open-hole electrode temperature is 20℃.
Then, the amount of heat removed will be approximately 200W,
It only meets or is less than the heat input mentioned above. On the other hand, at the above set temperature difference of 20°C, if the aperture electrode is made of nickel (which is considered to be a desirable material for excimer lasers), the aperture electrode will be 0.2 from its linear expansion coefficient of 0.15×10 -4 .
It will also increase in mm. Generally, the aperture electrode has a structure in which it is brought into close contact with the dielectric material, so that the aperture electrode does not slide smoothly on the dielectric material, and the above-mentioned elongation often appears as "warpage" of the aperture electrode.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の装置は以上のように構成されているの
で、レーザ平均出力を向上させるためにくり返し
速度を増すと、開孔電極や誘電体が加熱され熱応
力による誘電体の破損や開孔電極の反りによつて
主放電々極間のギヤツプ長が局部的に不ぞろいに
なり、主放電がアークになりやすいなどの問題点
があつた。
Conventional devices are configured as described above, so when the repetition speed is increased to improve the average laser output, the aperture electrode and dielectric are heated, causing damage to the dielectric and warping of the aperture electrode due to thermal stress. This caused problems such as the gap length between the main discharge poles becoming locally uneven, and the main discharge easily becoming an arc.

この発明は上記のような問題点を解消するため
になされたもので、効率の良い方法で開孔電極お
よび誘電体を冷却し、これによつてレーザ発振の
くり返し速度を増しても安定に動作する放電励起
短パルスレーザ装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and it cools the open-hole electrode and dielectric material in an efficient manner, thereby achieving stable operation even when the repetition rate of laser oscillation is increased. The purpose of this invention is to obtain a discharge-excited short pulse laser device.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る放電励起短パルスレーザ装置
は、誘電体を管構造とし、管内部に冷却用媒体を
封入するか、もしくは流すことにより開孔電極、
誘電体および補助電極の冷均をきわめて効率良く
行うようにしたものである。
The discharge-excited short-pulse laser device according to the present invention has a dielectric having a tube structure, and a cooling medium is sealed inside the tube or is caused to flow through the hole electrode.
It is designed to perform cold equalization of the dielectric and auxiliary electrodes extremely efficiently.

〔作用〕[Effect]

開孔電極、誘電体および補助電極は、熱的には
三層積層板と見なすことができ、例えば開孔電極
および補助電極の材質をニツケルとし、誘電体の
材質をアルミナとすると、総括的な熱伝達率の値
は104Kcal/m2hr℃のオーダとなり先述の熱入力
のオーダより2桁も大きい。
The open-hole electrode, dielectric, and auxiliary electrode can be thermally regarded as a three-layer laminate. For example, if the open-hole electrode and the auxiliary electrode are made of nickel, and the dielectric is made of alumina, the overall The value of the heat transfer coefficient is on the order of 10 4 Kcal/m 2 h r °C, which is two orders of magnitude larger than the aforementioned heat input.

したがつて誘電体を管構造とし、管内部に冷却
用媒質を封入もしくは流すことにより、補助電極
もしくは誘電体を直接冷却するようにすれば、開
孔電極も含めてきわめて迅速にかつ効率良く冷却
を行うことが可能となる。
Therefore, if the dielectric material is made into a tube structure and the auxiliary electrode or dielectric material is directly cooled by sealing or flowing a cooling medium inside the tube, it is possible to cool the auxiliary electrode or the dielectric material very quickly and efficiently, including the open-hole electrode. It becomes possible to do this.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明す
る。第1図において8は開孔電極、9は電極、1
1は誘電体、17は主放電空間、20は脱イオン
水である。
An embodiment of the present invention will be described below with reference to the drawings. In Fig. 1, 8 is an aperture electrode, 9 is an electrode, 1
1 is a dielectric, 17 is a main discharge space, and 20 is deionized water.

誘電体11は管構造となつている。その内部に
補助電極10が設置されており、かつ脱イオン水
20が流され、該脱イオン水20によつて補助電
極10と誘電体11の冷却およびこれらを介して
開孔陰極8の冷却が行なわれる。
The dielectric 11 has a tube structure. An auxiliary electrode 10 is installed inside the electrode, and deionized water 20 is flowed therein, and the deionized water 20 cools the auxiliary electrode 10 and the dielectric 11, and cools the aperture cathode 8 through them. It is done.

脱イオン水と補助電極10との間の熱伝達率は
103Kcal/m2hr℃以上であり、また補助電極10、
誘電体11および開孔陰極の三層積層構造部の熱
伝達率は、先述したように104Kcal/m2hr℃であ
るから、いづれも先述した熱入力のオーダと比較
すれば、上記三層積層構造部の温度を脱イオン水
の温度とほとんど等しく保つことが可能であるこ
とは明らかである。
The heat transfer coefficient between deionized water and the auxiliary electrode 10 is
10 3 Kcal/m 2 h r ℃ or more, and the auxiliary electrode 10,
The heat transfer coefficient of the three-layer laminated structure of the dielectric 11 and the apertured cathode is 10 4 Kcal/m 2 h r ℃ as mentioned above, so if you compare the order of the heat input mentioned above, It is clear that it is possible to keep the temperature of the three-layer laminate almost equal to the temperature of the deionized water.

