[go: up one dir, main page]

JPS636053B2 - - Google Patents

Info

Publication number
JPS636053B2
JPS636053B2 JP55124944A JP12494480A JPS636053B2 JP S636053 B2 JPS636053 B2 JP S636053B2 JP 55124944 A JP55124944 A JP 55124944A JP 12494480 A JP12494480 A JP 12494480A JP S636053 B2 JPS636053 B2 JP S636053B2
Authority
JP
Japan
Prior art keywords
reaction
solvent
ruthenium
cyclopentanol
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55124944A
Other languages
Japanese (ja)
Other versions
JPS5748931A (en
Inventor
Ryoji Sato
Mitsuyo Senuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP55124944A priority Critical patent/JPS5748931A/en
Publication of JPS5748931A publication Critical patent/JPS5748931A/en
Publication of JPS636053B2 publication Critical patent/JPS636053B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は炭素数5のアルコールから効率よくカ
ルボニル化合物を製造する方法に関し、さらに詳
しくは、高沸点のカルボン酸エステル系溶剤を使
用することにより効率よくカルボニル化合物を製
造する方法に関する。 炭素数3から7の第一級アルコールまたは第二
級アルコールをルテニウム系酸化剤を用いて酸化
し、対応するカルボニル化合物を得る方法は公知
である(例えば、特開昭52−39611、JACS、80
6682(1958)、Canadian J.Chem.、50、3741
(1972)、Tetrahedron Letters、No.47、4729
(1967))。 而してかかる従来技術では、被酸化物のアルコ
ールを溶媒としての四塩化炭素に添加して反応を
行なうか、あるいは全く溶媒を用いないで反応を
行なつている例が多く、かつルテニウム系酸化剤
を用いる場合に予め酸化力を有するRuO4
Na2RuO4などの形態に成した後、これを安定に
保存する為の溶媒として四塩化炭素が好都合であ
るとして賞用されるこてが多い。 また触媒量のルテニウム系酸化剤と次亜塩素酸
ナトリウムの如き酸化剤を併用する場合には、次
亜塩素酸ナトリウムの如き酸化剤により酸化を受
ける溶剤類は使用できず、そのため無溶媒系で反
応を実施するか、あるいはJCS、Perkin I、
1974、222の記述によれば、n−オクタン、ドデ
カン、シクロヘキサンなどの飽和炭化水素ならば
使用可能とされている。 しかしながらこれら従来技術で提唱されている
方法は、いずれも実際の工業的な合成法としては
不満足なものである。例えば四塩化炭素は次亜塩
素酸ナトリウムに対しては不活性であり、RuO4
の分配に関しては水相の60倍にも達して極めて
RuO4の保持力が大きいという利点を有するが、
一般に目的とする生成物に比較して沸点が低く、
溶剤と生成物との分離に際しては多量の溶剤を留
去せしめる必要があり、実際的な溶剤とは言い難
い。 また溶媒を用いない場合は、目的生成物が副次
的な酸化反応を受け反応選択率が低下するという
結果をもたらす。例えば第二級アルコールからケ
トンが生成し、次いで次亜塩素酸ナトリウムの如
き酸化剤によるハロフオルム反応が生じる場合が
ある。 さらに飽和炭化水素を溶媒とする場合、次の如
き欠点が認められる。すなわちU.A.Spitzerらに
よれば(J.O.C.40、2539(1975))、シクロペンタ
ン、シクロヘキサン、シクロヘプタン、シクロオ
クタンがRuO4と次亜塩素酸ナトリウムの存在下
で各々シクロペンタノンとグルタル酸、シクロヘ
キサノンとアジピン酸、シクロペンタノンとピメ
リン酸、シクロオクタノンとスベリン酸に酸化さ
れたと報告されており、これらシクロパラフイン
も決して安定な溶剤とはいえず、一方、オクタ
ン、ドデカンなどのパラフイン類は一般にアルコ
ール類との相溶性に乏しく、溶剤としての第一義
的役割を果すには不充分である。 そこで本発明者らは従来技術のかかる欠点を改
良すべく鋭意検討を進めた結果、高沸点のカルボ
ン酸エステル系溶剤がルテニウム系酸化剤、次亜
塩素酸ナトリウムなどの酸化剤に対して充分に安
定であり、目的生成物との分離も容易であつて実
際的な生産効率の面からも好適であることを見出
し、本発明を完成するに到つた。 即ち本発明の目的は、高純度のカルボニル化合
物を効率よく製造する方法を提供することにあ
り、かかる本発明の目的は、炭素数5の第一級ま
たは第二級アルコールを、沸点150℃以上のカル
ボン酸エステル系溶剤の存在下にルテニウム系酸
化触媒及び共酸化剤を用いてカルボニル化合物に
酸化せしめたのち、反応生成物を蒸留してカルボ
ニル化合物を低沸成分として留去せしめることに
よつて達成される。 本発明において反応に供されるアルコールは炭
素数5の第一級または第二級アルコールであり、
具体的にはn−ペンタノール及びシクロペンタノ
ールが例示される。本発明においては、かかるア
ルコールをルテニウム系酸化触媒で酸化すること
により対応するカルボニル化合物(即ち、n−ペ
ンタノールからはバレルアルデヒド及びn−吉草
酸、シクロペンタノールからはシクロペンタノ
ン)が得られる。この反応に用いられるルテニウ
ム系酸化触媒としては通常使用されているもので
あればいずれでもよく、具体的には四酸化ルテニ
ウム、ルテニウム酸塩(ルテニウム酸ナトリウ
ム、ルテニウム酸カリウムなど)、過ルテニウム
酸塩(過ルテニウム酸ナトリウム、過ルテニウム
酸カリウムなど)などが挙げられる。 また、本発明においては、反応の進行に伴なつ
て失活するルテニウム系酸化触媒を再生使用する
ために共酸化剤を併用する。この共酸化剤は、二
酸化ルテニウム、三塩化ルテニウムなどの如き酸
化力のない低原子価のルテニウム化合物をルテニ
ウム系酸化触媒に酸化可能なものであればいずれ
でもよく、具体的には次亜塩素酸ナトリウム、塩
素酸ナトリウム、過酸素酸ナトリウム、過沃素酸
ナトリウム、塩素、過マンガン酸カリウム、過酢
酸などが挙げられる。なかでも操作の容易さ、経
済性などの面から次亜塩素酸ナトリウムが賞用さ
れる。 かかるルテニウム系酸化触媒及び共酸化剤の使
用量は所望の生成物と最適収率に応じて適宜選択
すればよいが、通常は前者が被酸化物のアルコー
ルに対して0.1モル当量以下、好ましくは0.001〜
0.03モル当量が適当であり、後者は反応に必要な
化学量論的量の0.2〜5倍量、好ましくは0.5〜2.5
倍量である。またルテニウム系酸化触媒及び共酸
化剤の添加方法も適宜選択すればよく、具体的に
は前者の必要全量を予め仕込んだのち後者を順次
添加する方法、または両者を順次添加する方法が
賞用される。 本発明においては、反応に際して沸点150℃以
上、好ましくは160℃以上の高沸点カルボン酸エ
ステル系溶剤(飽和脂肪族カルボン酸と飽和脂肪
族または飽和脂環族アルコールから構成されるエ
ステル)が使用される。かかる溶剤の具体的な例
としては、酢酸−2−エチルブチル、酢酸−2−
エチルヘキシル、プロピオン酸イソアミル、酪酸
−n−ブチル、酪酸イソアミル、イソ吉草酸イソ
アミル、n−吉草酸−n−アミル、乳酸アミル、
酢酸シクロペンチル、酢酸シクロヘキシル、酢酸
メチルシクロヘキシルなどが挙げられる。 これらの溶剤は従来からこの反応に賞用されて
いる四塩化炭素と同等程度に安定であり、また炭
化水素系溶剤に比較するとアルコール類との相溶
性にすぐれ、かつ安定性の面でもすぐれている。
さらに本発明に用いる溶剤は目的とする生成物に
比較して高い沸点を有するため、生成物の蒸留の
分離に際して生成物を低沸成分として留出せしめ
ることができ、低沸点の溶剤を用いる従来法に比
較して高純度の生成物を効率よく得ることができ
る。 とくに原料アルコールとしてn−ペンタノール
が存在するときは、n−吉草酸−nアミルを溶剤
とすることが好ましく、この場合には反応中に副
生するn−吉草酸−n−アミルを除去する必要が
なくなるばかりか、溶剤の工程上の損失を副生物
によつて補充できるという利点がある。 本発明においては、かかる特定の溶剤を用いる
