JPS6362723A - Manufacture of thermoplastic resin sheet - Google Patents
Manufacture of thermoplastic resin sheetInfo
- Publication number
- JPS6362723A JPS6362723A JP61206702A JP20670286A JPS6362723A JP S6362723 A JPS6362723 A JP S6362723A JP 61206702 A JP61206702 A JP 61206702A JP 20670286 A JP20670286 A JP 20670286A JP S6362723 A JPS6362723 A JP S6362723A
- Authority
- JP
- Japan
- Prior art keywords
- sheet
- thickness
- resin sheet
- electrode
- thickness change
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920005992 thermoplastic resin Polymers 0.000 title claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 229920005989 resin Polymers 0.000 claims abstract description 51
- 239000011347 resin Substances 0.000 claims abstract description 51
- 238000001816 cooling Methods 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 19
- 238000004458 analytical method Methods 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims description 8
- 229920001283 Polyalkylene terephthalate Polymers 0.000 claims 1
- 229920001169 thermoplastic Polymers 0.000 claims 1
- 239000004416 thermosoftening plastic Substances 0.000 claims 1
- 238000000465 moulding Methods 0.000 abstract description 3
- 230000003068 static effect Effects 0.000 abstract description 3
- 238000010521 absorption reaction Methods 0.000 abstract description 2
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000004070 electrodeposition Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 7
- -1 polyethylene terephthalate Polymers 0.000 description 5
- 238000005266 casting Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 241000219112 Cucumis Species 0.000 description 1
- 235000015510 Cucumis melo subsp melo Nutrition 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000005250 beta ray Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
- B29C48/911—Cooling
- B29C48/9135—Cooling of flat articles, e.g. using specially adapted supporting means
- B29C48/915—Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means
- B29C48/9165—Electrostatic pinning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/07—Flat, e.g. panels
- B29C48/08—Flat, e.g. panels flexible, e.g. films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
- B29C48/911—Cooling
- B29C48/9135—Cooling of flat articles, e.g. using specially adapted supporting means
- B29C48/914—Cooling drums
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/92—Measuring, controlling or regulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92009—Measured parameter
- B29C2948/92114—Dimensions
- B29C2948/92152—Thickness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92009—Measured parameter
- B29C2948/92114—Dimensions
- B29C2948/92171—Distortion, shrinkage, dilatation, swell or warpage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92323—Location or phase of measurement
- B29C2948/92438—Conveying, transporting or storage of articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92323—Location or phase of measurement
- B29C2948/92447—Moulded article
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92504—Controlled parameter
- B29C2948/92523—Force; Tension
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92504—Controlled parameter
- B29C2948/92571—Position, e.g. linear or angular
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92504—Controlled parameter
- B29C2948/92609—Dimensions
- B29C2948/92666—Distortion, shrinkage, dilatation, swell or warpage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92819—Location or phase of control
- B29C2948/92923—Calibration, after-treatment or cooling zone
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は熱可塑性樹脂よりシート又はフィルム(フィル
ムよりも厚いシートを含めてフィルムと称することがあ
る)を製造する際に使用される静電ピンニング技術の改
良に係わり、厚さの均一性が高水準に保たれたフィルム
を得ることが可能な、安定な静電ピンニング状態を維持
し得る製脱技術に関する。Detailed Description of the Invention [Industrial Application Field] The present invention is an electrostatic method used in producing sheets or films (including sheets thicker than a film may also be referred to as a film) from thermoplastic resin. The present invention relates to an improvement in pinning technology, and relates to a manufacturing/detachment technology that can maintain a stable electrostatic pinning state and can obtain a film with a high level of uniformity in thickness.
[従来技術1
熱可塑性樹脂を熱溶融し、スリットダイから帯〈シート
)状に押出して回転している冷却ロール表面において冷
却固化せしめる方法によりシートを製膜することはよく
知られている。スリットダイのリップ間隔を調整してシ
ート厚さを均一化すること、軟化点以上の未固化シート
を1対のロール間で挟持圧延してシートの厚さを均一化
すること等は、公知のシート厚さの調整手段である。[Prior Art 1] It is well known to form a sheet by a method in which a thermoplastic resin is thermally melted, extruded from a slit die into a band (sheet) shape, and cooled and solidified on the surface of a rotating cooling roll. There are known methods such as adjusting the lip interval of a slit die to make the sheet thickness uniform, and rolling an unsolidified sheet at a temperature higher than the softening point between a pair of rolls to make the sheet thickness uniform. This is a means for adjusting the sheet thickness.
高瓜の品質とその均一性を要求される用途分野ではシー
トの厚さの均一性を保証すべく種々の手段が単独に又は
併用して使用されている。熱可塑性樹脂は均一の加熱温
度でかつ均一の溶融粘度となるように溶融状態において
混練され、またシート状に押出す際の時間当りの流出量
を一定に維持するために計量ポンプが使用されることが
ある。In applications where the quality and uniformity of melons are required, various means are used, either alone or in combination, to ensure uniformity of sheet thickness. Thermoplastic resin is kneaded in a molten state so that it has a uniform heating temperature and a uniform melt viscosity, and a metering pump is used to maintain a constant flow rate per hour when extruding into a sheet. Sometimes.
更にダイ部分においても溶融樹脂の局部的な流出量の変
動を回避するために、既述したダイリップの間隔を拡張
乃至狭小にする1組の調整ボルトをダイのスリットに沿
って多数設けること、又はダイのスリットに沿って多数
の微細な加熱冷却手段を配設して局部的な溶融体の流出
量を調整すること等の均一厚さ制御手段が公知である。Furthermore, in order to avoid local fluctuations in the amount of molten resin flowing out in the die portion, a set of adjustment bolts that expand or narrow the gap between the die lips as described above may be provided along the slit of the die, or Uniform thickness control means are known, such as arranging a large number of fine heating and cooling means along the slit of the die to adjust the amount of localized melt outflow.
