JPS6362579B2 - - Google Patents
Info
- Publication number
- JPS6362579B2 JPS6362579B2 JP54061140A JP6114079A JPS6362579B2 JP S6362579 B2 JPS6362579 B2 JP S6362579B2 JP 54061140 A JP54061140 A JP 54061140A JP 6114079 A JP6114079 A JP 6114079A JP S6362579 B2 JPS6362579 B2 JP S6362579B2
- Authority
- JP
- Japan
- Prior art keywords
- flux density
- magnetic
- amorphous
- magnetic flux
- boron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
- Soft Magnetic Materials (AREA)
Description
本発明は高磁束密度磁心材料及びその製造方法
に関し、特に透磁率が高く、鉄損が小さい高磁束
密度非晶質鉄合金よりなる高磁束密度磁心材料及
びその製造方法に関するものである。
一般に透磁率が非常に大きい点を強調して磁心
材料として使用される合金は高透磁率合金と呼ば
れ、透磁率が大きく、ヒステリス損失や保磁力の
小さい特性が望まれる。また磁心材料としては一
般に交流磁場のもとで用いられるので、渦流損失
が小さいことが必要であり、このためには電気抵
抗が大きく、板厚が薄いほどよいことになる。
従来の代表的な磁心材料の一つとして珪素鋼が
良く知られ、大量に電源トランス用磁心として使
用されている。現在用いられている珪素鋼板は用
途により種々の成分規格がきめられており、厚さ
約0.3〜0.5mm、最高磁束密度(B50)約15000〜
16000ガウス以上のものである。殊に、方向性珪
素鋼板は最も優れた磁心材料として広く使用され
ている。このような磁心材料において、特に問題
となつていることは如何に磁心部において熱とし
て消費される損失を少くするかである。現在の珪
素鋼板を使用した磁心部では全電力量の約0.4%
がこの損失として消費されてしまうので、僅かな
改良でも電力の節約におよぼす影響は極めて大き
い。
本発明は、主として珪素鋼板に代わる磁心材料
として、透磁率が高く、鉄損の小さい高磁束密度
非晶質鉄合金よりなる高磁束密度磁心材料及びそ
の製造方法を提供することを目的とするものであ
る。
次に本発明を詳細に説明する。
通常、固体の金属、合金は結晶状態であるが、
液体より超急冷(冷却速度は合金の組成に依存す
るが、およそ104〜106℃/秒である)すれば液体
に類似した周期的原子配列を持たない非結晶構造
の固体が得られ、このような金属は非晶質金属あ
るいはアモルフアス金属と呼ばれる。一般に、こ
の型の金属は2種以上の元素からなる合金であ
り、通常、遷移金属元素と半金属元素の両者の組
合わせ(半金属量は約15〜30原子%)あるいは原
子半径が易なる2種または2種以上の遷移金属元
素の組合せよりなる。これらの非晶質合金におい
て、鉄族元素(鉄、コバルト、ニツケル)を含む
合金の一部は強磁性を示し、高透磁率性を有する
ことが知られている。本発明者等は特開昭51−
73920号により下記成分組成範囲を有する高透磁
率アモルフアス合金を開示した。すなわち:
(1) 燐、炭素及び硼素のうち何れか1種または2
種以上を7〜35原子%と、鉄及びコバルトの何
れか1種または2種以上を93〜65原子%とを含
むことを特徴とする高透磁率アモルフアス合
金。
(2) 原子%で、
(イ) ニツケル50%以下
(ロ) 珪素25%以下
(ハ) クロム及びマンガンの少なくとも1種15%
以下
(ニ) モリブテン、ジルコニウム、チタン、アル
ミニウム、バナジウム、ニオブ、タンタル、
タングステン、銅、ゲルマニウム、ベリリウ
ム及びビスマスのうちから選ばれた何れか1
種または2種以上10%以下、並びに
(ホ) プラセオヂウム、ネオヂウム、プロメチウ
ム、サマリウム、ユーロピウム、ガドリニウ
ム、テルビウム、ジスプロシウム及びホルミ
ウムのうちから選ばれた何れか1種または2
種以上を5%以下
の前記(イ),(ロ),(ハ),(ニ)及び(ホ)の元素群から選
ば
れた何れか1種または2種以上の成分を合計で
50%以下含有する前記(1)記載の高透磁率アモル
フアス合金。
本発明者らは、上記の発明にかかる高透磁率ア
モルフアス合金につき、高磁束密度を有し、しか
も高透磁率、低鉄損などをさらに向上させて、磁
心材料に適する合金とするために詳細な研究を行
なつた結果、本発明の成分組成を有する合金の溶
湯を超急冷して非晶質化することにより、また、
これに所定の熱処理を磁場中あるいは応力下で施
すことにより、磁心材料として極めて優れた磁気
特性を付与させることができ、殊に鉄損が極めて
小さく、電力節約効果の著しい材料となることを
新規に知見して本発明に想到した。
本発明の要旨は下記の点にある。
第1発明
原子%で、硼素11〜17%のうち5%以下と、炭
素3〜8%のうち8%未満との何れか少なくとも
一方について置換した珪素を硼素及び炭素と共に
それらの合計18〜21%で含有し、残部実質的に鉄
を含有してなる非晶質鉄合金よりなり、最大透磁
率が高く、鉄損が小さく、磁束密度が16キロガウ
ス以上であることを特徴とする高磁束密度磁心材
料。
第2発明
原子%で、硼素11〜17%のうち5%以下と、炭
素3〜8%のうち8%未満との何れか少なくとも
一方について置換した珪素を硼素及び炭素と共に
それらの合計18〜21%で含有し、残部実質的に鉄
よりなる合金を溶融状態より急冷し非晶質化する
工程と、これを結晶温度以下で、かつ応力及び/
または磁場中で焼なましし、高透磁率、低鉄損、
高磁束密度とする工程との結合を特徴とする高磁
束密度磁心材料の製造方法。
ここで、本発明において、磁束密度が大きいと
は珪素鋼の規格14.5キロガウス以上、好ましくは
16キロガウス以上を言い、鉄損が低いとは少なく
とも0.30W/Kg以下であることが必要で、好まし
くは0.12W/Kgであるものを言う。透磁率はμm
で190000以上が好ましい。
第1表に本発明の非晶質合金及び従来一般に用
いられている各種珪素鋼板(日本工業規格JIS)
について、それらの成分組成及び磁気特性を示
す。
