[go: up one dir, main page]

JPS6363004A - Optical component manufacturing method and equipment - Google Patents

Optical component manufacturing method and equipment

Info

Publication number
JPS6363004A
JPS6363004A JP61206919A JP20691986A JPS6363004A JP S6363004 A JPS6363004 A JP S6363004A JP 61206919 A JP61206919 A JP 61206919A JP 20691986 A JP20691986 A JP 20691986A JP S6363004 A JPS6363004 A JP S6363004A
Authority
JP
Japan
Prior art keywords
light
optical
optical component
scattered light
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61206919A
Other languages
Japanese (ja)
Inventor
Masato Shimura
正人 志村
Noriaki Takeya
竹谷 則明
Seikichi Tanno
丹野 清吉
Kuniyuki Eguchi
州志 江口
Yoshiaki Okabe
義昭 岡部
Hideki Asano
秀樹 浅野
Tomiya Abe
富也 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61206919A priority Critical patent/JPS6363004A/en
Publication of JPS6363004A publication Critical patent/JPS6363004A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To obtain optical parts having the homogeneous and good quality by understanding a proceeding state of a hardening reaction from a varied state of the intensity of a scattered light, and controlling a reaction condition by executing a feedback, with respect to a format of an optical fiber made of a thermosetting resin. CONSTITUTION:A light beam from an He-Ne laser 1 is divided into two in a prescribed ratio by a beam splitter 2, passes through choppers 3, 3' and lenses 4 and 4' and made incident on light sending fibers 5, 5'. Subsequently, said light beam is condensed by lenses 6, 6', radiated to an optical resin material 8 in a polymerization tube 7, a scattered light from a sample placed at a prescribed angle with a radiated light is made incident on a photodetecting fiber 10 by a lens 9, detected by a photodetector 12, the scattered light intensity is measured by a photon counting method, and the sum and difference of the scattered light intensity from two incident beams are derived by a signal processing system 13, and displayed. In this way, by controlling a flow velocity and a polymerization temperature of the resin, optical parts having the homogeneous and good quality can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明け、熱硬化性樹脂製の光学部品の製造過程におい
て、その反応の進行状況を光学的に測定して反応制御を
行う光学部品、特に光ファイバの製造法及びその装置に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides an optical component that controls the reaction by optically measuring the progress of the reaction in the manufacturing process of an optical component made of a thermosetting resin. In particular, it relates to an optical fiber manufacturing method and its apparatus.

〔従来の技術〕[Conventional technology]

光散乱法により、溶液の濁度、大気中のチリを測定する
ことは、従来よく行われてきた。重合反応をとらえるこ
とに応用した例としては、特開昭56−20001号公
報北記載のように、光源からの光を、光ファイバで重合
槽内に導き、散乱光を光ファイバで受光して強度を測定
し、重合反応の開始で生成するポリマーからの散乱光の
変化を検出して、乳化重合などの反応開始時点を検知す
るというものであった。
Light scattering methods have traditionally been used to measure the turbidity of solutions and the amount of dust in the atmosphere. As an example of application to capturing polymerization reactions, as described in JP-A-56-20001 Kita, light from a light source is guided into a polymerization tank through an optical fiber, and scattered light is received by an optical fiber. The idea was to measure the intensity and detect changes in scattered light from the polymer generated at the start of the polymerization reaction to detect the start of a reaction such as emulsion polymerization.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

重合反応開始点をとらえる上記従来技術では、管内重合
に対する配慮は、不十分である。すなわち、十分カ散乱
光強度は得られない。また、上記の方法は、重合反応の
開始点を検知するためのものであり、反応の進行する状
況を把握することに対する配慮はなされていない。
The above-mentioned conventional techniques that detect the starting point of the polymerization reaction do not give sufficient consideration to in-tube polymerization. That is, sufficient scattered light intensity cannot be obtained. Further, the above method is for detecting the starting point of the polymerization reaction, and no consideration is given to understanding the progress of the reaction.

