JPS6360803B2 - - Google Patents
Info
- Publication number
- JPS6360803B2 JPS6360803B2 JP21219882A JP21219882A JPS6360803B2 JP S6360803 B2 JPS6360803 B2 JP S6360803B2 JP 21219882 A JP21219882 A JP 21219882A JP 21219882 A JP21219882 A JP 21219882A JP S6360803 B2 JPS6360803 B2 JP S6360803B2
- Authority
- JP
- Japan
- Prior art keywords
- ore
- pipe
- reduction furnace
- reduced ore
- introduction pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000009467 reduction Effects 0.000 claims description 44
- 239000012159 carrier gas Substances 0.000 claims description 30
- 238000003723 Smelting Methods 0.000 claims description 24
- 238000007664 blowing Methods 0.000 claims description 10
- 238000006722 reduction reaction Methods 0.000 description 42
- 238000002844 melting Methods 0.000 description 12
- 230000008018 melting Effects 0.000 description 12
- 239000000843 powder Substances 0.000 description 10
- 239000007789 gas Substances 0.000 description 8
- 239000003638 chemical reducing agent Substances 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000004907 flux Effects 0.000 description 4
- 238000005304 joining Methods 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 229910000604 Ferrochrome Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000012256 powdered iron Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000035936 sexual power Effects 0.000 description 1
Landscapes
- Manufacture Of Iron (AREA)
- Furnace Charging Or Discharging (AREA)
Description
【発明の詳細な説明】
本発明は金属酸化物を含有する粉粒状鉱石を予
備還元した後、溶融還元して溶融金属を製造する
装置において、予備還元炉から溶融還元炉へ予備
還元鉱石を導入する装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention is an apparatus for producing molten metal by pre-reducing powdery ore containing metal oxides and then melting the ore, in which the pre-reduced ore is introduced from the pre-reduction furnace to the smelting-reduction furnace. This relates to a device for
近年、各種の金属酸化物を含有する鉱石原料は
塊状鉱石が減少し、粉状もしくは小粒状鉱石が多
くなつており、今後ますます粉粒状鉱石の比率が
増加して行く傾向にある。従来は粉粒状鉱石にバ
インダーや炭材を添加してペレツトや焼結鉱など
に加工し塊状物として使用していたが、塊成化の
ために余分の資源やエネルギーを必要とするばか
りでなく、焼成を必要とする場合には焼成炉から
排出されるガス中のNOx,SOxおよびダスト等
を処理するための費用も多大であるという欠点が
ある。 In recent years, ore raw materials containing various metal oxides have decreased in the form of lumpy ores and have become more powdery or small-grained ores, and the proportion of powdery ores will continue to increase in the future. Conventionally, binders and carbonaceous materials were added to powdery ore to process it into pellets and sintered ore and use it as agglomerates, but this not only required extra resources and energy for agglomeration. However, when firing is required, there is a drawback that the cost for treating NOx, SOx, dust, etc. in the gas discharged from the firing furnace is large.
またクロム鉱石に製錬によるフエロクロムの製
造のように、電気炉で製錬する場合には、電力原
単位が数千KWH/tにも達して、電力の高いと
ころではきわめてコスト高になる。 Furthermore, when smelting chromium ore in an electric furnace, such as the production of ferrochrome by smelting chromium ore, the electricity consumption rate reaches several thousand KWH/t, making the cost extremely high in areas where electricity is expensive.
本発明者らは以上の事情に鑑み、さきに粉粒状
鉱石を塊成化することなく直接使用し、電力を用
いずに溶融金属を製造する方法として、予備還元
炉において粉粒状鉱石を流動層形式で予備還元
し、これを竪型の溶融還元炉にその羽口から高温
空気と共に吹込み、これを溶融還元する方法を開
発し提案している(特願昭56−63294)。 In view of the above circumstances, the present inventors have developed a method for producing molten metal by directly using powder ore without agglomerating it and producing molten metal without using electricity. We have developed and proposed a method of pre-reducing the product in the form of a smelter, blowing it into a vertical smelting reduction furnace together with high-temperature air through the tuyeres, and melting and reducing it (Japanese Patent Application No. 56-63294).