The present invention relates to a high magnetic flux density magnetic core material and a manufacturing method thereof, and more particularly to a high magnetic flux density magnetic core material made of a high magnetic flux density amorphous iron alloy with high magnetic permeability and low core loss, and a manufacturing method thereof. In general, alloys used as magnetic core materials are called high permeability alloys, emphasizing the fact that they have very high magnetic permeability, and are desired to have high magnetic permeability, low hysteresis loss, and low coercive force. Furthermore, since the magnetic core material is generally used under an alternating magnetic field, it is required to have low eddy current loss, and for this purpose, the higher the electrical resistance and the thinner the plate thickness, the better. Silicon steel is well known as one of the typical conventional magnetic core materials, and is used in large quantities as magnetic cores for power transformers. The silicon steel sheets currently in use have various composition standards determined depending on their use, with a thickness of approximately 0.3 to 0.5 mm and a maximum magnetic flux density (B 50 ) of approximately 15,000 to
It is over 16,000 Gauss. In particular, grain-oriented silicon steel sheets are widely used as the most superior magnetic core material. A particular problem with such magnetic core materials is how to reduce the loss consumed as heat in the magnetic core. Approximately 0.4% of the total electricity consumption in the magnetic core using current silicon steel plates
is consumed as this loss, so even a small improvement can have an extremely large impact on power savings. An object of the present invention is to provide a high magnetic flux density magnetic core material made of a high magnetic flux density amorphous iron alloy with high magnetic permeability and low iron loss, as a magnetic core material that can replace silicon steel sheets, and a method for manufacturing the same. It is. Next, the present invention will be explained in detail. Normally, solid metals and alloys are in a crystalline state, but
By ultra-rapidly cooling the liquid (the cooling rate depends on the composition of the alloy, but approximately 10 4 to 10 6 °C/sec), a solid with an amorphous structure similar to that of a liquid without a periodic atomic arrangement can be obtained. Such metals are called amorphous metals or amorphous metals. In general, this type of metal is an alloy consisting of two or more elements, usually a combination of both transition metal elements and metalloid elements (the amount of metalloids is approximately 15 to 30 at. It consists of a combination of two or more transition metal elements. It is known that some of these amorphous alloys containing iron group elements (iron, cobalt, nickel) exhibit ferromagnetism and have high magnetic permeability. The inventors of the present invention have
No. 73920 discloses a high permeability amorphous amorphous alloy having the following composition range. That is: (1) Any one or two of phosphorus, carbon, and boron
1. A high magnetic permeability amorphous amorphous alloy characterized by containing 7 to 35 at.% of at least one of iron and cobalt, and 93 to 65 at.% of one or more of iron and cobalt. (2) In atomic percent, (a) 50% or less of nickel (b) 25% or less of silicon (c) 15% of at least one of chromium and manganese
(d) Molybdenum, zirconium, titanium, aluminum, vanadium, niobium, tantalum,
Any one selected from tungsten, copper, germanium, beryllium, and bismuth
10% or less of one or more species, and (e) any one or two selected from praseodium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, and holmium.