これらの溶融体の局部的な流量調整は、シートの厚さの
測定値と基準値との差を矯正するような自動制御装置と
連動することも公知である。シートの厚さは光学的手段
、例えば赤外線ω(透過光ω)の変化、β線厚み計等を
利用して計測でき、シートの幅方向の所定位置に固定す
るシートの長手方向(流れ方向ともいう)の厚さを測定
することができる。It is also known that these local flow adjustments of the melt are associated with automatic control devices that correct differences between the measured sheet thickness and a reference value. The thickness of the sheet can be measured using optical means, such as changes in infrared ω (transmitted light ω), β-ray thickness meter, etc. ) can be measured.
また厚み計測手段をシート幅方向に走査させることによ
ってシート幅方向の厚みの状態を検知することができる
。従来技術では、シートの製造工程においてシート幅方
向の厚さを検知し、この厚さ検知結果をフィードバック
することによって、シート幅方向の厚さが一定となるよ
うにダイの局部的な溶融体の流量調整をする厚さ制御技
術が実用化されている。Further, by scanning the thickness measuring means in the sheet width direction, the thickness state in the sheet width direction can be detected. In the conventional technology, the thickness of the sheet in the width direction is detected during the sheet manufacturing process, and the thickness detection results are fed back to control the local molten material of the die so that the thickness in the sheet width direction is constant. Thickness control technology that adjusts flow rate has been put into practical use.
ところで、ダイ幅方向に沿って均一厚さとなるように溶
融樹脂が押出され、かつその押出量が完全に一定であっ
たとしても、シート状の溶融樹脂が冷却ロール表面に均
一厚さに堆積され固化されな【プれば、均一厚さのシー
トを得ることができない。この溶融樹脂シートの冷却固
化の技術は、冷却ロールが瞬間的にも変動の殆どない条
件で均一速度で回転すること、溶融状態の樹脂シートが
冷却ロールの所定の位置に変動ずことなく接すること(
タッチダウン状態が安定していること)が不可欠である
。そして、後者の技術である溶融状態の樹脂シートを冷
却ロールに静電的に密着せしめる静電ピンニングによる
製膜技術効果的である(特公昭37−6142号公1)
。この静電ピンニングは樹脂シートと冷却ロールとが完
全に密着しないと空気が巻込まれてシート表面に密着型
をもたらす。樹脂シートの走行に際して随伴する空気が
冷却ロールに接する位置で排除される状態が安定的に持
続されることが良好な静電ピンニングの条件となる。別
な観点からは、樹脂シートの冷却ロールに接する状態が
一定であり、冷却ロール表面に接する位nも空間的に一
定していることがシートとしての均一厚さを形成するう
えに必要である。By the way, even if the molten resin is extruded to a uniform thickness along the die width direction and the extrusion amount is completely constant, a sheet of molten resin will be deposited on the cooling roll surface to a uniform thickness. If it is not solidified, it will not be possible to obtain a sheet of uniform thickness. The technology for cooling and solidifying a molten resin sheet requires that the cooling roll rotates at a uniform speed with almost no fluctuation even momentarily, and that the molten resin sheet contacts the cooling roll at a predetermined position without fluctuation. (
It is essential that the touchdown condition is stable. The latter technique, a film forming technique using electrostatic pinning that electrostatically brings a molten resin sheet into close contact with a cooling roll, is effective (Japanese Patent Publication No. 37-6142 No. 1).
. In this electrostatic pinning, if the resin sheet and the cooling roll do not come into perfect contact with each other, air will be drawn in and the sheet surface will become in close contact. A condition for good electrostatic pinning is to maintain a stable state in which the air accompanying the resin sheet as it travels is removed at the position where it contacts the cooling roll. From another point of view, in order to form a uniform thickness as a sheet, it is necessary that the state of the resin sheet in contact with the cooling roll is constant, and that the position n in contact with the surface of the cooling roll is also spatially constant. .
[技術上の解決課題]
静電ピンニング法において、良好なかつ安定した製膜キ
ャスティング状態と厚さの均一な樹脂シートを得るため
には、充電部露出電極、例えば針状電極又はワイヤー状
電楊、を適正な空間上の位置に配する必要がある。例え
ば電極と溶融状樹脂シートの冷却ロール表面へのタッチ
ダウンライン(着地線ということもある)との相対位置
において、電極と樹脂シートとの間隔が適切でなければ
ならない。電極と樹脂シートとが近接し過ぎると溶融状
態のシートが過剰の静電気を受けて振動し、タッチダウ
ンラインが変化して樹脂シートが流れ方向に厚み斑をも
たらしてしまう。これは振動が経時的な堆積量の斑とな
って、樹脂シートの長手方向に脈動的な厚み斑となって
観察されることとなる。また電極をタッチダウンライン
よりもダイ側に移動させると、電極の遠ざかる効果とし
て電位勾配が小さくなり、溶融状態の樹脂シートに印加
される静電荷が減少し、樹脂シートの冷却ロールへの密
着力が弱くなる。樹脂シートが冷却ロールへ密着する際
に完全に随伴空気を排除できないと、シートに空気が巻
込まれたり排除されたりしてシート表面に随伴空気が微
細な気泡として散在し、冷却ロールに密着できなかった
樹脂シートの部分はこの気泡の痕跡がその表面に残るこ
ととなる。このような気泡の散在する樹脂シートは「う
ねり」状の厚さ斑をも伴っている。[Technical problem to be solved] In the electrostatic pinning method, in order to obtain a good and stable film casting state and a resin sheet with a uniform thickness, it is necessary to use a live part exposed electrode, such as a needle-like electrode or a wire-like electric pinning method. It is necessary to place it in an appropriate spatial position. For example, the distance between the electrode and the resin sheet must be appropriate in the relative position of the electrode and the touchdown line (also called landing line) of the molten resin sheet to the surface of the cooling roll. If the electrode and the resin sheet are too close together, the molten sheet receives excessive static electricity and vibrates, changing the touchdown line and causing uneven thickness of the resin sheet in the flow direction. This is because the vibration causes unevenness in the amount of deposit over time, and pulsating thickness unevenness is observed in the longitudinal direction of the resin sheet. Furthermore, when the electrode is moved closer to the die than the touchdown line, the potential gradient becomes smaller as the electrode moves away, reducing the electrostatic charge applied to the molten resin sheet, and increasing the adhesion of the resin sheet to the cooling roll. becomes weaker. If the entrained air cannot be completely removed when the resin sheet is brought into close contact with the cooling roll, air will be drawn into or removed from the sheet, and the entrained air will be scattered as fine bubbles on the sheet surface, making it impossible to make it come into close contact with the cooling roll. Traces of these air bubbles will remain on the surface of the resin sheet. Such a resin sheet with scattered air bubbles also has "undulation"-like thickness unevenness.