本発明は予備還元炉と溶融還元炉とからなる溶
融還元装置において、粉粒状の予備還元鉱石を予
備還元炉から溶融還元炉へ移送し吹込む装置に係
るものである。溶融還元装置における予備還元鉱
石の移送は、通常の粉体移送と比較して次のよう
な特別な条件を満足させる必要がある。 The present invention relates to a smelting reduction apparatus comprising a pre-reduction furnace and a smelting reduction furnace, and a device for transferring and blowing granular pre-reduced ore from the pre-reduction furnace to the smelting reduction furnace. The transfer of pre-reduced ore in the smelting reduction device must satisfy the following special conditions compared to normal powder transfer.
1 予備還元鉱石は予備還元炉から高温で排出さ
れるので、高温に伴う現象を考慮しなければな
らない。1. Since pre-reduced ore is discharged from the pre-reduction furnace at high temperature, phenomena associated with high temperatures must be taken into consideration.
2 予備還元鉱石の温度低下を少なくするため
に、移送距離は短い方が良い。2. In order to reduce the temperature drop of the pre-reduced ore, the shorter the transfer distance, the better.
3 予備還元炉から多数の羽口へ分岐し、均等に
分配する必要がある。3. It is necessary to branch out from the pre-reducing furnace to a number of tuyeres and distribute it evenly.
4 予備還元炉よりも、予備還元鉱石を吹込む羽
口部分の方が圧力が高いので、移送管内での予
備還元鉱石による閉塞や予備還元鉱石の逆流を
防止しなければならない。4. Since the pressure is higher at the tuyeres into which the pre-reduced ore is injected than in the pre-reduction furnace, it is necessary to prevent blockage due to the pre-reduced ore and backflow of the pre-reduced ore in the transfer pipe.
5 予備還元鉱石吹込み用の搬送ガスは、予備還
元鉱石とともに溶融還元炉内へ吹込まれるの
で、できるだけ少量であることが望ましい。5. Since the carrier gas for injecting the pre-reduced ore is blown into the smelting reduction furnace together with the pre-reduced ore, it is desirable that the amount of the carrier gas be as small as possible.
6 移送途中での予備還元鉱石の再酸化を防止で
きること。6. Re-oxidation of pre-reduced ore during transportation can be prevented.
7 羽口1本当りの予備還元鉱石の吹込み量を制
御できること。特に完全閉止機能をそなえてい
ること。7. The amount of pre-reduced ore injected into each tuyere can be controlled. In particular, it must have a complete closing function.
8 移送管内の予備還元鉱石が稀薄になり、羽口
送風ガスが移送管内を吹抜ける事故を防止でき
ること。8. Preliminary reduced ore in the transfer pipe becomes diluted and accidents such as tuyere blast gas blowing through the transfer pipe can be prevented.
本発明は以上のような特別な条件を充足し予備
還元鉱石の移送を円滑にする有効な装置を提供す
ることを目的とする。 An object of the present invention is to provide an effective device that satisfies the above special conditions and facilitates the transfer of pre-reduced ore.
上記目的を達成するための本発明の特徴とする
ところは、予備還元炉と溶融還元炉とからなる溶
融還元装置において、予備還元炉から高温の粉粒
状予備還元鉱石を溶融還元炉に移送する移送管の
下端に前記鉱石を溶融還元炉の羽口支管内に吹込
む導入管を接合し、該導入管には搬送ガス吹込み
ノズルを該導入管内の前記移送管との接合位置中
心より先端側に開口させると共に該ノズル開口よ
り先端側の前記導入管途中に前記予備還元鉱石の
自走を停止させる中間部を介装したことにある。 To achieve the above object, the present invention is characterized in that, in a smelting reduction apparatus consisting of a pre-reduction furnace and a smelting reduction furnace, high-temperature granular pre-reduced ore is transferred from the pre-reduction furnace to the smelting reduction furnace. An introduction pipe for blowing the ore into the tuyere branch pipe of the smelting reduction furnace is connected to the lower end of the pipe, and a carrier gas blowing nozzle is connected to the introduction pipe on the tip side from the center of the joint position with the transfer pipe in the introduction pipe. The present invention is characterized in that an intermediate portion is interposed in the introduction pipe on the tip side from the nozzle opening to stop the self-propulsion of the pre-reduced ore.