こと以外は常法に従つて反応が実施される。例え
ば、溶剤の使用量は通常被酸化物のアルコールに
対し等量以上、好ましくは1.2〜10倍量であり、
その使用量が多いほど目的生成物の選択性にすぐ
れるが、反応装置や溶剤回収装置が大きくなり実
際的ではなくなるので、最適な使用量を適宜選定
する。また反応は常圧または加圧下に通常0〜50
℃の温度で0.1〜5時間の反応時間で実施される
が、これらの条件によつて特に制限されるもので
はない。 本発明においては、反応が終了したのちに常法
に従つて反応生成物を蒸留することにより、低沸
成分として目的とするカルボニル化合物が分離さ
れる。蒸留の方法及び条件はとくに制限されない
が、通常は生成物の熱的安定性、溶剤の沸点など
を考慮して減圧、常圧または加圧下で、好ましく
は10mmHg絶対圧から5気圧までの圧力を適宜選
択し、また還流比は成分の比揮発度、所望の純
度、回収率などを考慮して、好好ましくは0.5か
ら20までの値を採用して蒸留を実施することがで
きる。装置の形式は、回分式、連続式のいずれで
もよく、また、充填塔、棚段塔のいずれでもよ
い。 以下に実施例を挙げて本発明をさらに具体的に
説明する。 実施例 1 撹拌機を付したガラス製反応器にn−吉草酸−
n−アミル(沸点204℃)100重量部とシクロペン
タノール13重量部を仕込んだのち、予め二酸化ル
テニウム・二水和物(RuO2・2H2O)0.26重量部
(シクロペンタノール1モル当り0.01モルに相当)
を添加してから、有効塩素濃度10%の次亜塩素酸
ナトリウム水溶液161重量部(シクロペンタノー
ル1モル当り1.5モルに相当)を常圧常温(25〜
29℃)下に2時間にわたつて滴下した。 反応後、有機相を水相と分離し、内径30mm、充
填層長1.5m、マクマホンパツキング充填物を入
れた回分式蒸留塔を用い、減圧下(160mmHg絶対
圧)、還流比4から5で蒸留した。 仕込み有機相100重量部(シクロペンタノン濃
度11.8重量%)に対して留出物A(塔頂留出温度
60〜84℃)が1.69重量部(シクロペンタノン純度
99.74%)、留出物B(留出温度85℃)が9.13重量
部(シクロペンタノン純度99.9%)、留出物C(留
出温度90〜150℃)が0.94重量部(シクロペンタ
ノン含有率18.3%)を得た。缶液の温度は、当初
の130℃からら漸増し最終的に155℃となつた。 留出物A、Bで得られたシクロペンタノンは、
反応前に仕込んだシクロペンタノール100モルに
対し、その回収量が82.1モルに相当した。なお、
反応成績はシクロペンタノール転化率99.7%、シ
クロペンタノン選択率88.9%であつた。 比較例 1 実施例1の反応条件において、溶剤をシクロヘ
キサン(沸点80.7℃)に変更した以外は同様に実
施したところ、シクロペンタノン生成の反応成績
はほぼ同等であつたが、シクロヘキサンが反応し
て生成したと思われるシクロヘキサノンが検出さ
れ(生成量はシクロヘキサン100モル当り2.6モル
に相当した)、またシクロヘキサンの消失割合は
仕込量の11.4%にも達した。 比較例 2 実施例1と同様の反応を溶剤を用いないで実施
したところ、シクロペンタノール転化率70%でシ
クロペンタノン収率55%(選択率78.6%)、シク
ロペンタノール転化率95%でシクロペンタノン収
率54%(選択率56.8%)、シクロペンタノール転
化率100%でシクロペンタノール収率44%(選択
率44%)となり、転化率の増大とともに選択率は
急減した。 実施例 2 n−吉草酸アミル100重量部とn−ペンタノー
ル12重量部及び二酸化ルテニウム・二水和物(n
−ペンタノール1モル当り0.0083モル)をガラス
製反応器に仕込み、撹拌しながら常温(25〜29
℃)で次亜塩素酸ナトリウム水溶液(n−ペンタ
ノール1モル当り次亜塩素ナトリウムが1.25モル
に相当する量)を2時間にわたつて滴加した結
果、n−ペンタノール転化率80%、バレルアルデ
ヒド収率49%の成績が得られた。 反応終了後、有機相を分別し、実施例1と同様
の回分式蒸留装置を用い減圧下(300mmHg絶対
圧)、還流比4.0で蒸留、n−ペンタノール29重量
%とバレルアルデヒド70%、低沸分1%を含む留
出物(仕込み有機相100重量当り6.9重量部に相
当)を得た。 この留出物から未反応n−ペンタノールを除去
するため、回分式蒸留装置で還流比3.0、減圧
(150mmHg絶対圧)の条件下で更に蒸留したとこ
ろ、96%純度のバレルアルデヒドが得られた。 実施例 3 実施例1に準じて、溶剤に酢酸シクロペンチ
ル、被酸化物アルコールにシクロペンタノールを
用いたときの反応を実施したところ、シクロペン
タノール転化率100%でシクロペンタノン収率
91.2%の反応成績を得た。次いでこれを実施例1
に準じて蒸留し(還流比6.0、減圧320mmHg絶対
圧)、純度97%のシクロペンタノンを総合回収率
89%で得た。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for efficiently producing a carbonyl compound from an alcohol having 5 carbon atoms, and more specifically, a method for efficiently producing a carbonyl compound by using a high boiling point carboxylic acid ester solvent. Regarding the method. A method for obtaining a corresponding carbonyl compound by oxidizing a primary alcohol or a secondary alcohol having 3 to 7 carbon atoms using a ruthenium-based oxidizing agent is known (for example, JP-A-52-39611, JACS, 80) . ,
6682 (1958), Canadian J.Chem., 50 , 3741
(1972), Tetrahedron Letters, No. 47, 4729
(1967)). However, in such conventional techniques, in many cases, the reaction is carried out by adding the alcohol to be oxidized to carbon tetrachloride as a solvent, or the reaction is carried out without using a solvent at all. RuO 4 which already has oxidizing power when using an agent,
Carbon tetrachloride is often used as a convenient solvent for stably preserving Na 2 RuO 4 after forming it into a form such as Na 2 RuO 4 . Furthermore, when using a catalytic amount of a ruthenium-based oxidizing agent and an oxidizing agent such as sodium hypochlorite, solvents that are oxidized by the oxidizing agent such as sodium hypochlorite cannot be used, and therefore solvent-free systems cannot be used. Perform the reaction or JCS, Perkin I,
According to the description in 1974, 222, saturated hydrocarbons such as n-octane, dodecane, and cyclohexane can be used. However, all of these methods proposed in the prior art are unsatisfactory as actual industrial synthesis methods. For example, carbon tetrachloride is inert to sodium hypochlorite, and RuO 4
Regarding the distribution of
Although it has the advantage of having a large retention force for RuO 4 ,