The total amount of one or more components selected from the above element groups (a), (b), (c), (d) and (e) in an amount of 5% or more
The high magnetic permeability amorphous amorphous alloy according to (1) above, containing 50% or less. The present inventors have detailed the high magnetic permeability amorphous alloy according to the above invention in order to further improve high magnetic flux density, high magnetic permeability, low iron loss, etc., and make it suitable for magnetic core materials. As a result of extensive research, it was found that by ultra-quenching a molten alloy having the composition of the present invention to make it amorphous,
By subjecting this material to a specified heat treatment in a magnetic field or under stress, it is possible to give it extremely excellent magnetic properties as a magnetic core material.In particular, it is a novel material with extremely low iron loss and a significant power saving effect. The present invention was conceived based on this knowledge. The gist of the present invention is as follows. First Invention Silicon substituted with at least one of 5% or less of 11-17% boron and less than 8% of 3-8% carbon, together with boron and carbon, the total of 18-21 % and the remainder substantially contains iron, and is characterized by high maximum magnetic permeability, low iron loss, and magnetic flux density of 16 kilogauss or more. magnetic core material. Second Invention Silicon substituted with at least one of 5% or less of 11-17% boron and less than 8% of 3-8% carbon, together with boron and carbon, a total of 18-21 %, and the remainder substantially consists of iron, is rapidly cooled from a molten state to become amorphous, and the alloy is cooled below the crystallization temperature and under stress and/or
or annealed in magnetic field, high permeability, low iron loss,
A method for producing a high magnetic flux density magnetic core material, characterized by combining the process with a process for producing a high magnetic flux density. Here, in the present invention, high magnetic flux density means 14.5 kilogauss or more, which is the standard for silicon steel, preferably
16 kilogauss or more, and low iron loss requires at least 0.30W/Kg or less, preferably 0.12W/Kg. Magnetic permeability is μm
190000 or more is preferable. Table 1 shows the amorphous alloy of the present invention and various silicon steel sheets commonly used in the past (Japanese Industrial Standards JIS).
The composition and magnetic properties of these materials are shown below.