本発明の装置を使用する溶融還元装置の一実施
例を示す系統を第1図について説明する。 A system showing one embodiment of a melt reduction apparatus using the apparatus of the present invention will be explained with reference to FIG.
予備還元炉2は、粉粒状の金属酸化物を含有す
る鉱石を供給装置1によつて供給される。竪型の
溶融還元炉3から排出される高温還元ガスの一部
または全部が、下方から導入され、必要に応じて
供給口4から粉粒状のフラツクス、固体還元剤お
よび還元ガスなどが供給されて、流動層形式によ
つて、粉粒状鉱石を、乾燥、加熱、予備還元す
る。予備還元した鉱石は、フラツクスなどととも
に、排出口5より排出され、移送管6および導入
管7を経て、羽口支管8中の高温空気とともに溶
融還元炉3内に吹込まれる。本発明中記載の予備
還元鉱石には上記粉粒状フラツクス、固体還元剤
を随伴する場合があり、これらを含むものを指称
する。 The preliminary reduction furnace 2 is supplied with ore containing powdery metal oxides by the supply device 1 . Part or all of the high-temperature reducing gas discharged from the vertical melting reduction furnace 3 is introduced from below, and particulate flux, solid reducing agent, reducing gas, etc. are supplied from the supply port 4 as necessary. , drying, heating and pre-reducing the powder ore in a fluidized bed format. The pre-reduced ore is discharged from the discharge port 5 together with flux, passes through the transfer pipe 6 and the introduction pipe 7, and is blown into the melting reduction furnace 3 together with the high-temperature air in the tuyere branch pipe 8. The pre-reduced ore described in the present invention may be accompanied by the above-mentioned granular flux and solid reducing agent, and refers to those containing these.
溶融還元炉3内には、供給装置により供給され
た塊状の炭素系還元剤よりなる充填層が形成され
ている。溶融還元炉3に吹込まれた予備還元鉱石
は炉3の内部で溶融し、炉の下部を滴下する間に
還元されて、溶融金属と溶融スラグとを生成し、
排出口13より適時炉外へ排出される。本発明は
移送される予備還元鉱石の導入管7の構造に関す
るものである。 Inside the melting reduction furnace 3, a packed bed is formed of a lumpy carbon-based reducing agent supplied by a supply device. The pre-reduced ore blown into the smelting reduction furnace 3 is melted inside the furnace 3 and reduced while dripping down the lower part of the furnace to produce molten metal and molten slag,
It is discharged from the furnace through the discharge port 13 in a timely manner. The present invention relates to the structure of the introduction pipe 7 for the pre-reduced ore to be transferred.
予備還元鉱石を溶融還元炉に吹込むに当つては
溶融還元炉内における予備還元鉱石の溶融に関す
る重要な問題点を考慮しなければならない。吹き
込まれた予備還元鉱石が羽口先に形成されたレー
スウエイ11内で十分に溶融しない場合には、レ
ースウエイ前面の炭素系還元剤充填層へ、粉粒状
のまま突入し、この充填層の目ずまりの原因とな
り炉内で円滑に溶融還元を進行させることが難し
い。このため、レースウエイで円滑に予備還元鉱
石を溶融させることが必要である。予備還元鉱石
を円滑に溶融させるポイントは、羽口1本当りの
高温送風空気量(酸素富化空気を含む)に対して
最も適切な所定量の予備還元鉱石を吹込み、過剰
の予備還元鉱石を吹込まないことである。 When injecting prereduced ore into a smelter reduction furnace, important issues regarding the melting of the prereduced ore within the smelter reduction furnace must be considered. If the injected pre-reduced ore is not sufficiently melted within the raceway 11 formed at the tip of the tuyere, it will rush into the carbon-based reducing agent packed bed in front of the raceway in a powder form, and the holes in this packed bed will melt. This causes clumping, making it difficult to proceed smoothly with melting reduction in the furnace. Therefore, it is necessary to smoothly melt the pre-reduced ore in the raceway. The key to smoothly melting the pre-reduced ore is to inject the most appropriate amount of pre-reduced ore to the amount of high-temperature blown air (including oxygen-enriched air) per tuyere, and to melt the excess pre-reduced ore. It is important not to inject
複数本の羽口に対して、合計の予備還元鉱石の
吹込み量が所定量に制御されている場合でもそれ
ぞれの羽口の予備還元鉱石の吹込み量はばらつき
がある場合には、より多量に予備還元鉱石が吹込
まれた羽口先では、十分に溶融現象を遂行させる
ことができず、炉の不調を招来する原因のひとつ
となる。このことは、難溶融性、難還元性の金属
酸化物を含有する鉱石の場合、特に問題となり易
い。 Even if the total amount of pre-reduced ore injected into multiple tuyeres is controlled to a predetermined amount, if the amount of pre-reduced ore injected into each tuyere varies, the amount may be larger. At the tip of the tuyere into which pre-reduced ore is injected, the melting phenomenon cannot be carried out sufficiently, which is one of the causes of furnace malfunction. This is particularly likely to be a problem in the case of ores containing metal oxides that are difficult to melt and difficult to reduce.