本発明の目的は、上記のような従来の方法を、発展させ
、熱硬化性樹脂製の光学部品の製造過程において、樹脂
に非破壊・非接触で、反応進行過程を測定して反応制御
を行う光学部品の製造法及びその装置を提供することに
ある。
The purpose of the present invention is to develop the conventional method as described above, and to control the reaction by measuring the progress of the reaction non-destructively and without contacting the resin in the process of manufacturing optical parts made of thermosetting resin. An object of the present invention is to provide a method for manufacturing optical components and an apparatus therefor.

c問題点を解決するための手段〕 本発明を概説すれば、本発明の第1の発明は光学部品の
製造法に関する発明であって、熱硬化性樹脂製の光学部
品を製造する方法において、硬化反応の進行状況を散乱
光強度の変化状況から把握し、フィードバックして反応
条件を制御することにより、均質で良好な性質を有する
光学部品を得ることを特徴とする。
Means for Solving Problems c] To summarize the present invention, the first invention of the present invention is an invention related to a method for manufacturing an optical component, and in the method for manufacturing an optical component made of a thermosetting resin, It is characterized by obtaining an optical component that is homogeneous and has good properties by understanding the progress of the curing reaction from changes in the intensity of scattered light and controlling the reaction conditions using feedback.

また、本発明の第2の発明は光学部品の製造装置に関す
る発明であって、熱硬化性樹脂製の光学部品を製造する
ための装置が、レーザ光源、その光束を分けるビームス
プリッタ、光束を導くレンズと光ファイバ系、樹脂材料
の重合反応容器、該容器からの散乱光の受光素子、その
信号処理を行う電気回路系、及びフィードバックされた
信号に基づく重合反応条件の制御系の各設備を包含して
いることを特徴とする。
Further, a second invention of the present invention is an invention relating to an optical component manufacturing device, and the device for manufacturing an optical component made of thermosetting resin includes a laser light source, a beam splitter that divides the light beam, and a beam splitter that guides the light beam. Includes the following equipment: a lens and optical fiber system, a polymerization reaction container for resin materials, a light receiving element for scattered light from the container, an electric circuit system for signal processing, and a control system for polymerization reaction conditions based on feedback signals. It is characterized by the fact that

前記目的は、具体的には以下のようにして達成すること
ができる。
Specifically, the above object can be achieved as follows.

重合反応容器内の樹脂に効率良く光?照射するため送光
ファイバから出た光を、レンズにより重合反応容器内の
1点に集光する。また、あらかじめビームを複数本、例
えば2本に分け、重合反応容器に対し異った方向から入
射させ、各ビームによる散乱光強度と、それらの角度依
存性を測定する。
Efficiently illuminate the resin in the polymerization reaction vessel? For irradiation, the light emitted from the light transmission fiber is focused by a lens on one point within the polymerization reaction vessel. Further, the beam is divided into a plurality of beams, for example, two beams, and the beams are made to enter the polymerization reaction vessel from different directions, and the scattered light intensity of each beam and their angular dependence are measured.

重合反応状況を把握するため、重合反応の進行に伴う測
定値の変化をあらかじめ測定し、分子量、粘度などとの
対応付けを行っておく。
In order to understand the state of the polymerization reaction, changes in measured values as the polymerization reaction progresses are measured in advance and correlated with molecular weight, viscosity, etc.

入射光をレンズで集光することにより、容器内での光強
度を増し、十分な散乱光強度を得る。散乱光の角度依存
性の測定を行うので、光学部品以外からの散乱光の影響
を大きく軽減することができ、信頼性の高い測定を可能
くする。
By condensing the incident light with a lens, the light intensity within the container is increased and sufficient scattered light intensity is obtained. Since the angular dependence of scattered light is measured, the influence of scattered light from sources other than optical components can be greatly reduced, making highly reliable measurements possible.

重合反応の初期では、モノマー液中にポリマー粒子が出
現する。モノマーの状態では、溶液からの散乱に角度依
存性はないが、反応の開始に伴い、角度依存性が生じ、
また散乱光強度は大幅に増大する。また、反応が進行す
ると、全体が樹脂として一様になり、散乱光強度はやや
減少する。この変化状況を把握することにより、重合反
応の進行状況を把握することができる。
At the beginning of the polymerization reaction, polymer particles appear in the monomer liquid. In the monomer state, there is no angular dependence in scattering from the solution, but as the reaction begins, angular dependence occurs.
Furthermore, the intensity of scattered light increases significantly. Further, as the reaction progresses, the entire resin becomes uniform and the scattered light intensity decreases slightly. By understanding this change, it is possible to understand the progress of the polymerization reaction.