【表】
* 鉄鋼便覧より ** 日本工業規格番号
第1表においてNo.1〜3の合金は本発明の非晶
質合金の代表例であり、No.4〜6の合金は市販の
珪素鋼板の例である。本発明の合金は、従来の珪
素鋼板中の最も優秀な方向性珪素鋼板と比較し
て、ほぼ同程度の磁束密度であるが、透磁率、保
持力、角形比、鉄損においてより優れた性能を有
することがわかる。殊に鉄損は珪素鋼板の約1/5
以下であり、これれはこれまでに得られなかつた
大きな特徴である。
本発明の非晶質合金よりなる高磁束密度磁心材
料を実験データに基づいて説明する。
以下で説明するすべての合金は溶融状態から片
ロール法によつて急冷、凝固させて非晶質化した
もので、幅約2mm、厚さ約20μmのテープ状試料
である。
一般に磁気増幅用磁心材料の場合、残留磁束密
度と飽和磁束密度が高く、角形比が大きいことが
要求される。急冷材の本発明の合金は残留磁束密
度が小さく、角形比も小さいが、しかし、磁場中
焼なまし、あるいは張力や捩りなどの応力下での
焼なましにより、これらの性質が著しく改善され
ることは従来知られている非晶質磁性合金の磁気
性改質方法によるものと同じである。
第1及び2図は磁場中処理したFe―B―C合
金の保磁力(Hc)及び角形比(Br/B100)に対
する珪素の効果を示す。第1図は硼素を珪素で置
換した場合、第2図は炭素を珪素で置換した場合
である。これらの図から判るように、保磁力は炭
素を珪素で置換した場合に著しく改良され、硼素
を珪素で置換した場合にはほとんど変わらない。
以上本発明の高磁束密度磁心材料は原子%で硼
素11〜17%のうち5%以下と、炭素3〜8%の内
8%未満との何れか少なくとも一方について置換
した珪素を硼素及び炭素と共にそれらの合計18〜
21%で含有し、残部実質的に鉄よりなる非晶質合
金であり、この範囲内の成分組成を有することに
より、第1図、第2図より判る如く、飽和磁束密
度が約16000ガウス以上を有し、保磁力が急冷材
で約50ミリエルステツド程度、磁場中処理材で約
20ミリエルステツド以下、角形比が磁場処理材で
約0.9の高磁束密度、高透磁率を有する優れた特
性を有する。これらの合金は第1表に示すよう
に、また電気抵抗が高く、薄板のために非常に小
さい鉄損を示す。さらに、この組成範囲の合金は
非晶質になり易く、幅広の薄板を製造することが
可能である。一般に電源トランス用磁心材料の場
合には最大40cm幅が必要であるとされており、こ
の点で本発明の前記合金は極めて有利である。
第1表及び第1,2図より判るように、珪素の
添加は磁束密度をほとんど変化させずに、磁気特
性を改善する。また、この元素は非晶質形成能を
向上させ、結晶化温度を上昇させる効果を持つの
で磁心材料の製造上好ましい。この珪素の添加量
は13原子%未満であることが必要である。
本発明の磁心材料を急冷後磁場中で焼なましす
ると第1表、第1図、第2図に見るごとく、磁気
特性が大幅に改善される。
実施例 1
Fe81B13C6合金を基本とし、BあるいはCをSi
で置換した各種合金の保磁力の安定性を調べた。
各合金は液体状態から片ロール法により急冷し、
約2mm幅、約30μm厚さのテープ材であり、いず
れも磁場中処理(320℃、30分で200 Oe磁場中焼
なまし)を施した。第3図は150℃で時効した際
の保磁力の変化を示す。Fe81B13C6合金中の炭素
を珪素で置換したFe81B13C3Si3、Fe81B13C1Si5合
金は10000分後でも保磁力が変化しない。一方硼
素を珪素で置換した合金は時効によつて若干上昇
する傾向にある。したがつて、珪素で炭素を置換
することが好ましい。
以上本発明合金は、透磁率が高く、鉄損が小さ
く、磁束密度が高いため珪素鋼板に代わる磁心材
料として極めて有望な材料である。[Table] * From the Steel Handbook ** Japanese Industrial Standard Number In Table 1, alloys No. 1 to 3 are representative examples of the amorphous alloys of the present invention, and alloys No. 4 to 6 are commercially available silicon steel sheets. This is an example. The alloy of the present invention has almost the same magnetic flux density as the most excellent grain-oriented silicon steel sheet among conventional silicon steel sheets, but has superior performance in terms of magnetic permeability, coercive force, squareness ratio, and core loss. It can be seen that it has In particular, the iron loss is about 1/5 that of silicon steel plate.