本発明の構造の導入管は、搬送ガス量を調節す
ることによつて予備還元鉱石の吹込み量を制御で
きるとともに、搬送ガスの停止とともに、吹込量
の完全閉止ができるものである。 The inlet pipe having the structure of the present invention can control the amount of pre-reduced ore blown in by adjusting the amount of carrier gas, and can completely shut off the amount blown in when the carrier gas is stopped.
第2図は、導入管7の一実施例を示す。第2図
に示す如く、移送管6の下端に導入管7を接合す
る。導入管7は適宜角度の勾配をつけて予備還元
鉱石を羽口支管内に送入しやすくすることが望ま
しい。 FIG. 2 shows one embodiment of the introduction tube 7. As shown in FIG. 2, an introduction tube 7 is connected to the lower end of the transfer tube 6. It is desirable that the introduction pipe 7 be sloped at an appropriate angle to facilitate the introduction of the pre-reduced ore into the tuyere branch pipe.
導入管7内の予備還元鉱石吹込み量を精度よく
制御するため、先ず第一に搬送ガス供給管10を
導入管7内に挿入し、搬送ガス吹込みノズルを開
口させる。第2図に示す搬送ガス供給管10の形
式で搬送ガスを供給するのは一例であり、搬送ガ
スを導入管7の壁を通じて供給する構造とするこ
とや複数の搬送ガス導入口を有することなども可
能である。 In order to precisely control the amount of pre-reduced ore injected into the introduction pipe 7, the carrier gas supply pipe 10 is first inserted into the introduction pipe 7, and the carrier gas injection nozzle is opened. Supplying the carrier gas in the form of the carrier gas supply pipe 10 shown in FIG. 2 is just one example, and it is possible to supply the carrier gas through the wall of the introduction pipe 7, or to have a plurality of carrier gas inlets. is also possible.
搬送ガス供給管10を通じて、吹込みノズルか
ら導入管7に搬送ガスを供給すると、移送管6お
よび導入管7に充填されている予備還元鉱石が、
送風本管14より分岐された羽口支管8の送風空
気中に吹込まれる。予備還元鉱石はこの羽口送風
空気と共に溶融還元炉内のレースウエイ11に至
り、ここで溶融還元反応がおこる。 When the carrier gas is supplied from the blowing nozzle to the introduction pipe 7 through the carrier gas supply pipe 10, the pre-reduced ore filled in the transfer pipe 6 and the introduction pipe 7 is
The air is blown into the blown air of the tuyere branch pipe 8 branched from the main air pipe 14. The pre-reduced ore reaches the raceway 11 in the smelting reduction furnace together with the tuyere blown air, where a smelting reduction reaction occurs.