このように電極の位置はシート形成における熱可塑性樹
脂に応じた適すノな位置決めが必要である。As described above, the electrodes must be positioned appropriately depending on the thermoplastic resin used to form the sheet.
従来技術では電極の位置の調整には、製造途におけるシ
ートの厚さの測定値をもとに、熟練した作業者の操作に
頼っていて、更に実際には最終製品の状態から、厚さ斑
、微小気泡の痕跡の有無等の検査結果をもとに電極の位
置の微調整を行うものであった。In conventional technology, adjustment of the electrode position relies on the operations of a skilled operator based on the measured value of the sheet thickness during manufacturing, and in reality, the thickness unevenness is determined based on the state of the final product. , the position of the electrodes was finely adjusted based on inspection results such as the presence or absence of traces of microbubbles.
しかし、この方法には、作業者の高度な熟練度が要求さ
れること、成形速度の高速化に伴い電極の最適位置の範
囲が狭くなるため調整に時間がかかるとロスが多くなる
こと、また不透明なシート等の銘柄では作業者の判断が
困難となり自動的な調整技術が要請されること等の技術
課題が指摘される。However, this method requires a high degree of skill on the part of the operator, and as the molding speed increases, the range of optimal positions for the electrode narrows, so if adjustment takes time, there will be a lot of loss. Technical issues have been pointed out, such as the use of opaque sheets and other brands that make it difficult for workers to make judgments and require automatic adjustment technology.
[発明の目的]
本発明は上記問題を解消するため、電極の位置を短時間
に、かつ定量的に、良好なシート成形状態を呈する最適
位置に調整し得る方法を提供することを目的とする。[Object of the Invention] In order to solve the above-mentioned problems, the present invention aims to provide a method that can quickly and quantitatively adjust the position of an electrode to an optimal position that provides a good sheet forming condition. .
[発明の構成]
この目的を達成するため本発明の熱可塑性樹脂シートの
製造法は次の様な構成から成っている。[Structure of the Invention] In order to achieve this object, the method for manufacturing a thermoplastic resin sheet of the present invention has the following structure.
本発明は、溶融した熱可塑性樹脂を電気的に接地した冷
却ロール表面上にシート状に押出すに際し、樹脂シート
の上方に設置した充電部露出電極に直流ia雷電圧印加
して該樹脂シートを該冷却ロールに静電的に密着させ冷
却せしめる熱可塑性樹脂シートを製造する方法において
、樹脂シートの幅方向の所定位置における該樹脂シート
の流れ方向く長手方向)の厚み変化を検知手段により検
知し、検知された厚み変化を解析手段により複数の周波
数領域における厚み変化成分に分離し、それぞれの周波
数領域における厚み変化成分に応じてシート幅方向前記
所定位置に対し対応位置にある該電極と該樹脂シートの
距離を変えてそれぞれの厚み変化成分を最小となるよう
に調整し、更に樹脂シートの幅方向の別な所定位置にお
ける厚み変化を最初の位置の例と同様に検知し、複数の
周波数領域における厚み変化成分に分離し、該厚み変化
成分に応じて該別な所定位置に対応した位置の電極と樹
脂シートとの距離を調整することを繰返すことによって
、樹脂シート全幅における厚み変化を少くuしめること
を特徴とする熱可塑性樹脂シートの製造法である。In the present invention, when extruding a molten thermoplastic resin in the form of a sheet onto the surface of an electrically grounded cooling roll, the resin sheet is In the method of manufacturing a thermoplastic resin sheet that is electrostatically brought into close contact with the cooling roll and cooled, a change in the thickness of the resin sheet at a predetermined position in the width direction of the resin sheet (in the flow direction and in the longitudinal direction) is detected by a detection means. The detected thickness change is separated into thickness change components in a plurality of frequency ranges by an analysis means, and the electrode and the resin are separated at positions corresponding to the predetermined position in the sheet width direction according to the thickness change components in each frequency range. Adjust the distance of the sheet to minimize each thickness change component, and then detect the thickness change at another predetermined position in the width direction of the resin sheet in the same way as the first position example, and detect multiple frequency ranges. By repeating separating the thickness change components into thickness change components and adjusting the distance between the electrode and the resin sheet at a position corresponding to another predetermined position according to the thickness change component, the thickness change over the entire width of the resin sheet can be reduced. This is a method for producing a thermoplastic resin sheet characterized by a tightening property.
本発明を説明する。The present invention will be explained.