Generally has a lower boiling point compared to the desired product;
When separating the solvent from the product, it is necessary to distill off a large amount of the solvent, so it cannot be said to be a practical solvent. Moreover, when no solvent is used, the target product undergoes a secondary oxidation reaction, resulting in a decrease in reaction selectivity. For example, a ketone may be formed from a secondary alcohol, followed by a halofolum reaction with an oxidizing agent such as sodium hypochlorite. Furthermore, when a saturated hydrocarbon is used as a solvent, the following drawbacks are observed. That is, according to UAspitzer et al. (JOC40, 2539 (1975)), cyclopentane, cyclohexane, cycloheptane, and cyclooctane are converted into cyclopentanone and glutaric acid, and cyclohexanone and adipic acid, respectively, in the presence of RuO 4 and sodium hypochlorite. It is reported that these cycloparaffins are oxidized to cyclopentanone and pimelic acid, and cyclooctanone and suberic acid, and these cycloparaffins cannot be said to be stable solvents.On the other hand, paraffins such as octane and dodecane are generally oxidized to alcohols. It has poor compatibility and is insufficient to play its primary role as a solvent. Therefore, the present inventors conducted intensive studies to improve this drawback of the conventional technology, and as a result, the high-boiling point carboxylic acid ester solvent is sufficiently effective against oxidizing agents such as ruthenium-based oxidizing agents and sodium hypochlorite. They found that it is stable, easy to separate from the target product, and suitable from the standpoint of practical production efficiency, and have completed the present invention. That is, an object of the present invention is to provide a method for efficiently producing a highly pure carbonyl compound, and an object of the present invention is to prepare a primary or secondary alcohol having 5 carbon atoms at a boiling point of 150°C or higher. After oxidizing to a carbonyl compound using a ruthenium-based oxidation catalyst and a co-oxidizing agent in the presence of a carboxylic acid ester solvent, the reaction product is distilled to remove the carbonyl compound as a low-boiling component. achieved. The alcohol subjected to the reaction in the present invention is a primary or secondary alcohol having 5 carbon atoms,
Specific examples include n-pentanol and cyclopentanol. In the present invention, the corresponding carbonyl compounds (i.e., valeraldehyde and n-valeric acid from n-pentanol, and cyclopentanone from cyclopentanol) are obtained by oxidizing such alcohols with a ruthenium-based oxidation catalyst. . The ruthenium-based oxidation catalyst used in this reaction may be any commonly used oxidation catalyst, including ruthenium tetroxide, ruthenates (sodium ruthenate, potassium ruthenate, etc.), and perruthenates. (sodium perruthenate, potassium perruthenate, etc.). Further, in the present invention, a co-oxidizing agent is used in combination in order to reuse the ruthenium-based oxidation catalyst that becomes deactivated as the reaction progresses. This co-oxidant may be any one that can oxidize low-valent ruthenium compounds with no oxidizing power, such as ruthenium dioxide and ruthenium trichloride, to a ruthenium-based oxidation catalyst. Specifically, hypochlorous acid Examples include sodium, sodium chlorate, sodium peroxyate, sodium periodate, chlorine, potassium permanganate, and peracetic acid. Among these, sodium hypochlorite is preferred due to its ease of operation and economic efficiency. The amount of the ruthenium-based oxidation catalyst and co-oxidant to be used may be appropriately selected depending on the desired product and optimum yield, but usually the former is 0.1 molar equivalent or less, preferably 0.1 molar equivalent or less, based on the alcohol to be oxidized. 0.001〜