このとき前述したように、予備還元炉の排出口
5の部分の圧力よりも羽口支管8内の圧力が高い
ため、羽口支管部分より予備還元炉の排出口5へ
向つて移送管内をガスが吹抜けようとするので、
それを防止すること、また粉粒状予備還元鉱石の
逆流や閉塞を防止して、円滑に移送することが重
要である。各種の検討の結果、搬送ガス吹込口ノ
ズル開口を移送管6と導入管7との接合位置中心
よりも導入管7の先端側に位置させて設置するこ
とが円滑な移送を行うのに効果的である。 At this time, as mentioned above, the pressure inside the tuyere branch pipe 8 is higher than the pressure at the outlet 5 of the pre-reducing furnace, so the gas flows inside the transfer pipe from the tuyere branch pipe toward the outlet 5 of the pre-reducing furnace. is about to blow through,
It is important to prevent this, and to prevent backflow and blockage of the powdery pre-reduced ore to ensure smooth transfer. As a result of various studies, it was found that installing the carrier gas inlet nozzle opening closer to the tip of the introduction pipe 7 than the center of the joining position between the transfer pipe 6 and the introduction pipe 7 is effective for smooth transfer. It is.
第2図に示すように、搬送ガス吹込口ノズル開
口から移送管6と導入管7との接合位置までの距
離(接合位置を原点とし、導入管7の先端側を正
とする)をLとし、導入管7の内径をDとすれば
L/Dの好適値は粉体の物性、性状、移送、供給
条件等によつて決まりその範囲はO≦L/D≦10
である。 As shown in Fig. 2, the distance from the carrier gas inlet nozzle opening to the joining position of the transfer pipe 6 and the introduction pipe 7 (with the joining position as the origin and the tip side of the introduction pipe 7 as positive) is defined as L. , if the inner diameter of the introduction pipe 7 is D, the suitable value of L/D depends on the physical properties, properties, transfer, supply conditions, etc. of the powder, and the range is O≦L/D≦10.
It is.
L/D<0、すなわち移送管6と導入管7との
接合位置よりも導入管7先端から遠い位置に搬送
ガス吹込ノズルを開口させると、搬送ガスの一部
が移送管6内を顕著に逆流して、移送管6内の予
備還元鉱石の円滑な移送が妨げられ、極端な場合
には、移送管内の粉粒状予備還元鉱石が稀薄とな
つて、羽口支管8の送風空気の吹込けを惹起す
る。 When L/D<0, that is, when the carrier gas blowing nozzle is opened at a position farther from the tip of the introduction tube 7 than the joining position of the transfer tube 6 and introduction tube 7, a part of the carrier gas will noticeably flow inside the transfer tube 6. The backflow prevents the smooth transfer of the pre-reduced ore in the transfer pipe 6, and in extreme cases, the powdery pre-reduced ore in the transfer pipe becomes diluted and the blown air of the tuyere branch pipe 8 becomes difficult to blow. cause
またL/D>10となると、搬送ガスの予備還元
鉱石の輸送能力が低下するとともに、移送管6と
導入管7の接合部付近で予備還元鉱石の閉塞をお
こす例が非常に多く、不適当である。 In addition, when L/D>10, the transport capacity of the carrier gas for pre-reduced ore decreases, and there are many cases where the pre-reduced ore becomes clogged near the joint between the transfer pipe 6 and the introduction pipe 7, making it unsuitable. It is.
次に、本発明の導入管7は搬送ガス吹込みノズ
ルの開口位置より先端側の導入管7の途中に予備
還元鉱石の自走を停止させる中間部9を設ける。 Next, the introduction pipe 7 of the present invention is provided with an intermediate portion 9 for stopping the self-propulsion of the pre-reduced ore in the middle of the introduction pipe 7 on the tip side from the opening position of the carrier gas blowing nozzle.
この中間部9は、搬送ガス吹込みを停止したと
き導入管内の予備還元鉱石の自走を停止させる作
用をなし、搬送ガス吹込み中は予備還元鉱石の吹
込み量の安定性の確保や制御性の改善にきわめて
効果的である。この中間部9の傾斜角度は水平と
すればよいが、使用する粉粒体の安息角の1/2
以下の下り勾配または僅かな昇り勾配とすること
も可能である。この中間部9は予備還元炉の流動
層排出口5、移送管6、導入管7の系統におい
て、予備還元鉱石の動力による自走作用の最も小
さい部分であり、予備還元鉱石吹込み量のコント
ロール作用の感度を上昇させる。 This intermediate portion 9 functions to stop the self-propulsion of the pre-reduced ore in the introduction pipe when the carrier gas injection is stopped, and ensures stability and controls the amount of pre-reduced ore blown during the injection of the carrier gas. It is extremely effective in improving sexual performance. The angle of inclination of this intermediate part 9 may be horizontal, but it is 1/2 of the angle of repose of the powder or granular material used.