本発明は一般の熱可塑性樹脂からシート、フィルム、ウ
ェブを形成する場合に適用できる。静電ピンニングは生
産速度を高めることができ、均一な冷却固化によるシー
トの製造ができることから、品質や生産性を要件とする
成形(製膜)に適している。例示できる熱可塑性樹脂と
じては、ポリエヂレンテレフタレート、ポリエチレンナ
フタレンジブ」ルボキシレート、ポリへキサメチレンナ
フタレンジカルボキシレート等の線状飽和芳香族ポリエ
ステルが代表的なものであるが、他にポリエーテル、ポ
リアミド、ポリオレフィン等の熱可塑性樹脂も当然応用
できる。The present invention can be applied to forming sheets, films, and webs from general thermoplastic resins. Electrostatic pinning can increase production speed and produce sheets through uniform cooling and solidification, making it suitable for molding (film forming) where quality and productivity are requirements. Typical examples of thermoplastic resins include linear saturated aromatic polyesters such as polyethylene terephthalate, polyethylene naphthalene dicarboxylate, and polyhexamethylene naphthalene dicarboxylate; Naturally, thermoplastic resins such as polyamide and polyolefin can also be used.
樹脂を溶融してダイより押出し、冷却ロール表面上にキ
ャスティングする技術として、本発明では公知の手段が
適用できる。即ち樹脂はその融点以上の温度で溶融押出
され、室温程疫にその表面が冷却されている冷却ロール
にキャスティングされる。冷却ロールは通常金属又はセ
ラミック等の材質からなる表面と、冷媒を貯める(循環
させる)空洞部から構成され、電気的に接地されるか又
は電源に接続されて対向電極を形成している。In the present invention, known means can be applied as a technique for melting the resin, extruding it through a die, and casting it onto the surface of the cooling roll. That is, the resin is melt extruded at a temperature above its melting point and cast onto a cooling roll whose surface is cooled to about room temperature. The cooling roll is usually composed of a surface made of a material such as metal or ceramic, and a cavity for storing (circulating) a coolant, and is electrically grounded or connected to a power source to form a counter electrode.
これを図面第1図を参照して説明すると、溶融状態の樹
脂はダイ1よりシート2に押出され、冷却ロール3に到
達するまでの空間において、樹脂シートに近接していて
しかも接触しない位置に置かれた電球4によってシート
に静電荷が印加される。この電球は、樹脂シートの巾方
向にほぼ等間隔に密に多数の針を配設した針状電極か又
は1本のピアノ線のような針金をシートの巾方向に沿っ
て張った状態のワイヤー電極が適切である。いずれのも
のも、シートの近傍に置かれた電極は、その表面が露出
されていて、絶縁物で被われていない。この電球は電源
と接続していて、稼働中にはシートの表面に電極から静
電荷が析出されるものである。To explain this with reference to Figure 1 of the drawings, the molten resin is extruded from the die 1 onto the sheet 2, and in the space until it reaches the cooling roll 3, it is placed in a position close to the resin sheet but not in contact with it. An electrostatic charge is applied to the sheet by the placed light bulb 4. This light bulb uses a needle-like electrode with a large number of needles densely arranged at approximately equal intervals across the width of a resin sheet, or a wire such as a piece of piano wire stretched across the width of the sheet. Electrodes are appropriate. In either case, the surface of the electrode placed near the sheet is exposed and is not covered with an insulator. This light bulb is connected to a power source, and during operation, an electrostatic charge is deposited on the surface of the sheet from the electrodes.
本発明では後述するように電極4が水平方向5及び鉛直
方向6に調整できる手段を備えていて、電極と樹脂シー
トとの距離を適切な範囲に維持するものである。なお電
極は高電圧の静電気発生源7に接続されている。In the present invention, as will be described later, the electrode 4 is provided with means for adjusting in the horizontal direction 5 and the vertical direction 6 to maintain the distance between the electrode and the resin sheet within an appropriate range. Note that the electrodes are connected to a high voltage static electricity generation source 7.
本発明では冷却ロールを離れた位置、通常延伸工程の前
後のシート8の厚さを検知する検知手段9を設けてあり
、後述するようにシートの厚さを検知して、その厚さの
変動を解析手段10によって解析するものである。In the present invention, a detection means 9 is provided for detecting the thickness of the sheet 8 at a position away from the cooling roll, usually before and after the stretching process, and as described later, detects the thickness of the sheet and changes in the thickness. is analyzed by the analysis means 10.
なおシートは延伸機11及びステシタ12等を経て二軸
延伸及び熱処理を施されて、常法に従って巻取手段13
によって巻取られる。The sheet is subjected to biaxial stretching and heat treatment via a stretching machine 11, a stitcher 12, etc., and then taken to a winding means 13 according to a conventional method.
It is wound up by.
本発明は、これらの静電ピンニング手段と、シートの厚
さの検知手段と、検知手段によって得られたシートの厚
さ変動に塁いて電極位置を調整する手段とから主として
構成されている。そして、上述の静電ピンニング手段に
加えて、シートの製造途中の工程において、稼働中のシ
ートの厚み変化を検知することによって電極の自動位置
l+制御を施すものである。The present invention mainly comprises these electrostatic pinning means, a sheet thickness sensing means, and a means for adjusting the electrode position based on the sheet thickness variation obtained by the sensing means. In addition to the above-mentioned electrostatic pinning means, automatic position l+ control of the electrodes is performed by detecting changes in the thickness of the sheet during operation during the manufacturing process of the sheet.