第2図は本発明による他の実施例であり、図に
おいて21は給電線、その他の符号は第1図と同
一である。本実施例では補助電極10を排除し、
脱イオン水20自身に冷却媒体とともに補助電極
としての役割をもたせ、該脱イオン水中に設けら
れた給電線により電圧供給をするようにしたもの
で、補助電極部をきわめて簡単な構造としたもの
である。
FIG. 2 shows another embodiment of the present invention, in which reference numeral 21 indicates a power supply line, and other symbols are the same as in FIG. 1. In this embodiment, the auxiliary electrode 10 is excluded,
The deionized water 20 itself has a role as an auxiliary electrode along with a cooling medium, and voltage is supplied through a power line provided in the deionized water, and the auxiliary electrode part has an extremely simple structure. be.

また、冷却媒体として脱イオン水20以外にア
ンモニアやフツ化ハロゲン化炭化水素系冷媒など
を用いても良い。
Furthermore, in addition to the deionized water 20, ammonia, fluorinated halogenated hydrocarbon type refrigerant, etc. may be used as the cooling medium.

さらに、これらの冷却媒体を誘電体11内に封
入し、ヒートパイプを形成するようにして冷却動
作を行なわせても良い。
Furthermore, the cooling operation may be performed by enclosing these cooling media in the dielectric 11 to form a heat pipe.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば誘電体を管構
造とし、該管内に冷却用媒体を封入もしくは流す
ように構成したので、開孔電極および誘電体の冷
却を効率良く行うことができ、したがつてレーザ
発振くり返し速度の高い、つまり平均出力の高い
かつ高速くり返し発振時にも安定動作可能な放電
励起短パルスレーザ装置を実現したものである。
As described above, according to the present invention, the dielectric material has a tube structure, and the cooling medium is sealed or flowed inside the tube, so that the apertured electrode and the dielectric material can be efficiently cooled. As a result, a discharge-excited short pulse laser device has been realized which has a high repetition rate of laser oscillation, that is, a high average output, and which can operate stably even during high-speed repetition oscillation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例による放電励起
短パルスレーザ装置を示す断面図、第2図は、こ
の発明の他の実施例を示す断面図、第3図は従来
の放電励起短パルスレーザ装置を示す断面図、第
4図は誘電体および開孔電極の構成図である。 図において、8は開孔電極、9は電極、10は
補助電極、11は誘電体、20は脱イオン水、2
1は給電線である。なお図中、同一符号は同一又
は相当部分を示す。
FIG. 1 is a cross-sectional view showing a discharge-excited short pulse laser device according to one embodiment of the present invention, FIG. 2 is a cross-sectional view showing another embodiment of the present invention, and FIG. 3 is a conventional discharge-excited short pulse laser device. FIG. 4 is a cross-sectional view showing the laser device, and is a configuration diagram of the dielectric and the apertured electrode. In the figure, 8 is an open-hole electrode, 9 is an electrode, 10 is an auxiliary electrode, 11 is a dielectric, 20 is deionized water, 2
1 is a power supply line. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 レーザ光軸方向を長手方向とし、かつ相対向
するように配設された一対の電極で、該電極のう
ちいづれか一方が複数の開孔部を有している主放
電々極対、および該開孔電極の背面にあり、かつ
これに直接々触している誘電体部および該誘電体
部を狭むように、該誘電体部に直接々触している
補助電極とを有する電極系と、上記主放電々極間
にパルス電圧を印加するためのパルス回路およ
び、該パルス回路の一部を形成するかもしくは、
該パルス回路とは独立したものであつて、上記補
助電極と開孔電極との間に電圧を印加するための
回路とを有する回路系、とから構成される放電励
起短パルスレーザ装置において、上記誘電体部を
管構造とし、管内部で、かつ該管において開孔電
極と直接接触している面の背面に補助電極を直接
接触させるようにし、かつ、該管内部に冷却用媒
体を封入するかもしくは流通するようにしたこと
を特徴とする放電励起短パルスレーザ装置。 2 冷却用媒体として、脱イオン水を使用するこ
とを特徴とする特許請求の範囲第1項記載の放電
励起短パルスレーザ装置。 3 冷却用媒体として、脱イオン水を使用し、か
つ、上記補助電極を排除し、該脱イオン水自身を
補助電極とすることを特徴とする特許請求の範囲
第1項記載の放電励起短パルスレーザ装置。 4 冷却用媒体として、アンモニアもしくはフツ
化ハロゲン化炭化水素系冷媒を用いることを特徴
とする特許請求の範囲第1項記載の放電励起短パ
ルスレーザ装置。 5 冷却用媒体としてアンモニアもしくはフツ化
ハロゲン化炭化水素系冷媒を用い、かつこれらの
冷却用媒体を誘電体の管に封入し、ヒートパイプ
を構成するようにしたことを特徴とする特許請求
の範囲第1項記載の放電励起短パルスレーザ装
置。
[Scope of Claims] 1. A main discharge comprising a pair of electrodes whose longitudinal direction is the laser optical axis direction and which are arranged to face each other, and one of the electrodes has a plurality of openings. a pair of electrodes, a dielectric part on the back side of the aperture electrode and in direct contact with the aperture electrode, and an auxiliary electrode in direct contact with the dielectric part so as to narrow the dielectric part. a pulse circuit for applying a pulse voltage between the main discharge electrodes, and forming a part of the pulse circuit, or
and a circuit system that is independent of the pulse circuit and has a circuit for applying a voltage between the auxiliary electrode and the aperture electrode. The dielectric part has a tube structure, and an auxiliary electrode is brought into direct contact with the inside of the tube and on the back side of the surface of the tube that is in direct contact with the open-hole electrode, and a cooling medium is sealed inside the tube. 1. A discharge-excited short pulse laser device characterized in that the discharge-excited short-pulse laser device is configured to be able to circulate through the laser beams. 2. The discharge-excited short pulse laser device according to claim 1, wherein deionized water is used as the cooling medium. 3. The discharge excitation short pulse according to claim 1, characterized in that deionized water is used as the cooling medium, the auxiliary electrode is excluded, and the deionized water itself is used as the auxiliary electrode. laser equipment. 4. The discharge-excited short-pulse laser device according to claim 1, wherein ammonia or a fluorinated halogenated hydrocarbon-based coolant is used as the cooling medium. 5. Claims characterized in that ammonia or a fluorinated halogenated hydrocarbon-based refrigerant is used as a cooling medium, and these cooling mediums are sealed in a dielectric tube to constitute a heat pipe. 2. The discharge-excited short-pulse laser device according to item 1.
JP21362984A 1984-10-09 1984-10-11 Discharge excitation short-pulse laser Granted JPS6191983A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP21362984A JPS6191983A (en) 1984-10-11 1984-10-11 Discharge excitation short-pulse laser
US06/782,568 US4686682A (en) 1984-10-09 1985-10-01 Discharge excitation type short pulse laser device
EP85112484A EP0177888B1 (en) 1984-10-09 1985-10-02 Discharge excitation type short pulse laser device
DE3587852T DE3587852T2 (en) 1984-10-09 1985-10-02 Discharge excitation type short pulse laser device.
CA000492327A CA1259122A (en) 1984-10-09 1985-10-04 Discharge excitation type short pulse laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21362984A JPS6191983A (en) 1984-10-11 1984-10-11 Discharge excitation short-pulse laser