更に、樹脂硬化後の数置光強度より、製造された光学部
品の特性の1っでちる光散乱による損失を、見積ること
ができる。光ファイバにおいては、その伝送損失は吸収
損失と散乱損失から成るが、このうち散乱損失を見積る
ことができる。これをフィードバックして、樹脂の流速
と重合温度とを制御することによシ、良好で均質な光学
部品を製造することができた。
Furthermore, the loss due to light scattering, which is a characteristic of the manufactured optical component, can be estimated from the numerical light intensity after the resin is cured. In an optical fiber, transmission loss consists of absorption loss and scattering loss, of which scattering loss can be estimated. By feeding back this information and controlling the flow rate and polymerization temperature of the resin, it was possible to manufacture a good and homogeneous optical component.

〔実施例〕〔Example〕

以下、本発明を実施例により更に具体的に説明するが、
本発明はこれら実施PJ K限定されない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these implementation projects.

々お、第1図は本発明装置の1例の概要図、第2図は、
第1図の装置における測定部分の拡大断面図、第3図は
、光学樹脂材料の重合過程における散乱光強度の時間変
化、を示すグラフである。
Fig. 1 is a schematic diagram of an example of the device of the present invention, and Fig. 2 is a schematic diagram of an example of the device of the present invention.
FIG. 3 is an enlarged cross-sectional view of the measurement portion of the apparatus shown in FIG. 1, and FIG. 3 is a graph showing temporal changes in scattered light intensity during the polymerization process of an optical resin material.

実施列1 本発明の1実施例を第1図により説明する。これは、熱
硬化性樹脂製光ファイバの製造例である。
Embodiment 1 One embodiment of the present invention will be described with reference to FIG. This is an example of manufacturing an optical fiber made of thermosetting resin.

第1図において、符号1はHe−Noレーザ、2はビー
ムスプリッタ、3及び3′はチョッパー% 4.4′、
6.6′及び9はレンズ、5及び5′は送光ファイバ、
7は重合管、8は光学樹脂材料、10は受光ファイバ、
12は受光素子、15け信号処理系を意味する。
In FIG. 1, 1 is a He-No laser, 2 is a beam splitter, 3 and 3' are choppers %4.4',
6.6' and 9 are lenses, 5 and 5' are light transmitting fibers,
7 is a polymer tube, 8 is an optical resin material, 10 is a light receiving fiber,
12 means a light receiving element, and 15 means a signal processing system.

Ee−Neレーザ1からの光は、ビームスプリッタ2に
より、一定の割合で2つに分けられ、チョッパー3及び
3′、レンズ4及び4′ヲ通って送光ファイバ5及び5
′に入光する。送光ファイバ5及び5′からの光は、レ
ンズ6及び6′により集光され、重合管7の中の光学樹
脂材料8に照射される。照射光と所定の角度をなす試料
からの散乱光を、レンズ9で受光ファイバ10に入光す
る。ここで、2つの入射ビームは、受光ファイバ10を
基準として、異なった角度で樹脂に照射する。また、チ
ョッパー3及び3′により、入射ビームは、交互に樹脂
に照射される。散乱光は、前述の受光ファイバ10を経
て、受光素子12で検出し、光子計数法により、散乱光
強度を測定する。信号処理系13では、2つの入射ビー
ムからの散乱光強度の和と差を求め、表示する。
The light from the Ee-Ne laser 1 is split into two at a constant ratio by a beam splitter 2, passes through choppers 3 and 3', lenses 4 and 4', and is sent to light transmission fibers 5 and 5.
′. The light from the light transmission fibers 5 and 5' is focused by lenses 6 and 6', and is irradiated onto the optical resin material 8 in the polymer tube 7. Scattered light from the sample forming a predetermined angle with the irradiated light enters the light receiving fiber 10 through the lens 9. Here, the two incident beams irradiate the resin at different angles with respect to the light receiving fiber 10. Further, the choppers 3 and 3' irradiate the resin with the incident beams alternately. The scattered light passes through the aforementioned light receiving fiber 10 and is detected by the light receiving element 12, and the intensity of the scattered light is measured by a photon counting method. The signal processing system 13 calculates and displays the sum and difference of the scattered light intensities from the two incident beams.

なお、第2図に示したように、測定部は暗箱11で覆い
、前述の送光ファイバ5及び5′、レンズ6.6′及び
9、重合管7、受光ファイバ10を固定し、光軸を決め
ると同時に、外部からの光kR断し、信号−ノイズ比を
高くする。
As shown in FIG. 2, the measuring section is covered with a dark box 11, and the aforementioned light transmitting fibers 5 and 5', lenses 6, 6' and 9, polymer tube 7, and light receiving fiber 10 are fixed, and the optical axis is At the same time, the external light kR is cut off to increase the signal-to-noise ratio.