This is a major feature that has not been available before. The high magnetic flux density magnetic core material made of an amorphous alloy of the present invention will be explained based on experimental data. All the alloys described below are tape-shaped samples approximately 2 mm wide and approximately 20 μm thick, which were rapidly cooled and solidified from a molten state using a single roll method to become amorphous. In general, magnetic core materials for magnetic amplification are required to have high residual magnetic flux density, high saturation magnetic flux density, and high squareness ratio. The alloy of the present invention, which is a quenched material, has a small residual magnetic flux density and a small squareness ratio, but these properties can be significantly improved by annealing in a magnetic field or under stress such as tension or torsion. This is the same as in the conventionally known method for modifying the magnetic properties of amorphous magnetic alloys. Figures 1 and 2 show the effect of silicon on the coercive force (H c ) and squareness ratio (Br/B 100 ) of Fe--B--C alloys treated in a magnetic field. FIG. 1 shows the case where boron is replaced with silicon, and FIG. 2 shows the case where carbon is replaced with silicon. As can be seen from these figures, the coercive force is significantly improved when carbon is replaced with silicon, and remains almost unchanged when boron is replaced with silicon. As described above, the high magnetic flux density magnetic core material of the present invention contains silicon substituted with at least one of 5% or less of 11 to 17% boron and less than 8% of 3 to 8% carbon in atomic percent, together with boron and carbon. Total of them 18~
It is an amorphous alloy containing 21% iron, with the remainder being substantially iron, and by having a composition within this range, the saturation magnetic flux density is approximately 16,000 Gauss or more, as seen in Figures 1 and 2. The coercive force is approximately 50 millielsted for rapidly cooled materials and approximately approximately 50 millielsted for materials treated in a magnetic field
It has excellent properties such as high magnetic flux density and high magnetic permeability, with a squareness ratio of approximately 0.9 in a magnetic field treatment material with a squareness of less than 20 milliersteads. These alloys also have high electrical resistance, as shown in Table 1, and exhibit very low iron losses due to their thin plates. Furthermore, alloys in this composition range tend to be amorphous, making it possible to produce wide thin plates. In general, it is said that a maximum width of 40 cm is required for magnetic core materials for power transformers, and the alloy of the present invention is extremely advantageous in this respect. As can be seen from Table 1 and Figures 1 and 2, the addition of silicon improves the magnetic properties without substantially changing the magnetic flux density. Moreover, this element has the effect of improving the ability to form an amorphous state and increasing the crystallization temperature, and is therefore preferable in the production of magnetic core materials. The amount of silicon added must be less than 13 atomic percent. When the magnetic core material of the present invention is annealed in a magnetic field after quenching, the magnetic properties are significantly improved, as shown in Table 1, FIGS. 1 and 2. Example 1 Based on Fe 81 B 13 C 6 alloy, B or C is replaced with Si
The stability of the coercive force of various alloys substituted with was investigated.
Each alloy is rapidly cooled from the liquid state using the single roll method.
The tape material was approximately 2 mm wide and approximately 30 μm thick, and both were subjected to magnetic field treatment (320°C, 200 Oe magnetic field annealing for 30 minutes). Figure 3 shows the change in coercive force when aged at 150°C. The coercive force of Fe 81 B 13 C 3 Si 3 and Fe 81 B 13 C 1 Si 5 alloys, in which carbon in the Fe 81 B 13 C 6 alloy is replaced with silicon, does not change even after 10,000 minutes. On the other hand, alloys in which boron is replaced with silicon tend to increase slightly with aging. Therefore, it is preferable to replace carbon with silicon. As described above, the alloy of the present invention has high magnetic permeability, low core loss, and high magnetic flux density, so it is an extremely promising material as a magnetic core material to replace silicon steel sheets.
第1図は非晶質Fe81B13C6合金中のBをSiで置
換した場合のSiの置換量と磁気特性(飽和磁化
σS、磁歪λ11、保磁力Hc、キユーリー点Tc、角形
比Br/B100)との関係を示す図、第2図は非晶
質Fe81B13C6合金中のCをSiで置換した場合のSi
の置換量と磁気特性(飽和磁化σS、磁歪λ11、保
磁力Hc、角形比Br/B100)との関係を示す図、
第3図は非晶質Fe81B13C6合金中のBあるいはC
をSiで置換した場合の保磁力の安定性を示す図で
ある。
Figure 1 shows the Si substitution amount and magnetic properties (saturation magnetization σ S , magnetostriction λ 11 , coercive force Hc, Curie point Tc, square shape Figure 2 shows the relationship between the ratio Br / B 100 ) and the Si
A diagram showing the relationship between the amount of substitution and magnetic properties (saturation magnetization σ S , magnetostriction λ 11 , coercive force Hc, squareness ratio Br/B 100 ),
Figure 3 shows B or C in the amorphous Fe 81 B 13 C 6 alloy.