0.03 molar equivalent is suitable, the latter being 0.2 to 5 times the stoichiometric amount required for the reaction, preferably 0.5 to 2.5
It's double the amount. In addition, the method of adding the ruthenium-based oxidation catalyst and co-oxidant may be selected as appropriate; specifically, a method in which the required amount of the former is charged in advance and then the latter is added sequentially, or a method in which both are added sequentially is preferred. Ru. In the present invention, a high-boiling carboxylic acid ester solvent (an ester composed of a saturated aliphatic carboxylic acid and a saturated aliphatic or saturated alicyclic alcohol) having a boiling point of 150°C or higher, preferably 160°C or higher is used in the reaction. Ru. Specific examples of such solvents include 2-ethylbutyl acetate, 2-ethyl acetate,
Ethylhexyl, isoamyl propionate, n-butyl butyrate, isoamyl butyrate, isoamyl isovalerate, n-amyl valerate, amyl lactate,
Examples include cyclopentyl acetate, cyclohexyl acetate, and methylcyclohexyl acetate. These solvents are as stable as carbon tetrachloride, which has traditionally been used in this reaction, and are superior in compatibility with alcohols and stability compared to hydrocarbon solvents. There is.
Furthermore, since the solvent used in the present invention has a higher boiling point than the target product, the product can be distilled out as a low-boiling component when separating the product by distillation, which is compared to the conventional method using a low-boiling point solvent. A product of high purity can be obtained efficiently compared to the conventional method. In particular, when n-pentanol is present as the raw alcohol, it is preferable to use n-amyl valerate as the solvent, and in this case, n-amyl valerate by-produced during the reaction is removed. This not only eliminates the need for it, but also has the advantage that process losses of solvent can be replaced by the by-product. In the present invention, the reaction is carried out according to a conventional method except for using the specific solvent. For example, the amount of solvent used is usually at least the same amount, preferably 1.2 to 10 times the amount of alcohol to be oxidized,
The larger the amount used, the better the selectivity of the desired product, but the larger the reaction apparatus and solvent recovery apparatus become, making it impractical, so the optimum amount to be used is appropriately selected. The reaction is usually carried out under normal pressure or increased pressure.
The reaction time is 0.1 to 5 hours at a temperature of .degree. C., but these conditions are not particularly limiting. In the present invention, after the reaction is completed, the target carbonyl compound is separated as a low-boiling component by distilling the reaction product according to a conventional method. The method and conditions for distillation are not particularly limited, but usually, taking into account the thermal stability of the product, the boiling point of the solvent, etc., it is carried out under reduced pressure, normal pressure, or increased pressure, preferably at a pressure of 10 mmHg absolute pressure to 5 atm. Distillation can be carried out by selecting the reflux ratio as appropriate, and preferably by adopting a value of 0.5 to 20, taking into consideration the specific volatility of the components, desired purity, recovery rate, etc. The type of apparatus may be either a batch type or a continuous type, and may be a packed column or a tray column. The present invention will be explained in more detail with reference to Examples below. Example 1 N-valeric acid was added to a glass reactor equipped with a stirrer.
After charging 100 parts by weight of n-amyl (boiling point 204°C) and 13 parts by weight of cyclopentanol, 0.26 parts by weight of ruthenium dioxide dihydrate (RuO 2 2H2O) (0.01 mol per 1 mol of cyclopentanol) was added in advance. equivalent)
After adding 161 parts by weight of a sodium hypochlorite aqueous solution with an effective chlorine concentration of 10% (equivalent to 1.5 mol per 1 mol of cyclopentanol) at normal pressure and room temperature (25~
(29°C) over 2 hours. After the reaction, the organic phase was separated from the aqueous phase using a batch distillation column with an inner diameter of 30 mm, a packed bed length of 1.5 m, and a McMahon packing packing, under reduced pressure (160 mmHg absolute pressure) and a reflux ratio of 4 to 5. Distilled. Distillate A (top distillation temperature
60-84℃) is 1.69 parts by weight (cyclopentanone purity
99.74%), 9.13 parts by weight of distillate B (distillation temperature 85°C) (cyclopentanone purity 99.9%), 0.94 parts by weight of distillate C (distillation temperature 90-150°C) (contains cyclopentanone) rate of 18.3%). The temperature of the can liquid gradually increased from the initial 130°C to 155°C. Cyclopentanone obtained from distillates A and B is
The amount recovered was equivalent to 82.1 moles for 100 moles of cyclopentanol charged before the reaction. In addition,
The reaction results were a cyclopentanol conversion rate of 99.7% and a cyclopentanone selectivity of 88.9%. Comparative Example 1 When the reaction conditions of Example 1 were repeated except that the solvent was changed to cyclohexane (boiling point 80.7°C), the reaction results for cyclopentanone production were almost the same, but the cyclohexane was not reacted. Cyclohexanone, which was thought to have been produced, was detected (the amount produced was equivalent to 2.6 mol per 100 mol of cyclohexane), and the rate of disappearance of cyclohexane reached 11.4% of the charged amount. Comparative Example 2 When the same reaction as in Example 1 was carried out without using a solvent, the cyclopentanone yield was 55% (selectivity 78.6%) at a cyclopentanol conversion rate of 70%, and the cyclopentanone conversion rate was 95%. With a cyclopentanone yield of 54% (selectivity 56.8%) and a cyclopentanol conversion rate of 100%, the cyclopentanol yield was 44% (selectivity 44%), and as the conversion rate increased, the selectivity decreased rapidly. Example 2 100 parts by weight of n-amyl valerate, 12 parts by weight of n-pentanol, and ruthenium dioxide dihydrate (n
- 0.0083 mol per 1 mol of pentanol) was charged into a glass reactor, and the mixture was heated to room temperature (25 to 29 mol) while stirring.
As a result of dropwise addition of an aqueous sodium hypochlorite solution (an amount equivalent to 1.25 mol of sodium hypochlorite per 1 mol of n-pentanol) over a period of 2 hours at ℃), the conversion rate of n-pentanol was 80%, and the barrel An aldehyde yield of 49% was obtained. After the reaction, the organic phase was separated and distilled using the same batch distillation apparatus as in Example 1 under reduced pressure (300 mmHg absolute pressure) at a reflux ratio of 4.0 to give 29% by weight of n-pentanol and 70% of valeraldehyde. A distillate containing 1% boiling content (corresponding to 6.9 parts by weight per 100 weight of charged organic phase) was obtained. In order to remove unreacted n-pentanol from this distillate, it was further distilled using a batch distillation apparatus under the conditions of a reflux ratio of 3.0 and reduced pressure (150 mmHg absolute pressure), and 96% pure valeraldehyde was obtained. . Example 3 According to Example 1, a reaction was carried out using cyclopentyl acetate as the solvent and cyclopentanol as the alcohol to be oxidized, and the cyclopentanone yield was 100% with a cyclopentanol conversion rate of 100%.
A reaction result of 91.2% was obtained. Next, this was carried out in Example 1.
Distilled in accordance with
Got it with 89%.

Claims (1)

【特許請求の範囲】 1 炭素数5の第一級または第二級アルコール
を、沸点150℃以上のカルボン酸エステル系溶剤
の存在下にルテニウム系酸化触媒及び共酸化剤を
用いてカルボニル化合物に酸化せしめた後、反応
生成物を蒸留して生成したカルボニル化合物を低
沸成分として留出せしめることを特徴とするカル
ボニル化合物の製造法。 2 アルコールがシクロペンタノールまたはn−
ペンタノールである特許請求の範囲第1項記載の
製造法。
[Claims] 1. Oxidation of a primary or secondary alcohol having 5 carbon atoms into a carbonyl compound using a ruthenium-based oxidation catalyst and a co-oxidizing agent in the presence of a carboxylic acid ester solvent with a boiling point of 150°C or higher. 1. A method for producing a carbonyl compound, which comprises distilling the reaction product and distilling the produced carbonyl compound as a low-boiling component. 2 Alcohol is cyclopentanol or n-
The manufacturing method according to claim 1, which is pentanol.
JP55124944A 1980-09-09 1980-09-09 Preparation of carbonyl compound Granted JPS5748931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55124944A JPS5748931A (en) 1980-09-09 1980-09-09 Preparation of carbonyl compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55124944A JPS5748931A (en) 1980-09-09 1980-09-09 Preparation of carbonyl compound

Publications (2)

Publication Number Publication Date
JPS5748931A JPS5748931A (en) 1982-03-20
JPS636053B2 true JPS636053B2 (en) 1988-02-08

Family

ID=14898053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55124944A Granted JPS5748931A (en) 1980-09-09 1980-09-09 Preparation of carbonyl compound

Country Status (1)

Country Link
JP (1) JPS5748931A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998000382A1 (en) * 1996-07-02 1998-01-08 Toray Industries, Inc. Processes for the preparation of optically active ketones

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838226A (en) * 1981-08-31 1983-03-05 Sagami Chem Res Center Preparation of unsaturated carbonyl compound
JPH0651654B2 (en) * 1985-03-28 1994-07-06 三井東圧化学株式会社 Method for producing carbonyl compound
JP4101346B2 (en) * 1998-02-18 2008-06-18 ダイセル化学工業株式会社 Oxidation catalyst system and oxidation method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998000382A1 (en) * 1996-07-02 1998-01-08 Toray Industries, Inc. Processes for the preparation of optically active ketones

Also Published As

Publication number Publication date
JPS5748931A (en) 1982-03-20

Similar Documents

Publication Publication Date Title
US2223493A (en) Oxidation of cyclic compounds
EP1494986B1 (en) Oxidation treatment of a recycle stream in production of acetic acid by methanol carbonylation
EP2981528B1 (en) Process for the preparation of 2,5-furan-dicarboxylic acid
JPH0256334B2 (en)
JPH0635404B2 (en) Purification method of crude 1,4-butanediol
JP6789989B6 (en) Method for Producing 3-Methyl Cyclopentadecane-1,5-Dione
US3277158A (en) Production of vinyl acetate from ethylene
JP3220234B2 (en) Purification of acetic anhydride or a mixture of acetic anhydride and acetic acid with ozone
JPS636053B2 (en)
CN103910627B (en) Method Of Preparing Oxalic Acid Dialkyl Ester
US2519754A (en) Manufacture of ethylene glycol esters
JP3036555B2 (en) Simultaneous production of aryl formate and aromatic carboxylic acid
US3624147A (en) Preparation of acrylic acid
JP6865135B2 (en) How to treat the composition
JPS5829790B2 (en) Continuous production method of percarboxylic acid in organic solvent
US3541121A (en) Separation of organic acids by reactive-extraction with amines
JP4204097B2 (en) Method for producing methyl methacrylate
JP5558581B2 (en) Method for producing deperoxidation catalyst
RU2715698C1 (en) Method of producing acetic acid and methyl ethyl ketone
JP3164284B2 (en) Method for producing 2-chloro-4-trifluoromethylbenzal chloride
JP2533980B2 (en) Method for producing perpropionic acid
JPH01135741A (en) Manufacturing method of adipic acid
JPS6025955A (en) Production of gamma-chloroacetoacetic acid ester
JPH07116096B2 (en) Method for producing high-purity 0-toluic acid
JPH0463867B2 (en)