また、あらかじめ反応の進行に伴う散乱光強度の和と差
の変化状況を測定し、各種分析法により求めた分子量、
粘度等との対応づけ?行っておく。
In addition, we measured in advance the changes in the sum and difference of scattered light intensity as the reaction progressed, and determined the molecular weight using various analytical methods.
Correlation with viscosity, etc.? I'll go.

更に、管内の樹脂からの散乱光強度?、前述の測定と対
応するように規格化する。以上の手続きにより、チュー
ブ内の樹脂による散乱光強度から、重合度を知ることが
できた。
Furthermore, the intensity of scattered light from the resin inside the tube? , normalized to correspond to the measurements described above. Through the above procedure, it was possible to determine the degree of polymerization from the intensity of light scattered by the resin inside the tube.

測定された散乱光強度の時間変化?、第3図に角1fθ
1、θ雪の2つの入射ビームによる散乱光強度の和(対
数で示す、縦軸、実線)及び両者の差(縦軸、破線)と
、時間(横軸)との関係でグラフとして示す。第3図に
おける■の時点で、半ゲル状となるため、この時に重合
管より押出す。
Time change in measured scattered light intensity? , the angle 1fθ is shown in Figure 3.
1. The relationship between the sum of the scattered light intensities by the two incident beams of θ snow (logarithmically represented, vertical axis, solid line) and the difference between the two (vertical axis, broken line), and time (horizontal axis) is shown as a graph. At the time point (■) in FIG. 3, it becomes semi-gel-like, so it is extruded from the polymerization tube at this time.

第3図と、重合管における光の減衰、散乱を表す規格化
定数とを用いて、管内の反応進行状況を′把掴し、これ
をフィードバックし、樹脂の流速と重合温度を制御する
ことにより、均質で良好が性質を有する光学部品を製造
することができ九。
By using Figure 3 and normalization constants that represent the attenuation and scattering of light in the polymerization tube, we can grasp the reaction progress inside the tube, feed this back, and control the resin flow rate and polymerization temperature. 9. It is possible to manufacture optical components with homogeneous and good properties.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、重合反応容器、周凹のチリ々ど、光学
部品以外からの散乱光の影響全低減できるので、高精度
の確実々測定が可能となった。
According to the present invention, it is possible to completely reduce the influence of scattered light from sources other than the optical components, such as dust particles on the circumferential recess of the polymerization reaction vessel, making it possible to perform reliable measurements with high precision.

また、硬化反応の進行状況分測定できるので、光学部品
の品質を製造過程で監視することにより、高品質の光学
部品が得られるという顕著な効果が奏せられる。
Furthermore, since the progress of the curing reaction can be measured, monitoring the quality of the optical component during the manufacturing process has the remarkable effect of producing high-quality optical components.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装噌の1例の概要図、第2図は第1図の
装置における測定部分の拡大断面図、第3図は光学樹脂
材料の重合過程における散乱光強度の時間変化を示すグ
ラフである。
Fig. 1 is a schematic diagram of an example of the device of the present invention, Fig. 2 is an enlarged sectional view of the measurement part of the apparatus shown in Fig. 1, and Fig. 3 shows the temporal change in scattered light intensity during the polymerization process of an optical resin material. This is a graph showing.

Claims (1)