本発明で、製造工程中に組込まれるシートの厚さの検知
手段9は、例えば特開昭59−70904号公報に開示
されている厚み測定装置が適用できる。この装置は熱可
塑性樹脂の赤外線吸収特性を利用した赤外線厚み測定装
置であって、樹脂がポリエチレンテレフタレートの場合
5.8μmの波長の赤外線を使用し、ダブルビーム法に
より標準厚さく対照)と比較しながら所定位置のシート
厚さを高精度に測定できるものであり、センサとしてイ
ンジウムアンチモンからなる高感度素子を使用している
。このような厚み測定装置を、シートが冷却ロールを離
れる位置よりシートが捲取られる位置までの任意の空間
に設置し、シートの走行中における厚さ変化を測定する
ことができる。In the present invention, the thickness measuring device 9 disclosed in Japanese Unexamined Patent Publication No. 59-70904, for example, can be used as the sheet thickness detecting means 9 incorporated during the manufacturing process. This device is an infrared thickness measuring device that utilizes the infrared absorption characteristics of thermoplastic resin, and when the resin is polyethylene terephthalate, it uses infrared rays with a wavelength of 5.8 μm, and compares it with a standard thickness using the double beam method. However, the sheet thickness at a predetermined position can be measured with high precision, and a highly sensitive element made of indium antimony is used as the sensor. Such a thickness measuring device can be installed in any space from the position where the sheet leaves the cooling roll to the position where the sheet is rolled up, and can measure changes in thickness while the sheet is running.
シートの厚さは、幅方向の任意の位置において測定する
ことができる。しかしながら、本発明にあっては、シー
トの厚さを均一化するように電極位置を手段5及び6に
よってw4節するものであるから、電極位置の調整に際
し効果的な位置において、そのシート厚さはパターンを
測定することが望ましい。従って、シートの幅方向では
両側端に近い位置、シートの中央部のような電極線と溶
融樹脂シートとの距離を調節できる手段を伴った位置に
おいて、シートの経時的な厚さの変動を測定することが
好ましい。The thickness of the sheet can be measured at any position in the width direction. However, in the present invention, since the electrode position is divided by w4 by means 5 and 6 so as to make the sheet thickness uniform, the sheet thickness can be adjusted at an effective position when adjusting the electrode position. It is desirable to measure patterns. Therefore, in the width direction of the sheet, changes in the thickness of the sheet over time are measured at positions close to both ends of the sheet, and at positions where there is a means to adjust the distance between the electrode wire and the molten resin sheet, such as at the center of the sheet. It is preferable to do so.
シートの厚さは、経時的に、云い換えると長子方向に、
第2図の曲線Pのように変動している。The thickness of the sheet changes over time, in other words in the longitudinal direction.
It fluctuates like curve P in FIG.
厚さの変化は、比較的長い周期の「うねり」と、短い周
期の小さな変化との合成されたものとして観察される。Changes in thickness are observed as a combination of "undulations" with a relatively long period and small changes with a short period.
即ち、第2図において、周波数0.5〜2)−1z程度
のうねり(変動成分;R11曲線曲線と10へ30H7
程度の周波数の縞状の変化(変動成分:R21曲FJS
)との合成された変動(成分:Ro、曲線P)として認
められる。That is, in Fig. 2, the undulation (fluctuation component; R11 curve and 10 to 30H7
Striped changes in frequency (fluctuation component: R21 song FJS
) is recognized as a composite variation (component: Ro, curve P).
本発明では、厚さの検知手段9によって検知したシート
厚さの変動をF記の周波数ft域0.5〜2l−1zと
10〜30Hzとに分離して、それぞれの変動成分に解
析手段10によって演算して、電極と樹脂シートとの最
適距離を設定するものである。In the present invention, the variation in the sheet thickness detected by the thickness detection means 9 is separated into the frequency range ft of 0.5 to 2l-1z and 10 to 30Hz as shown in F, and the analysis means 10 analyzes each variation component. The optimum distance between the electrode and the resin sheet is set by calculating the following.
第3図はシートとワイヤー電極穫との位置と変動成分と
の関係を模式的に示したものである。FIG. 3 schematically shows the relationship between the position of the sheet and the wire electrode and the fluctuation component.
うねり成分の厚み変動を少くするように、その所定位置
に対応する位置(厚みを観察しているシートの部分に最
も変化を与える電極の位置)の電極と樹脂シートとの距
離を移動させると、第3図の0曲線の如きうねりの大き
さく極大値と極小値との差)が変化する。そして位置調
整に最31!!値が存在していることが判明する。If the distance between the electrode at the position corresponding to the predetermined position (the position of the electrode that causes the most change in the thickness of the part of the sheet whose thickness is being observed) and the resin sheet is moved so as to reduce the thickness variation of the waviness component, The difference between the maximum value and the minimum value of the waviness changes as shown by the 0 curve in FIG. And up to 31 for position adjustment! ! It turns out that the value exists.
このU4整は試行錯誤的に実施できるが、同一の製造条
件であれば、実績に基づく最適値を初期値として生産を
開始し、徐々に最適化を図ることが可能である。また何
回か試行錯誤を繰返すと、次のことを知ることとなろう
。即ち、Wi極と溶融シートとの距離が近過ぎると溶融
シートに電荷が強く印加されるが、このときシートが揺
動する結果、シート厚さ斑が大となる傾向がある(第3
図のA領域)。また電極が溶融シートから離れ過ぎると
静電ピンニング作用が弱まり、キャスティング状態が不
安定となりシート厚さ斑が増大してしまう傾向がある(
第3図のC領域)。これらの条件は、第3図の0.5〜
2Hz周波数領域の変動成分と電極・シート間の距離と
の関係として0曲線で示されている。This U4 adjustment can be carried out by trial and error, but if the manufacturing conditions are the same, it is possible to start production with the optimum value based on actual performance as the initial value and gradually optimize it. After repeating trial and error several times, you will come to know the following. That is, if the distance between the Wi pole and the molten sheet is too short, a strong charge will be applied to the molten sheet, but as a result of the sheet oscillating at this time, there is a tendency for sheet thickness unevenness to become large (third
Area A in the figure). Furthermore, if the electrode is too far away from the molten sheet, the electrostatic pinning effect will weaken, making the casting state unstable and tending to increase sheet thickness unevenness (
Area C in Figure 3). These conditions are from 0.5 to 0.5 in Figure 3.