FIG. 3 is a diagram showing the stability of coercive force when Si is substituted with Si.
Claims (1)
炭素3〜8%のうち8%未満との何れか少なくと
も一方について置換した珪素を硼素及び炭素と共
にそれらの合計18〜21%で含有し、残部実質的に
鉄を含有してなる非晶質鉄合金よりなり、最大透
磁率が高く、鉄損が小さく、磁束密度が16キロガ
ウス以上であることを特徴とする高磁束密度磁心
材料。 2 原子%で、硼素11〜17%のうち5%以下と、
炭素3〜8%のうち8%未満との何れか少なくと
も一方について置換した珪素を硼素及び炭素と共
にそれらの合計18〜21%で含有し、残部実質的に
鉄よりなる合金を溶融状態より急冷し非晶質化す
る工程と、これを結晶温度以下で、かつ応力下及
び/または磁場中で焼なましし、高透磁率、低鉄
損、高磁束密度とする工程との結合を特徴とする
高磁束密度磁心材料の製造方法。[Claims] 1 atomic %, boron 5% or less of 11 to 17%,
Amorphous iron containing silicon substituted for at least one of less than 8% of 3 to 8% carbon, together with boron and carbon, in a total of 18 to 21%, and the balance substantially containing iron. A high magnetic flux density magnetic core material made of alloy and characterized by high maximum magnetic permeability, low iron loss, and magnetic flux density of 16 kilogauss or more. 2 At %, 5% or less of boron 11-17%,
An alloy containing silicon substituted for at least one of less than 8% of 3 to 8% of carbon, together with boron and carbon, in a total of 18 to 21%, and the remainder substantially consisting of iron, is rapidly cooled from a molten state. It is characterized by a combination of a step of making it amorphous and a step of annealing it below the crystallization temperature and under stress and/or in a magnetic field to give it high magnetic permeability, low iron loss, and high magnetic flux density. A method for manufacturing a high magnetic flux density magnetic core material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6114079A JPS55152150A (en) | 1979-05-17 | 1979-05-17 | High magnetic flux amorphous iron alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6114079A JPS55152150A (en) | 1979-05-17 | 1979-05-17 | High magnetic flux amorphous iron alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55152150A JPS55152150A (en) | 1980-11-27 |
JPS6362579B2 true JPS6362579B2 (en) | 1988-12-02 |
Family
ID=13162481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6114079A Granted JPS55152150A (en) | 1979-05-17 | 1979-05-17 | High magnetic flux amorphous iron alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS55152150A (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5628101U (en) * | 1979-08-10 | 1981-03-16 | ||
JPS6034620B2 (en) * | 1981-03-06 | 1985-08-09 | 新日本製鐵株式会社 | Amorphous alloy with extremely low iron loss and good thermal stability |
JPS57161031A (en) * | 1981-03-28 | 1982-10-04 | Nippon Steel Corp | Improving method for watt loss of thin strip of amorphous magnetic alloy |
JPS57161030A (en) * | 1981-03-28 | 1982-10-04 | Nippon Steel Corp | Improving method for watt loss of thin strip of amorphous magnetic alloy |
JPS596354A (en) * | 1982-06-30 | 1984-01-13 | Nippon Steel Corp | Amorphous amorphous alloy with excellent workability and low core loss |
US5364477A (en) * | 1989-07-14 | 1994-11-15 | Alliedsignal Inc. | Iron rich metallic glasses having high saturation induction and superior soft ferromagnetic properties at high magnetization rates |
US5062909A (en) * | 1989-07-14 | 1991-11-05 | Allied-Signal Inc. | Iron rich metallic glasses having saturation induction and superior soft ferromagnetic properties at high magnetization rates |
CA2072089C (en) * | 1990-02-13 | 2002-04-02 | Varagur Ramachandran Venkata Ramanan | Amorphous fe-b-si alloys exhibiting enhanced ac magnetic properties and handleability |
EP0675970B1 (en) * | 1992-12-23 | 2000-08-23 | AlliedSignal Inc. | AMORPHOUS Fe-B-Si-C ALLOYS HAVING SOFT MAGNETIC CHARACTERISTICS USEFUL IN LOW FREQUENCY APPLICATIONS |