【特許請求の範囲】 1、熱硬化性樹脂製の光学部品を製造する方法において
、硬化反応の進行状況を散乱光強度の変化状況から把握
し、フィードバックして、反応条件を制御することによ
り、均質で良好な性質を有する光学部品を得ることを特
徴とする光学部品の製造法。 2、該光学部品が、光ファイバである特許請求の範囲第
1項記載の光学部品の製造法。 3、熱硬化性樹脂製の光学部品を製造するための装置が
、レーザ光源、その光束を分けるビームスプリッタ、光
束を導くレンズと光ファイバ系、樹脂材料の重合反応容
器、該容器からの散乱光の受光素子、その信号処理を行
う電気回路系、及びフィードバックされた信号に基づく
重合反応条件の制御系の各設備を包含していることを特
徴とする光学部品の製造装置。 4、該重合反応容器が、細管である特許請求の範囲第3
項記載の光学部品の製造装置。 5、該装置が、レーザ入射ビームを複数本に分け、それ
らを樹脂材料に対して異なる角度で入射させて、散乱光
の角度依存性を測定する設備を有する特許請求の範囲第
3項又は第4項記載の光学部品の製造装置。 6、該入射ビームを2本に分ける特許請求の範囲第5項
記載の光学部品の製造装置。
[Claims] 1. In a method for manufacturing optical components made of thermosetting resin, the progress of the curing reaction is grasped from the change in the intensity of scattered light, and feedback is provided to control the reaction conditions. A method for producing an optical component, characterized by obtaining an optical component having homogeneous and good properties. 2. The method for manufacturing an optical component according to claim 1, wherein the optical component is an optical fiber. 3. The equipment for manufacturing optical parts made of thermosetting resin includes a laser light source, a beam splitter that separates the light beam, a lens and optical fiber system that guides the light beam, a polymerization reaction container for resin material, and scattered light from the container. 1. An optical component manufacturing apparatus comprising a light receiving element, an electric circuit system for signal processing, and a control system for controlling polymerization reaction conditions based on a feedback signal. 4. Claim 3, wherein the polymerization reaction vessel is a thin tube.
An apparatus for manufacturing optical components as described in Section 1. 5. The device has equipment for dividing an incident laser beam into a plurality of beams, making them incident on the resin material at different angles, and measuring the angular dependence of the scattered light. 4. The optical component manufacturing apparatus according to item 4. 6. The optical component manufacturing apparatus according to claim 5, wherein the incident beam is divided into two beams.
JP61206919A 1986-09-04 1986-09-04 Optical component manufacturing method and equipment Pending JPS6363004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61206919A JPS6363004A (en) 1986-09-04 1986-09-04 Optical component manufacturing method and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61206919A JPS6363004A (en) 1986-09-04 1986-09-04 Optical component manufacturing method and equipment

Publications (1)

Publication Number Publication Date
JPS6363004A true JPS6363004A (en) 1988-03-19

Family

ID=16531252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61206919A Pending JPS6363004A (en) 1986-09-04 1986-09-04 Optical component manufacturing method and equipment

Country Status (1)

Country Link
JP (1) JPS6363004A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02228559A (en) * 1989-03-01 1990-09-11 Fujikura Ltd Measurement of hardening state for optical fiber coating
US7495823B2 (en) * 2006-08-25 2009-02-24 Northrop Grumman Corporation Optical method and system for analyzing or inspecting patterned materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02228559A (en) * 1989-03-01 1990-09-11 Fujikura Ltd Measurement of hardening state for optical fiber coating
US7495823B2 (en) * 2006-08-25 2009-02-24 Northrop Grumman Corporation Optical method and system for analyzing or inspecting patterned materials

Similar Documents

Publication Publication Date Title
US5434667A (en) Characterization of particles by modulated dynamic light scattering
US6791676B1 (en) Spectrophotometric and nephelometric detection unit
EP0443322A2 (en) Method and apparatus for measuring the thickness of a coating
JPH0551298B2 (en)
IL138815A0 (en) Arrangement and method to apply diffusing wave spectroscopy to measure the properties of multi-phase systems as well as the changes therein
EP0121404B1 (en) A photometric light absorption measuring apparatus
JPH0120371B2 (en)
JPS6363004A (en) Optical component manufacturing method and equipment
JP4763868B2 (en) Nephelometric detection unit with optical in-process control
US6643018B2 (en) Optical scattering monitor
JPS6151569A (en) Cell identifying device
JPS63120222A (en) Displacement measuring device and method
WO2017138083A1 (en) V-block refractometer
US4586816A (en) Optical fibre spot size determination apparatus
JP2000074634A (en) Method and instrument for measuring thickness of macromolecular film
JP2710388B2 (en) Measurement method of cured state of optical fiber coating surface
RU2161791C2 (en) Device to monitor liquid biological medium
JP6066582B2 (en) Detection device
JPH0850007A (en) Method and apparatus for evaluating film thickness
SU819639A1 (en) Method of determination of polymer film quality
JPH0862133A (en) Microscopic infrared spectrophotometer
RU2158914C2 (en) Method of optical test of shock-wave tube
RU2083971C1 (en) Process determining content of oil products in water and device for its implementation
SU913184A1 (en) Device for measuring diffused radiation angular distribution
CN116465852A (en) Liquid-phase infrared spectrum measuring method and device based on infrared short pulse excitation