The zero curve is shown as the relationship between the fluctuation component in the 2Hz frequency region and the distance between the electrode and the sheet.
次に10〜301−IZfW度の周波数領域の変動成分
についても、最適なワイA−−!極位置を決めることが
必要となる。この場合も、電極と溶融樹脂シートとの距
離には厚さ斑を最小とする適正位置が存する。そして、
この縞状成分は極めて狭い範囲にしか最適距離がないこ
とに注意しなければならない。(第3図S曲線参照)。Next, regarding the fluctuation component in the frequency domain from 10 to 301-IZfW degrees, the optimum W-A--! It is necessary to determine the pole position. In this case as well, there is an appropriate distance between the electrode and the molten resin sheet that minimizes thickness unevenness. and,
It must be noted that this striped component has an optimal distance only within a very narrow range. (See S curve in Figure 3).
本発明ではシート幅方向において所定の位置に対応する
電極線の位置を「うねり成分」の厚さ斑の変化に基いて
調整し、更に縞状成分の厚さ斑の変化をも最小とするよ
うにtIIImするものである。In the present invention, the position of the electrode wire corresponding to a predetermined position in the sheet width direction is adjusted based on the change in the thickness unevenness of the "wavy component", and furthermore, the change in the thickness unevenness of the striped component is also minimized. tIIIm.
しかも、うねり成分の変化を最適化するための電極線の
位置の決定条件と、縞状厚さ変化の調整とを完全に独立
して実施するものである。Moreover, the conditions for determining the position of the electrode wire for optimizing the change in the waviness component and the adjustment of the change in striped thickness are performed completely independently.
従来技術ではシート厚さの調整を電極線の位置制御とし
て実施することはほとんど知られていない。勿論、経験
的に位置決めをして、高品質のシートを得ようとしてい
たと推測されるが、本発明のように厚さ斑を特定の周波
数領域に分υ1して、それぞれの成分において最適化す
ることによって、短時罰で電極線の最適位置(第3図の
8領域)を決定することができる。しかも、実際の厚さ
変動のデータに基いて処理する場合よりも精度が高くな
るものである。In the prior art, it is hardly known that adjustment of sheet thickness is performed as position control of electrode wires. Of course, it is presumed that they tried to obtain a high-quality sheet by determining the position empirically, but as in the present invention, the thickness unevenness is divided into specific frequency regions υ1 and each component is optimized. By doing this, the optimum position of the electrode wire (8 areas in FIG. 3) can be determined in a short period of time. Furthermore, the accuracy is higher than when processing is performed based on actual thickness variation data.
本発明はシート厚さを計測し、その厚さ変動を長周期領
域の変動と短周期領域の変動とに分離する解析(演算)
結果に基いて、独立して′Fi1&位置を調整手段5及
び6によって最適位置を決定するが、この調整手段と解
析手段とを連結させて自動調整を行うことができる。The present invention measures the sheet thickness and analyzes (computes) the thickness fluctuations to separate them into long-period region fluctuations and short-period region fluctuations.
Based on the results, the optimal position is independently determined by the adjusting means 5 and 6 for 'Fi1 & position, but automatic adjustment can be performed by linking this adjusting means and the analysis means.
[実施例]
第1図の装置を用いて厚さく未延伸状態) 200μ
mのポリエチレンテレフタレート(固有粘痕0.60
)のシートを製膜した。キャスティングは冷却ロールの
周速度を37.57FL /分として設定し、厚み検知
手段として赤外線厚み測定器(特開昭59−70904
号公報に記載のもの)を使用した。測定はシートの中央
部9両端部の3箇所とし、それぞれ3秒間3回づつ実施
し、その平均値をもって順次調整を繰返し、第4回目の
ワイヤー電極の位置調整によって良好なシート厚さの均
一化が達せられた。[Example] Using the apparatus shown in Fig. 1, the film was stretched to a thickness of 200μ
m polyethylene terephthalate (intrinsic viscosity 0.60
) was formed into a film. For casting, the circumferential speed of the cooling roll was set at 37.57 FL/min, and an infrared thickness measuring device (Japanese Patent Application Laid-Open No. 70904/1986) was used as a thickness detection means.
(described in the publication) was used. The measurement was carried out at three locations at the center 9 of the sheet, at both ends, three times for 3 seconds each, and the average value was used to repeat the adjustment in order.The fourth adjustment of the position of the wire electrode resulted in a good sheet thickness uniformity. was achieved.
調整はシートの端部、中央部、他の端部のように順次厚
み変動を測定し、次にうねり成分に応じてワイヤー電極
を調整し、更に縞状成分の変動を調整し、その位置にお
ける第1回目の粗調整を終了する。別な位置において、
この調整を繰返し、3ケ所において第1回目の粗調整が
済む。これを3回繰返して全個所c−3順したところで
200μmのシートの厚さ斑平均値は1.5μm以内に
制御できたものである。ワイヤー電極の位置はワイヤー
の支持体とステップモータとを連結しておき、解析結果
に基いてワイヤー電極の位置を変え得るように処理した
ので、自動的にかつ短時間の調整が可能となった。解析
結果とモータの駆動母とは、生産条件毎に換算表(演算
表)を準備しておけば、再現性のよいデータが得られる
ものである。Adjustments are made by sequentially measuring thickness variations at the edge, center, and other edges of the sheet, then adjusting the wire electrode according to the waviness component, and then adjusting the variation in the striped component to determine the thickness at that position. The first rough adjustment is completed. in a different position,
This adjustment is repeated, and the first rough adjustment is completed at three locations. This process was repeated three times and the average thickness unevenness of the 200 μm sheet was controlled to within 1.5 μm when all locations were subjected to c-3 order. The position of the wire electrode was connected to the wire support and the step motor, and the position of the wire electrode could be changed based on the analysis results, making it possible to adjust the position automatically and in a short time. . If a conversion table (calculation table) is prepared for each production condition, data with good reproducibility can be obtained from the analysis results and the motor drive base.
以上説明した通り、本発明はシート厚さ斑を静電ピンニ
ングにおける電極位置の調整によって少くするものであ
る。シート厚さは、未延伸シート以外にも一段延伸後、
二輪延伸完了後等の位置で検知して、その厚さ変動の解
析結果に基いて電極距離を最適化することができる。従
って、厚さ検知手段の設置場所は任意に選択できる。更
に、電極位置を調整する解析手段として、本実施例では
約1 Hz (0,5〜2H2)及び約20H2(1
0〜301→2)としているが、周波数領域は厚さ変動
の周期性を解析して、それに基ぎ適宜選択してよい。As explained above, the present invention reduces sheet thickness unevenness by adjusting the electrode position in electrostatic pinning. In addition to unstretched sheets, the sheet thickness is determined after one step of stretching.
It is possible to optimize the electrode distance by detecting at a position such as after the two wheels have been stretched, and based on the analysis results of the thickness variation. Therefore, the installation location of the thickness detection means can be arbitrarily selected. Furthermore, as an analysis means for adjusting the electrode position, in this example, approximately 1 Hz (0.5 to 2H2) and approximately 20H2 (1
0 to 301→2), but the frequency range may be selected as appropriate based on analysis of the periodicity of thickness variation.
また本実施例では2分割して変動成分それぞれについて
電極位置調整をしているが、3分割以上に厚さ変動成分
を分離し、各々の変動成分に基いて電極位置調整をする
ことも可能である。Furthermore, in this embodiment, the electrode position is adjusted for each variation component by dividing into two parts, but it is also possible to separate the thickness variation component into three or more parts and adjust the electrode position based on each variation component. be.
本実施例はワイヤー電極を例示したためシートの厚さを
3点(中央部及び両側端部)で測定し、ワイヤーの位置
調整も3ケ所で実施したに過ぎないが、多数の針電極に
ついて個々の針電極の位置調整を施す方法も本発明の技
術思想の範囲である。In this example, wire electrodes were used as an example, so the thickness of the sheet was measured at three points (the center and both ends), and the position of the wire was adjusted at only three points. A method of adjusting the position of the needle electrode is also within the scope of the technical idea of the present invention.
[発明の効果1
本発明は、樹脂シートとして極めて厚みの均一なものが
得られる。そしてこの厚さの均一化は、静電ピンニング
における電極と溶融シートとの距離を調整する結果達成
できるものであって、電極位置の調整は自動的にかつ短
時間に最適化できる点で生産効率の極めて高いものであ
る。[Effect of the Invention 1] According to the present invention, a resin sheet having an extremely uniform thickness can be obtained. This uniform thickness can be achieved by adjusting the distance between the electrode and the melted sheet in electrostatic pinning, and the adjustment of the electrode position can be optimized automatically and in a short time, which increases production efficiency. This is extremely high.
第1図は本発明を実施する装置の概略図である。
第2図は熱可塑性樹脂シート厚さの変化を示す曲線であ
る。また第3図はシートと電極との位置を変えたときの
厚さの変動の状態を模式的に示した曲線である。図面に
おいて1はダイ、2は樹脂シート、3は冷却ロール、4
は電極、5及び6は電極位置調整手段、9はシート厚さ
の検知手段。
10は厚さ変動の解析手段、11は第一次延伸機、12
は第二状延伸機、13は巻取手段である。FIG. 1 is a schematic diagram of an apparatus implementing the invention. FIG. 2 is a curve showing changes in thermoplastic resin sheet thickness. Further, FIG. 3 is a curve schematically showing the state of change in thickness when the positions of the sheet and the electrode are changed. In the drawings, 1 is a die, 2 is a resin sheet, 3 is a cooling roll, 4
1 is an electrode, 5 and 6 are electrode position adjustment means, and 9 is a sheet thickness detection means. 10 is a thickness variation analysis means, 11 is a primary drawing machine, 12
1 is a second drawing machine, and 13 is a winding means.
Claims (5)
ール表面上にシート状に押出すに際し、樹脂シートの上
方に設置した充電部露出電極に直流高電圧を印加して該
樹脂シートを該冷却ロールに静電的に密着させ冷却せし
める熱可塑性樹脂シートを製造する方法において、 樹脂シートの幅方向の所定位置における該樹脂シートの
流れ方向(長手方向)の厚み変化を検知手段により検知
し、検知された厚み変化を解析手段により複数の周波数
領域における厚み変化成分に分離し、それぞれの周波数
領域における厚み変化成分に応じてシート幅方向の対応
位置にある該電極と該樹脂シートとの距離を変えてそれ
ぞれの厚み変化成分を最小となるように調整し、更に樹
脂シートの幅方向の他の所定位置における厚み変化を同
様に検知し、該厚み変化成分に応じて該他の所定位置に
対応した位置の電極と樹脂シートとの距離を調整するこ
とを繰返すことによつて、樹脂シート全幅における厚み
変化を少くせしめることを特徴とする熱可塑性樹脂シー
トの製造法。(1) When extruding molten thermoplastic resin into a sheet onto the surface of an electrically grounded cooling roll, a high DC voltage is applied to the exposed electrode of the live part installed above the resin sheet to extrude the resin sheet. A method for manufacturing a thermoplastic resin sheet that is electrostatically brought into close contact with a cooling roll for cooling, the method comprising: detecting a change in the thickness of the resin sheet in the flow direction (longitudinal direction) at a predetermined position in the width direction of the resin sheet using a detection means; The detected thickness change is separated into thickness change components in multiple frequency regions by an analysis means, and the distance between the electrode and the resin sheet at the corresponding position in the sheet width direction is determined according to the thickness change component in each frequency region. The thickness change component is adjusted to the minimum by changing the thickness change component, and the thickness change at another predetermined position in the width direction of the resin sheet is similarly detected, and the other predetermined position is adjusted according to the thickness change component. A method for manufacturing a thermoplastic resin sheet, characterized in that by repeatedly adjusting the distance between an electrode at a position and the resin sheet, changes in thickness over the entire width of the resin sheet are reduced.
の周波数領域の厚み変化成分と10〜30Hzの周波数
領域の厚み変化成分とに分離し、そのぞれの厚み変化成
分を最小とするように、独立して、樹脂シートと充電部
露出電極との距離を調整することからなる特許請求の範
囲第1項記載の熱可塑性樹脂シートの製造法。(2) Detected thickness change in flow direction at 0.5-2Hz
The thickness change component in the frequency range of 10 to 30 Hz is separated into the thickness change component in the frequency range of 10 to 30 Hz. A method for producing a thermoplastic resin sheet according to claim 1, which comprises adjusting the distance.
である特許請求の範囲第1項又は第2項記載の熱可塑性
樹脂シートの製造法。(3) The method for producing a thermoplastic resin sheet according to claim 1 or 2, wherein the thermoplastic resin is polyalkylene terephthalate.
囲第1項記載の熱可塑性樹脂シートの製造法。(4) The method for producing a thermoplastic resin sheet according to claim 1, wherein the live portion exposed electrode is wire-shaped.
請求の範囲第1項記載の熱可塑性シートの製造法。(5) The method for producing a thermoplastic sheet according to claim 1, wherein the live portion exposed electrodes include a number of needle-like electrodes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61206702A JPS6362723A (en) | 1986-09-04 | 1986-09-04 | Manufacture of thermoplastic resin sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61206702A JPS6362723A (en) | 1986-09-04 | 1986-09-04 | Manufacture of thermoplastic resin sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6362723A true JPS6362723A (en) | 1988-03-19 |
JPH0375027B2 JPH0375027B2 (en) | 1991-11-28 |
Family
ID=16527701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61206702A Granted JPS6362723A (en) | 1986-09-04 | 1986-09-04 | Manufacture of thermoplastic resin sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6362723A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5654394A (en) * | 1994-04-08 | 1997-08-05 | Toray Industries, Inc. | Thermoplastic resin film |
EP0928676A4 (en) * | 1997-05-27 | 2002-02-06 | Toray Industries | Method and apparatus for producing thermoplastic resin sheet |
EP1876007A4 (en) * | 2005-04-28 | 2009-04-22 | Toyo Boseki | Process for producing polyamide-based resin film roll |
JP2015189194A (en) * | 2014-03-28 | 2015-11-02 | 富士フイルム株式会社 | Polyester film, method of manufacturing polyester film, polarizer, image display device, hard coat film, and touch panel |
-
1986
- 1986-09-04 JP JP61206702A patent/JPS6362723A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5654394A (en) * | 1994-04-08 | 1997-08-05 | Toray Industries, Inc. | Thermoplastic resin film |
EP0928676A4 (en) * | 1997-05-27 | 2002-02-06 | Toray Industries | Method and apparatus for producing thermoplastic resin sheet |
EP1876007A4 (en) * | 2005-04-28 | 2009-04-22 | Toyo Boseki | Process for producing polyamide-based resin film roll |
JP2015189194A (en) * | 2014-03-28 | 2015-11-02 | 富士フイルム株式会社 | Polyester film, method of manufacturing polyester film, polarizer, image display device, hard coat film, and touch panel |
Also Published As
Publication number | Publication date |
---|---|
JPH0375027B2 (en) | 1991-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6482339B1 (en) | Process for stable widthwise regulation of bulb angle in extrusion of sheets of heat-sensitive plastics through a calender opening formed by intake rollers | |
ATE118187T1 (en) | ROLLER KNEADING STRENGTH MONITORING METHOD AND APPARATUS, FILM PRODUCTION METHOD AND APPARATUS, AND FILM TEMPERATURE MEASUREMENT METHOD AND APPARATUS. | |
US3883279A (en) | Apparatus for making polymeric film | |
US3920365A (en) | Apparatus for making polymeric film | |
KR101983397B1 (en) | Method for producing film roll | |
SE435819B (en) | SET TO CONTROL THE FOIL JACKET IN A BLASPHOLY STRING SPRAYING DEVICE | |
JPH09164582A (en) | Thickness controlling method of biaxially oriented film | |
JP2013240897A5 (en) | ||
JPS6362723A (en) | Manufacture of thermoplastic resin sheet | |
US4517145A (en) | Extrusion die and process for thickness control | |
US4087499A (en) | Method for controlling uniformity in tire tread stock | |
JP2002087690A (en) | Method of manufacturing film roll | |
JP7252584B1 (en) | Thickness measuring method and thickness measuring device | |
JP3631636B2 (en) | Film winding method | |
US20020041056A1 (en) | Apparatus for measuring and of controlling the gap between polymer sheet cooling rolls | |
KR100926298B1 (en) | Method for manufacturing plastic sheet with uniform thickness and device | |
US3523987A (en) | Process for casting films of uniform thickness | |
JP2020049738A (en) | Method for producing biaxially oriented film | |
JPH09141736A (en) | Biaxially stretched polyester film and production thereof | |
JPH0534911Y2 (en) | ||
JPH11268101A (en) | Production of thermoplastic resin film | |
JP3260581B2 (en) | Sheet thickness control system | |
JPH11227030A (en) | Production of thermoplastic resin film | |
JP2005031005A (en) | Measurement method for shape of film roll | |
JPS62183324A (en) | Thickness correcting method for sheetlike matter in extrusion molding |