It is also possible to have a downward slope or a slight upward slope. In the system of the fluidized bed discharge port 5, transfer pipe 6, and inlet pipe 7 of the pre-reduction furnace, this intermediate part 9 is the part where the self-propelled action by the power of the pre-reduced ore is the least, and it controls the amount of pre-reduced ore injected. Increases the sensitivity of action.
予備還元鉱石の自走を停止させる中間部の長さ
をlとし、その内径をdとすれば、l/dの好適
値は粉体の物性、性状、移送、供給条件、導入管
7の勾配、中間部の勾配等によつて決まり、その
範囲は1≦l/d≦10である。 If the length of the intermediate part where the self-propulsion of the pre-reduced ore is stopped is l, and its inner diameter is d, then the preferred value of l/d depends on the physical properties and properties of the powder, the transfer and supply conditions, and the slope of the introduction pipe 7. , the slope of the intermediate portion, etc., and the range is 1≦l/d≦10.
l/d<1すなわち中間部の長さを中間部の径
より小さくすると、搬送ガス停止時、鉱石の移送
完全停止ができず、また送風ガスの逆流防止の機
能に不具合が生ずる。 If l/d<1, that is, the length of the intermediate portion is smaller than the diameter of the intermediate portion, the transfer of ore cannot be completely stopped when the carrier gas is stopped, and the function of preventing backflow of the blown gas will be impaired.
一方、l/d>10となると、中間部での粉体の
動きに不安定が生じ、不適当である。 On the other hand, if l/d>10, the movement of the powder in the intermediate portion becomes unstable, which is inappropriate.
本発明は以上のように構成されているので、高
温の予備還元鉱石を圧力の高い羽口支管内に円滑
に安定的に供給すること、および供給を安定的に
停止させることができる。 Since the present invention is configured as described above, it is possible to smoothly and stably supply high-temperature pre-reduced ore into a high-pressure tuyere branch pipe, and to stably stop the supply.
なお、一般の粉体のハンドリングにおいては、
吹込み量制御のために機械的な構造を有する供給
機などが用いられるが、本発明ではきわめて高温
の予備還元鉱を輸送する必要性からこれらの方法
を用いることは得策でない。 In addition, in general handling of powder,
Although a feeder having a mechanical structure is used to control the amount of injection, it is not advisable to use these methods in the present invention because it is necessary to transport the extremely high temperature pre-reduced ore.
送風ガスが移送管内を吹抜ける現象が生じた場
合に移送管を閉止するため緊急用として遮断弁1
5を設置することも可能である。 Shutoff valve 1 is installed for emergency use to close the transfer pipe in the event that the blast gas blows through the transfer pipe.
It is also possible to install 5.
次に、本発明装置を用いた具体例をあげ、その
効果について説明する。本発明はもちろん下記実
施例のみに限定されるものではない。 Next, a specific example using the device of the present invention will be given and its effects will be explained. The present invention is of course not limited to the following examples.
実施例
1 溶融還元炉内径 1.2m
2 予備還元炉内径 1.1m
3 送風羽口 上段4本(粉体吹込み)
下段4本
計8本
4 送風量 1200Nm3/hr
5 移送管 内径 35mm
導入管 内径(D) 35mm
移送管の導入管との接合位置から搬送ガスの
吹込口までの距離(L) 105mm
L/D 3
中間部 角度 水 平
l/d 2.5
6 搬送ガス 種類N2
上記の試験炉を用いて、粉状クロム鉱石(平均
粒径0.2mm)からのフエロクロムの製錬の操業と
粉状の鉄鉱石(平均粒径0.37mm)からの銑鉄の製
錬の操業を行い、予備還元炉から溶融還元炉への
安定した予備還元鉱石の輸送、吹込みを行うこと
が出来た。本発明方法は、もちろん、この実施例
の鉱石に限定されることなく、各種の鉱石に効果
を有するものである。Example 1 Melting reduction furnace inner diameter 1.2 m 2 Pre-reduction furnace inner diameter 1.1 m 3 Blower tuyere 4 upper tier (powder injection) 4 lower tier 8 in total 4 Air flow rate 1200 Nm 3 /hr 5 Transfer pipe inner diameter 35 mm Introductory pipe inner diameter (D) 35mm Distance from the joint position of the transfer pipe with the introduction pipe to the carrier gas inlet (L) 105mm L/D 3 Middle part Angle Horizontal l/d 2.5 6 Carrier gas type N 2The above test furnace ferrochrome smelting operation from powdered chromium ore (average particle size 0.2 mm) and pig iron smelting operation from powdered iron ore (average particle size 0.37 mm). We were able to stably transport and inject pre-reduced ore into the smelting reduction furnace. The method of the present invention is, of course, effective for various ores, not limited to the ores of this embodiment.
以上のような本発明の効果をまとめると次のよ
うになる。 The effects of the present invention as described above can be summarized as follows.
1 流動層予備還元炉と溶融還元炉とを複数の移
送管と導入管でそれぞれ制御性よく連絡でき、
またそれぞれ予備還元鉱石の供給停止もでき
る。1. The fluidized bed preliminary reduction furnace and the smelting reduction furnace can be connected with each other with good controllability through multiple transfer pipes and introduction pipes.
It is also possible to stop the supply of preliminary reduced ore.
2 溶融還元炉の圧力が予備還元炉の圧力よりも
高いにもかかわらず予備還元鉱石が逆流しな
い。2 Pre-reduced ore does not flow back even though the pressure in the smelting reduction furnace is higher than the pressure in the pre-reduction furnace.
3 移送管内は予備還元鉱石の重力により移送さ
れ、導入管部においてのみ搬送ガスの援助の下
で吹込むため、きわめて少量の搬送ガスで予備
還元鉱石の円滑な吹込みが達成できる。3. The pre-reduced ore is transferred through the transfer pipe by gravity, and is blown only in the introduction pipe section with the aid of carrier gas, so smooth injection of the pre-reduced ore can be achieved with a very small amount of carrier gas.
4 少量の搬送ガスですむため、予備還元鉱石を
溶融還元炉へより高い温度で吹込むことができ
る。4. Pre-reduced ore can be injected into the smelter reduction furnace at higher temperatures due to the small amount of carrier gas required.
5 搬送ガスの流量を調節することにより、各羽
口への予備還元鉱石の所定量分配が容易であ
る。5. By adjusting the flow rate of the carrier gas, it is easy to distribute a predetermined amount of pre-reduced ore to each tuyere.
第1図は溶融還元装置の系統図、第2図は本発
明の一実施例の部分断面図である。
1…粉粒状鉱石供給口、2…予備還元炉、3…
溶融還元炉、4…粉粒状フラツクス、固体還元
剤、還元ガスなどの供給口、5…予備還元炉排出
口、6…移送管、7…導入管、8…羽口支管、9
…導入管中間部、10…搬送ガス供給管、11…
レースウエイ、12…固体炭素系還元剤供給装
置、13…溶融金属と溶融スラグの排出口、14
…送風本管、15…遮断弁。
FIG. 1 is a system diagram of a melting reduction apparatus, and FIG. 2 is a partial sectional view of an embodiment of the present invention. 1...Powdered ore supply port, 2...Preliminary reduction furnace, 3...
Melting reduction furnace, 4... Supply port for powdery flux, solid reducing agent, reducing gas, etc., 5... Pre-reduction furnace outlet, 6... Transfer pipe, 7... Introducing pipe, 8... Tuyere branch pipe, 9
...Introduction pipe middle part, 10...Carrier gas supply pipe, 11...
Raceway, 12...Solid carbon-based reducing agent supply device, 13...Discharge port for molten metal and molten slag, 14
...Blower main pipe, 15...Shutoff valve.
Claims (1)
装置において、予備還元炉から高温の粉粒状予備
還元鉱石を溶融還元炉に移送する移送管の下端に
前記鉱石を溶融還元炉の羽口支管内に吹込む導入
管を接合し、該導入管には搬送ガス吹込みノズル
を前記導入管内の前記移送管との接合位置中心よ
り先端側に開口させると共に該ノズル開口より先
端側の前記導入管途中に前記予備還元鉱石の自走
を停止させる中間部を介装したことを特徴とする
予備還元鉱石の移送吹込み装置。1. In a smelting reduction apparatus consisting of a pre-reduction furnace and a smelting reduction furnace, the ore is placed at the lower end of a transfer pipe that transfers high-temperature granular pre-reduced ore from the pre-reduction furnace to the smelting reduction furnace, and the ore is placed inside the tuyere branch pipe of the smelting reduction furnace. An introduction pipe is connected to the introduction pipe, and a carrier gas blowing nozzle is opened in the introduction pipe toward the distal end from the center of the joint position with the transfer pipe in the introduction pipe, and at the middle of the introduction pipe on the distal side from the nozzle opening. 1. A device for transferring and blowing pre-reduced ore, characterized in that an intermediate portion for stopping self-propulsion of the pre-reduced ore is interposed therein.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21219882A JPS59104083A (en) | 1982-12-03 | 1982-12-03 | Device for transferring and blowing in spare reducing ore inmelting reducing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21219882A JPS59104083A (en) | 1982-12-03 | 1982-12-03 | Device for transferring and blowing in spare reducing ore inmelting reducing device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59104083A JPS59104083A (en) | 1984-06-15 |
JPS6360803B2 true JPS6360803B2 (en) | 1988-11-25 |
Family
ID=16618540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21219882A Granted JPS59104083A (en) | 1982-12-03 | 1982-12-03 | Device for transferring and blowing in spare reducing ore inmelting reducing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59104083A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5182230A (en) * | 1988-07-25 | 1993-01-26 | International Business Machines Corporation | Laser methods for circuit repair on integrated circuits and substrates |
US5171709A (en) * | 1988-07-25 | 1992-12-15 | International Business Machines Corporation | Laser methods for circuit repair on integrated circuits and substrates |
JP6067170B1 (en) * | 2016-07-29 | 2017-01-25 | 九州電力株式会社 | Voltage detector |
-
1982
- 1982-12-03 JP JP21219882A patent/JPS59104083A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59104083A (en) | 1984-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR970003636B1 (en) | A furnace for reduction fine coal in the manufacture of iron melts | |
CN101935726B (en) | Apparatus for manufacturing molten irons | |
CA1301453C (en) | Metal-making apparatus involving the smelting reduction of metallic oxides | |
US6231638B1 (en) | Process for producing metal from metal ores | |
JPS6360803B2 (en) | ||
US6200363B1 (en) | Direct reduced iron hot/cold discharge system | |
JPS6118633A (en) | Apparatus for transferring and supplying constant quantity of powder | |
JPS6247941B2 (en) | ||
CN113604252B (en) | Slag discharge device and method for using the same to discharge slag | |
JP2620793B2 (en) | Preliminary reduction furnace for smelting reduction | |
JPS5918452B2 (en) | Method for producing molten metal from powdered ore | |
JPS59140313A (en) | Transporting equipment of granular ore in melting and reducing apparatus | |
JPS5948841B2 (en) | Transfer device for powdery pre-reduced ore in smelting reduction equipment | |
JPH06220513A (en) | Circulation layer type preliminary reducing furnace for powdery iron ore | |
JPS6360802B2 (en) | ||
JPH0314887B2 (en) | ||
JPS59140312A (en) | Equipment for transporting prereduced ore in melting and reducing apparatus | |
JPS6020441B2 (en) | Method for injecting granular pre-reduced ore into a smelting reduction furnace in the smelting reduction method | |
JPS6245282B2 (en) | ||
JPH0314888B2 (en) | ||
JPH01129917A (en) | Device for preheating and charging material in reduction furnace | |
KR920007177Y1 (en) | Circulating Fluidized Bed Iron Ore Preliminary Reduction Furnace | |
JPS59176585A (en) | Fluidized bed spare reducing furnce | |
JPH036968B2 (en) | ||
JPH0372126B2 (en) |