US5871593A (en) * | 1992-12-23 | 1999-02-16 | Alliedsignal Inc. | Amorphous Fe-B-Si-C alloys having soft magnetic characteristics useful in low frequency applications |
CN1038771C (en) * | 1992-12-23 | 1998-06-17 | 联合信号股份有限公司 | Amorphous Fe-B-Sl-C alloys having soft magnetic characteristics useful in low frequency applications |
CN102426912A (en) * | 2011-12-01 | 2012-04-25 | 安徽迪维乐普非晶器材有限公司 | Transformer iron core production process |
CN102568805A (en) * | 2012-03-26 | 2012-07-11 | 天津天能变压器有限公司 | Design method for meeting performance requirements of three types of dry transformers simultaneously |
KR102231316B1 (en) * | 2016-03-07 | 2021-03-23 | 알프스 알파인 가부시키가이샤 | Fe-based alloy composition, soft magnetic material, magnetic member, electrical/electronic related parts and devices |
CN109559883B (en) * | 2018-12-26 | 2021-01-15 | 江西大有科技有限公司 | Preparation method of soft magnetic alloy iron core with high and low temperature stability |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5173923A (en) * | 1974-12-24 | 1976-06-26 | Tohoku Daigaku Kinzoku Zairyo | |
JPS5173920A (en) * | 1974-12-24 | 1976-06-26 | Tohoku Daigaku Kinzoku Zairyo |
-
1979
- 1979-05-17 JP JP6114079A patent/JPS55152150A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5173923A (en) * | 1974-12-24 | 1976-06-26 | Tohoku Daigaku Kinzoku Zairyo | |
JPS5173920A (en) * | 1974-12-24 | 1976-06-26 | Tohoku Daigaku Kinzoku Zairyo |
Also Published As
Publication number | Publication date |
---|---|
JPS55152150A (en) | 1980-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4152144A (en) | Metallic glasses having a combination of high permeability, low magnetostriction, low ac core loss and high thermal stability | |
US5370749A (en) | Amorphous metal alloy strip | |
EP0430085B1 (en) | Magnetic alloy with ultrafine crystal grains and method of producing same | |
JPH03219009A (en) | Production of fe-base soft-magnetic alloy | |
JPS6034620B2 (en) | Amorphous alloy with extremely low iron loss and good thermal stability | |
JPS6362579B2 (en) | ||
JPS6133900B2 (en) | ||
EP0086485B1 (en) | Wound iron core | |
EP0072893B1 (en) | Metallic glasses having a combination of high permeability, low coercivity, low ac core loss, low exciting power and high thermal stability | |
US5358576A (en) | Amorphous materials with improved properties | |
JPH08188858A (en) | Glass alloy having permimber characteristic | |
JPH05140703A (en) | Amorphous alloy thin strip f0r iron core of transformer having high magnetic flux density | |
JP3434844B2 (en) | Low iron loss, high magnetic flux density amorphous alloy | |
JPS6119701B2 (en) | ||
JPH0544165B2 (en) | ||
JPH01290744A (en) | Fe-base soft-magnetic alloy | |
KR100237145B1 (en) | Fe amorphous soft-magnetic material and manufacturing method thereof | |
US4834814A (en) | Metallic glasses having a combination of high permeability, low coercivity, low AC core loss, low exciting power and high thermal stability | |
JPH0742559B2 (en) | Amorphous alloy ribbon for magnetic core with excellent space factor and method for producing the same | |
JPH0277555A (en) | Fe-base soft-magnetic alloy | |
JPH0549742B2 (en) | ||
JP3251126B2 (en) | Fe-based soft magnetic alloy | |
JPH05132744A (en) | Production of amorphous alloy strip having high saturation magnetic flux density and amorphous alloy iron core | |
JPH01290746A (en) | Soft-magnetic alloy | |
JPS62192561A (en) | Fe amorphous alloy foil excellent in magnetic property and its production |