Publications (2)

Publication Number Publication Date
JPS6191983A JPS6191983A (en) 1986-05-10
JPS6364069B2 true JPS6364069B2 (en) 1988-12-09

Family

ID=16642318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21362984A Granted JPS6191983A (en) 1984-10-09 1984-10-11 Discharge excitation short-pulse laser

Country Status (1)

Country Link
JP (1) JPS6191983A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0636448B2 (en) * 1987-03-17 1994-05-11 三菱電機株式会社 Discharge excitation laser device
JPH01307284A (en) * 1988-06-06 1989-12-12 Agency Of Ind Science & Technol Discharge electrode
EP0472735A4 (en) * 1990-03-05 1992-05-13 Mitsui Petrochemical Industries, Ltd. Discharge excitation excimer laser device
JP2734191B2 (en) * 1990-10-09 1998-03-30 日本電気株式会社 Laser device
CN102969645B (en) * 2012-11-21 2015-07-15 中国科学院光电研究院 Flow guide device for dual-electrode discharge cavity, discharge cavity employing same, and excimer laser

Also Published As

Publication number Publication date
JPS6191983A (en) 1986-05-10

Similar Documents

Publication Publication Date Title
US3721915A (en) Electrically excited flowing gas laser and method of operation
US3763442A (en) Ion laser plasma tube cooling device and method
GB1452156A (en) Gas lasers
US5546416A (en) Cooling system and mounting for slab lasers and other optical devices
US4077020A (en) Pulsed gas laser
JPS6364069B2 (en)
JPS61116889A (en) Discharge excitation short pulse laser device
KR100805690B1 (en) Slotted Remote Low Temperature Plasma Reactor
Boness et al. High‐pressure pulsed electrical CO laser
US3440558A (en) High repetition rate laser
RU2701154C1 (en) Conduction mgh pump and pump system
JPS63227776A (en) Cathode/target assembly for precipitation apparatus
US3622910A (en) Dynamic convective cooled laser
JPS6239555B2 (en)
JP4732978B2 (en) Thermo chuck device and method of manufacturing thermo chuck device
JPH01273375A (en) Discharge excited excimer laser device
JPH05343777A (en) Pulse laser equipment
JPS61236179A (en) Gas laser oscillating apparatus
JP2009099902A (en) Cooling mechanism for discharge-excited gas laser apparatus
JPH05327071A (en) Laser device cooler
Zhelamsky et al. On the transient heat transfer in liquid helium in narrow horizontal channels
JPS6288384A (en) Gas laser device
JPH0255205A (en) Ozonizer
JPS61170084A (en) laser oscillator
Lin et al. Thermal Design in Diode Array Packaging

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees