JPS6360449B2 - - Google Patents
Info
- Publication number
- JPS6360449B2 JPS6360449B2 JP55130942A JP13094280A JPS6360449B2 JP S6360449 B2 JPS6360449 B2 JP S6360449B2 JP 55130942 A JP55130942 A JP 55130942A JP 13094280 A JP13094280 A JP 13094280A JP S6360449 B2 JPS6360449 B2 JP S6360449B2
- Authority
- JP
- Japan
- Prior art keywords
- track
- light
- light beam
- information carrier
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/08—Disposition or mounting of heads or light sources relatively to record carriers
- G11B7/09—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
- G11B7/095—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble
- G11B7/0953—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble to compensate for eccentricity of the disc or disc tracks
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/08—Disposition or mounting of heads or light sources relatively to record carriers
- G11B7/085—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
- G11B7/08505—Methods for track change, selection or preliminary positioning by moving the head
- G11B7/08541—Methods for track change, selection or preliminary positioning by moving the head involving track counting to determine position
Landscapes
- Automatic Focus Adjustment (AREA)
- Moving Of The Head For Recording And Reproducing By Optical Means (AREA)
Description
【発明の詳細な説明】
本発明は光学デイスクのような円板状の情報担
体に情報を光学的に記録およびまたは再生する光
学情報記録.再生装置のための検索装置にかか
り、特に予め情報担体に形成された溝状の案内ト
ラツクをもつ情報担体のトラツク検索装置に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical information recording system for optically recording and/or reproducing information on a disk-shaped information carrier such as an optical disk. The present invention relates to a retrieval device for a reproducing device, and more particularly to a track retrieval device for an information carrier having a groove-shaped guide track formed in advance on the information carrier.
光学情報記録再生装置としては、例えば光感応
性材料を塗布又は蒸着した円板状情報担体を回転
させておき、前記円板状情報担体にレーザー光源
等からの光束を直径1μm以下に絞つた微小スポ
ツト光として照射し、その光出力強度を記録信号
で変調することによつて情報担体上に凹凸による
位相変化、屈折率変化あるいは反射率や透過率の
変化などの光学的特性変化としてリアルタイムで
ビデオ信号やデイジタル信号等の情報の記録が行
なえ、かつ前記光学的特性変化を検出することに
より記録した情報の再生が行なえる装置が提案さ
れている。 As an optical information recording/reproducing device, for example, a disc-shaped information carrier coated or vapor-deposited with a photosensitive material is rotated, and a light beam from a laser light source is focused onto the disc-shaped information carrier to a diameter of 1 μm or less. By irradiating it as a spot light and modulating its optical output intensity with a recording signal, video can be recorded in real time on the information carrier as changes in optical properties such as phase changes due to unevenness, changes in refractive index, or changes in reflectance and transmittance. 2. Description of the Related Art Apparatuses have been proposed that can record information such as signals and digital signals, and can reproduce the recorded information by detecting changes in the optical characteristics.
かかる装置では、記録トラツクの高密度化、離
散的な部分書き込みあるいは消去などの理由によ
り記録しようとするトラツクを案内する案内トラ
ツクを同心円あるいはスパイラル状に予め設けて
おき、前記案内トラツクに追従するようにトラツ
キング制御をかけながら定められたトラツクに情
報を記録し、またそのトラツクから情報を再生す
る光学情報記録再生装置が考えられる。 In such a device, a guide track is provided in advance in a concentric circle or a spiral shape to guide the track to be recorded due to high density recording, discrete partial writing or erasing, etc. An optical information recording/reproducing apparatus is conceivable that records information on a predetermined track while applying tracking control to the information, and reproduces information from the track.
本発明の目的は、案内トラツクを光学的に識別
しうるようにした円板状情報担体に情報を書き込
んだり、円板状情報担体から情報を読み取る装置
を提供することにあり、なかでも各トラツクに記
録された情報を横断トラツク数を計数して高速検
索する検索装置を供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a device for writing information on a disc-shaped information carrier and reading information from a disc-shaped information carrier in which guide tracks can be optically identified. An object of the present invention is to provide a search device that performs a high-speed search for information recorded in a track by counting the number of traversed tracks.
情報担体に形成された案内トラツクは、例えば
凹凸の溝状構造が適当である。情報はこの案内ト
ラツクの設けられた情報担体に蒸着されたアモル
フアス金属のごとき記録媒体に記録される。情報
は、記録媒体の蒸発による穴形成または極所的な
黒化という形で蓄積される。 The guide track formed on the information carrier may suitably have, for example, a groove-like structure with uneven surfaces. Information is recorded on a recording medium, such as an amorphous metal deposited on the information carrier provided with this guide track. Information is stored in the form of holes or local blackening due to evaporation of the recording medium.
案内トラツクの識別は、案内トラツクで反射さ
れた反射レーザー光束の遠視野パターンが案内ト
ラツク方向の両側に光強度分布の偏りで行なわれ
る。この偏りは、分割境界が前記案内トラツクの
接線方向と平行になるように配された2つの受光
部をもつ光検出器で光電変換されて、トラツキン
グ制御手段へ印加される。したがつて、微小スポ
ツト光を情報担体上に収束して案内トラツクを横
断するように走査すると案内トラツクを通過する
毎に光検出器の2つの受光部の出力の差信号とし
てトラツクの横断信号が得られるので、この横断
信号の数を計数することによつて微小スポツト光
が情報担体上を移動したトラツク数が求まる。し
たがつて、この横断トラツク数のカウントが目標
移動トラツク数と一致したときトラツク検索走査
を停止せしめれば高速のトラツク検索ができる。 The guide track is identified by the far-field pattern of the reflected laser beam reflected by the guide track, with the light intensity distribution being biased on both sides of the guide track. This deviation is photoelectrically converted by a photodetector having two light receiving sections arranged so that the dividing boundary is parallel to the tangential direction of the guide track, and is applied to the tracking control means. Therefore, when a minute spot light is focused on an information carrier and scanned so as to cross the guide track, a track crossing signal is generated as a difference signal between the outputs of the two light receiving sections of the photodetector each time it passes through the guide track. Therefore, by counting the number of crossing signals, the number of tracks traveled by the minute spot light on the information carrier can be determined. Therefore, if the track search scanning is stopped when the count of the number of traversed tracks matches the target number of moving tracks, a high-speed track search can be performed.
一般に情報担体が装置に脱着されるとき、数
10μmオーダーの偏心が生じるのは避けられな
い。この偏心の存在は、トラツク間隔が1μm〜
2μmと非常に狭い光デイスクではトラツク検索
走査の開始時と終了時のように走査速度が情報担
体の回転速度に比して遅くなる場合に偽の横断信
号が発生する。したがつて、偏心量が大きくなれ
ばそれだけ横断トラツク数のカウントの誤差が大
きくなるという欠点がある。 Generally, when an information carrier is attached to or detached from a device, the number
It is unavoidable that eccentricity on the order of 10 μm occurs. The presence of this eccentricity is due to the track spacing of 1 μm or more.
For optical disks as narrow as 2 .mu.m, false crossing signals occur when the scanning speed becomes slower than the rotational speed of the information carrier, such as at the beginning and end of a track search scan. Therefore, there is a drawback that the greater the eccentricity, the greater the error in counting the number of traverse tracks.
本発明は、上述の偽の横断信号を前記光検出器
の2つの光電部の出力の和信号と差信号とで前述
の偽横断信号を分離して正確な横断トラツク数の
計数を可能ならしめて、良好な高速トラツク検索
を行なうことを目的とする。 The present invention separates the false crossing signal using a sum signal and a difference signal of the outputs of the two photoelectric sections of the photodetector, thereby making it possible to accurately count the number of crossing tracks. , the purpose is to perform a good high-speed track search.
以下図面に従つて本発明を詳しく説明する。第
1図は本発明の一実施例で情報を記録再生する光
学情報記録再生装置のトラツク検索装置の構成図
である。レーザー光源1から放射されたレーザー
光束2はトラツキングミラー3で方向を変えて絞
りレンズ4で円板状の情報担体5上に直径1μm
ぐらいの微小スポツト光6として集光される。絞
りレンズ駆動装置7はボイスコイルなどで構成さ
れ、情報担体5の面振れに応じて絞りレンズ4を
上下に微動せしめて微小スポツト光6が常にジヤ
ストフオーカスとなるようにフオーカス制御す
る。 The present invention will be explained in detail below with reference to the drawings. FIG. 1 is a block diagram of a track search device of an optical information recording and reproducing apparatus for recording and reproducing information according to an embodiment of the present invention. A laser beam 2 emitted from a laser light source 1 changes direction with a tracking mirror 3 and is applied to a disc-shaped information carrier 5 with a diameter of 1 μm using an aperture lens 4.
The light is collected as a minute spot light 6 of about 1000 yen. The aperture lens drive device 7 is composed of a voice coil or the like, and controls the focus so that the minute spot light 6 is always in just focus by slightly moving the aperture lens 4 up and down in accordance with the surface deflection of the information carrier 5.
案内トラツク8を予め設けた情報担体5はモー
タ9によつて高速回転され、かつトラツク検索走
査機構10によつて半径方向に高速移送される。 The information carrier 5, on which a guide track 8 has been previously provided, is rotated at high speed by a motor 9 and transported at high speed in the radial direction by a track retrieval and scanning mechanism 10.
このトラツク検索走査機構10はパルスモータ
ーと送りネジあるいはリニアモーターなどが使用
される。 This track search scanning mechanism 10 uses a pulse motor, a feed screw, a linear motor, or the like.
情報担体5で反射された反射レーザー光束11
は1/4波長板12と偏光ビームスプリツター13
でその光路が分離され方向変換されて、複プリズ
ム14の頂部に入射する。分離反射レーザー光束
15はレンズ16と複プリズム14によつて、複
ビーム光束17a,17bに分離され、それぞれ
フオーカス検出用光検出器18とトラツキング検
出用光検出器19上に投射される。情報担体5の
面振れに応じて複ビーム光束17aはフオーカス
検出用光検出器18上で左右に移動するので2分
割した光電部の出力を差動増幅器20で互いに差
を取れば、フオーカス誤差信号21が得られる。
このフオーカス誤差信号21は絞りレンズ駆動回
路22に印加されて絞りレンズ4を直垂に動かし
てフオーカスを制御する。 Reflected laser beam 11 reflected by the information carrier 5
is a 1/4 wavelength plate 12 and a polarizing beam splitter 13
The optical path is separated and direction-changed, and then enters the top of the double prism 14. The separated reflected laser beam 15 is separated into multiple beams 17a and 17b by a lens 16 and a double prism 14, and projected onto a focus detection photodetector 18 and a tracking detection photodetector 19, respectively. Since the double beam light flux 17a moves left and right on the focus detection photodetector 18 in accordance with the surface deflection of the information carrier 5, if the outputs of the two divided photoelectric sections are subtracted from each other by the differential amplifier 20, a focus error signal is obtained. 21 is obtained.
This focus error signal 21 is applied to an aperture lens drive circuit 22 to move the aperture lens 4 vertically to control focus.
情報担体5上に構築された案内トラツクの偏心
で微小スポツト光6が案内トラツク8を横切つた
場合、複ビーム光束17bの光量分布が横断方向
に偏る形で変化する。この複ビーム光束17bは
トラツキング検出用光検出器19の2個の光電部
を照射し、その出力は差動増幅器22でお互いの
差が取られてトラツキング誤差信号23としてト
ラツキングミラー駆動回路24に入力されトラツ
キングミラー3を振る。トラツキングミラー3は
微小スポツト光6が情報担体5上の案内トラツク
8を正確に追跡するように前記トラツキング誤差
信号23の変化に応じてその角度を変える。25
は第5図で詳述する信号処理回路で、トラツク横
断パルス及びトラツク横断方向信号をトラツク検
索走査駆動回路26へ送り、トラツク検索走査機
構10を駆動させ、微小スポツト光6が目標トラ
ツクへ正確に移動するように制御する。27は加
算増幅器でトラツキング検出用光検出器19の2
つの出力の和信号28を出力し、前記信号処理回
路25に入力される。 When the minute spot light 6 traverses the guide track 8 due to the eccentricity of the guide track constructed on the information carrier 5, the light quantity distribution of the double beam light beam 17b changes in such a way that it is biased in the transverse direction. This double beam light flux 17b irradiates two photoelectric parts of the tracking detection photodetector 19, and the output thereof is differenced from each other by a differential amplifier 22 and sent to a tracking mirror drive circuit 24 as a tracking error signal 23. The input is received and tracking mirror 3 is shaken. The tracking mirror 3 changes its angle in response to changes in the tracking error signal 23 so that the minute spot light 6 accurately tracks the guide track 8 on the information carrier 5. 25
is a signal processing circuit detailed in FIG. 5, which sends a track crossing pulse and a track crossing direction signal to the track search scanning drive circuit 26 to drive the track search scanning mechanism 10, so that the minute spot light 6 is accurately directed to the target track. Control to move. 27 is a summing amplifier which is connected to the tracking detection photodetector 19;
A sum signal 28 of the two outputs is output and input to the signal processing circuit 25.
第2図は本発明の光デイスク検索装置に使用さ
れる情報担体5の構造の一部断面図である。情報
担体5の面R側には幅ω、ピツチP、深さδの溝
状案内トラツク30a〜30eが円心円あるいは
スパイラル状に堀つてある。29a〜29eは溝
間の平担部である。光感応性の記録材料は面R側
に蒸着されて記録面31を形成している。微小ス
ポツト光6は例えば基板32面側から照射され面
R上に集光されて情報を記録する。情報が記録さ
れる部分は案内トラツク30a〜30eの内部
(溝)が使われる。案内トラツク30a〜30e
の幅ω、ピツチP、深さδの具体的な値としては
例えばω=0.6μm、P=1.6μm、δ≒λ/8.n(λ
はレーザー光源の光波長、nは基材32の屈折
率)に選ばれる。 FIG. 2 is a partial sectional view of the structure of the information carrier 5 used in the optical disc retrieval device of the present invention. On the surface R side of the information carrier 5, groove-shaped guide tracks 30a to 30e having a width ω, a pitch P, and a depth δ are formed in a circular or spiral shape. 29a to 29e are flat portions between the grooves. A photosensitive recording material is deposited on the surface R side to form a recording surface 31. The minute spot light 6 is emitted from the side of the substrate 32, for example, and is focused on the surface R to record information. The insides (grooves) of the guide tracks 30a to 30e are used as the portions where information is recorded. Guide tracks 30a to 30e
Specific values of width ω, pitch P, and depth δ are, for example, ω=0.6μm, P=1.6μm, δ≒λ/8.n(λ
is the light wavelength of the laser light source, and n is the refractive index of the base material 32).
第3図は、第2図で説明した情報担体5の溝状
案内トラツク30に微小スポツト光6が照射され
た時のトラツキング誤差信号の検出原理を説明す
る図である。第3図は情報担体5の断面方向から
見た図である。トラツキング検出用光検出器19
は、2個の光電部19aと19bとからなり、案
内トラツク30の方向に対して、両側に配されて
いる。ここでは情報担体5の外径側の光電部を1
9a、内径側のそれを19bとする。複ビーム光
束17bは情報担体5からの反射レーザー光束1
1a〜11bがトラツキング検出用光検出器19
上に入射する光スポツトを表わし、濃淡は光量分
布の変化を示している。第3図aは、前記情報担
体5の案内トラツク間の平担部29に微小スポツ
ト光6がある場合の様子を示している。この場合
入射した微小スポツト光6は一様に反射する。こ
の反射レーザー光束11aは、トラツキング検出
用光検出器19上で一様に分布するので差動増幅
器22の出力は零となる。すなわち、トラツキン
グ誤差信号23は零である。 FIG. 3 is a diagram illustrating the principle of detection of a tracking error signal when the groove-shaped guide track 30 of the information carrier 5 described in FIG. 2 is irradiated with the minute spot light 6. FIG. 3 is a view of the information carrier 5 viewed from the cross-sectional direction. Tracking detection photodetector 19
consists of two photoelectric sections 19a and 19b, which are arranged on both sides with respect to the direction of the guide track 30. Here, the photoelectric part on the outer diameter side of the information carrier 5 is 1
9a, and the inner diameter side is designated 19b. The double beam beam 17b is the reflected laser beam 1 from the information carrier 5.
1a to 11b are tracking detection photodetectors 19
It represents a spot of light incident on it, and the shading shows changes in the light amount distribution. FIG. 3a shows a situation where a minute spot light 6 is present on the flat portion 29 between the guide tracks of the information carrier 5. In this case, the incident minute spot light 6 is uniformly reflected. Since this reflected laser beam 11a is uniformly distributed on the tracking detection photodetector 19, the output of the differential amplifier 22 becomes zero. That is, the tracking error signal 23 is zero.
第3図bは微小スポツト光6が溝状案内トラツ
クの外径側エツジ33aに一部かかつて入射して
いるときの様子を示している。溝状案内トラツク
30の深さδがπ/4位相程度であれば、反射レ
ーザー光束11bは外径側へ曲げられ、光電部1
9a側が明るくなり、光電部19b側は暗くな
る。差動増幅器22の出力は、光電部19a,1
9bをそれぞれ正入力、負入力として印加すると
すれば負出力になる。 FIG. 3b shows a state in which a portion of the minute spot light 6 has previously entered the outer diameter side edge 33a of the groove-shaped guide track. If the depth δ of the groove-shaped guide track 30 is approximately π/4 phase, the reflected laser beam 11b is bent toward the outer diameter side, and the photoelectric section 1
The 9a side becomes brighter, and the photoelectric part 19b side becomes darker. The output of the differential amplifier 22 is transmitted to the photoelectric section 19a, 1
If 9b is applied as a positive input and a negative input, respectively, a negative output will be obtained.
第3図cは、溝状案内トラツク30の溝中央部
に微小スポツト光6が照射された様子を示す。微
小スポツト光6は溝の両エツジ33aと33bに
かかつているため反射レーザー光束11cが溝の
外側に回折され、絞りレンズ4の開口で光量の一
部が失なわれる。したがつて、トラツキング検出
用光検出器19の光電部19aと19bには一様
な光分布であるが、全体の光量は第3図a,b,
dの場合より減少する。差信号23は第3図aと
同様に零となるが、加算増幅器27で光電部19
aと19bの出力を加算した和信号は第3図a,
b,dよりもその振幅が小さくなる。 FIG. 3c shows how the central part of the groove of the groove-shaped guide track 30 is irradiated with the minute spot light 6. As shown in FIG. Since the minute spot light 6 touches both edges 33a and 33b of the groove, the reflected laser beam 11c is diffracted to the outside of the groove, and a part of the light quantity is lost at the aperture of the aperture lens 4. Therefore, although the photoelectric sections 19a and 19b of the tracking detection photodetector 19 have a uniform light distribution, the total light amount is as shown in FIGS.
It decreases from the case of d. The difference signal 23 becomes zero as in FIG.
The sum signal obtained by adding the outputs of a and 19b is shown in Figure 3 a,
Its amplitude is smaller than that of b and d.
第3図dは第3図bの逆で、溝の内径側エツジ
33bに微小スポツト光6がかかつて入射した場
合の様子を示す。この場合第3図bとは逆に内径
側に反射レーザー光束11dは回折されて内径側
の光電部19bに光量が偏る。従つて、差信号2
3は負となる。 FIG. 3d is the opposite of FIG. 3b, and shows the situation when the minute spot light 6 has previously entered the inner edge 33b of the groove. In this case, contrary to FIG. 3b, the reflected laser beam 11d is diffracted toward the inner diameter side, and the amount of light is biased towards the photoelectric section 19b on the inner diameter side. Therefore, the difference signal 2
3 is negative.
第4図は第3図で説明した微小スポツト光6が
情報担体5の半径方向に移動した場合のトラツキ
ング検出用光検出器19の内径側光電部19aの
出力34aと外径側光電部19bの出力34bの
和信号28、差信号23の信号波形を示したもの
である。第4図は、情報担体5のトラツク面を微
小スポツト光6で走査したときに一つの案内トラ
ツクを横切つた場合の外径側光電部19aの出力
34a、内径側光電部19bの出力34bおよび
差信号23、和信号28の波形を示している。第
4図aは外径から内径方向に走査したときの出力
波形で、第4図bは内径から外径方向に走査した
ときの出力波形の図である。 FIG. 4 shows the output 34a of the inner photoelectric part 19a and the outer photoelectric part 19b of the tracking detection photodetector 19 when the minute spot light 6 explained in FIG. 3 moves in the radial direction of the information carrier 5. The signal waveforms of the sum signal 28 and the difference signal 23 of the output 34b are shown. FIG. 4 shows the output 34a of the outer photoelectric section 19a, the output 34b of the inner photoelectric section 19b, and The waveforms of a difference signal 23 and a sum signal 28 are shown. FIG. 4a shows the output waveform when scanning from the outer diameter to the inner diameter, and FIG. 4b shows the output waveform when scanning from the inner diameter to the outer diameter.
第4図において和信号28のピークは差信号2
3が零交叉する点と一致する。これは走査方向に
関係しないことは第3図の説明から明らかであ
る。さらに、和信号28と差信号23の波形の位
相を比較すると第4図aのように溝状案内トラツ
ク30を内径方向へ横切つたときは和信号28の
方が差信号23の負極性波形部分より位相が進ん
でいるが一方、第4図bのように溝状案内トラツ
ク30を外径方向へ横断したときには和信号28
は差信号23の負極性波形部分より位相が遅れて
いる。このように和信号28と差信号23の負極
性波形部分の位相差を比較すれば容易に溝状案内
トラツク30を横断した方向を検出できる。さら
に情報担体5の反射率等が変化して反射レーザー
光束11の光量が変化しても前述したように和信
号28のピークと差信号23の零交叉点の位相は
常に一致しているので和信号28と差信号23の
位相関係が変わることがないので安定に横断方向
の検出が行なえる。 In FIG. 4, the peak of the sum signal 28 is the difference signal 2.
It coincides with the point where 3 crosses zero. It is clear from the description of FIG. 3 that this is not related to the scanning direction. Furthermore, comparing the waveform phases of the sum signal 28 and the difference signal 23, when the groove-shaped guide track 30 is crossed in the inner diameter direction as shown in FIG. On the other hand, when the grooved guide track 30 is traversed in the outer diameter direction as shown in FIG. 4b, the sum signal 28
is delayed in phase from the negative polarity waveform portion of the difference signal 23. By comparing the phase difference between the negative waveform portions of the sum signal 28 and the difference signal 23 in this manner, the direction across the groove-shaped guide track 30 can be easily detected. Furthermore, even if the reflectance of the information carrier 5 changes and the light intensity of the reflected laser beam 11 changes, the peak of the sum signal 28 and the phase of the zero crossing point of the difference signal 23 always match, as described above. Since the phase relationship between the signal 28 and the difference signal 23 does not change, stable detection in the transverse direction can be performed.
第5図は案内トラツクの横断トラツク数の計数
をしてトラツク検索走査するための信号処理回路
のブロツク図である。第6図は、第5図の各ブロ
ツクの信号波形を示す図である。 FIG. 5 is a block diagram of a signal processing circuit for counting the number of tracks crossed by a guide track and performing track search scanning. FIG. 6 is a diagram showing signal waveforms of each block in FIG. 5.
第5図においてトラツキング検出用光検出器1
9の2つの光電部19aと19bの出力34a,
34bは差動増幅器22と加算増幅器27で差信
号23と和信号28を得る。これらの信号は所要
信号成分のみを透過するフイルター35,36に
よつて機器ノイズ等を除去した後、波形整形回路
37,38によつて波形整形する。和信号と差信
号を波形整形した整形差信号39と整形和信号4
0は、負極性部分を所定の閾値でスライスした信
号である。整形差信号39は単安定マルチバイブ
レータ41を立上りエツジでトリガーして差信号
エツジパルス42を作る。この差信号エツジパル
ス42と整形和信号40とをアンドゲート43で
論理積をとつて内径方向横断パルス44を得る。
一方、整形和信号40の立上りエツジで単安定マ
ルチバイブレータ45をトリガーして和信号エツ
ジパルス46を作り、整形差信号39とアンドゲ
ート47で論理積をとつて外径方向横断パルス4
8を得る。 In Fig. 5, tracking detection photodetector 1
9, the output 34a of the two photoelectric sections 19a and 19b,
34b uses a differential amplifier 22 and a summing amplifier 27 to obtain a difference signal 23 and a sum signal 28. These signals are subjected to waveform shaping by waveform shaping circuits 37 and 38 after removing equipment noise and the like through filters 35 and 36 that transmit only required signal components. Shaped difference signal 39 and shaped sum signal 4 which are waveform-shaped of the sum signal and the difference signal
0 is a signal obtained by slicing the negative polarity portion using a predetermined threshold value. The shaped difference signal 39 triggers a monostable multivibrator 41 on a rising edge to produce a difference signal edge pulse 42. The difference signal edge pulse 42 and the shaped sum signal 40 are ANDed by an AND gate 43 to obtain an inner radial direction transverse pulse 44.
On the other hand, the monostable multivibrator 45 is triggered by the rising edge of the shaped sum signal 40 to generate a sum signal edge pulse 46, and the shaped difference signal 39 and AND gate 47 are used to logically AND the outer radial direction transverse pulse 4.
Get 8.
この内径方向横断パルス44と外径方向横断パ
ルス48のそれぞれの計数合計パルス数は、情報
担体1の偏心によつて同一トラツクを外径方向あ
るいは内径方向へとトラツク横断方向を反転しな
がら複数回横切つたときの、外径から内径方向へ
横切つた横断トラツク数と内径から外径方向へ横
切つた横断トラツク数とを表わしている。 The total number of pulses counted for each of the inner radial direction traversing pulse 44 and the outer radial direction traversing pulse 48 is determined by the eccentricity of the information carrier 1. When traversed, the number of traversal tracks traversed from the outer diameter to the inner radial direction and the number of traversal tracks traversed from the inner diameter to the outer radial direction are expressed.
したがつて、内径方向横断パルス44をアツプ
ダウンカウンター49のカウントアツプ用クロツ
クに入力し、外径方向横断パルス48をカウント
ダウン用クロツクとして入力すれば、アツプダウ
ンカウンター49のカウント出力50は、外径か
ら内径方向へ横切つた正味のトラツク数となる。
したがつて、このカウント出力50を移動トラツ
ク数設定レジスター51にセツトした目標移動ト
ラツク数52とコンパレーター53で比較し、一
致したときにトラツク検索走査停止信号54をト
ラツク検索走査駆動回路26へ送出して、トラツ
ク検索を終了させる。 Therefore, if the inner radial direction transverse pulse 44 is inputted to the up-down counter 49's count-up clock and the outer radial direction transverse pulse 48 is inputted as the count-down clock, the count output 50 of the up-down counter 49 will be This is the net number of tracks traversed in the inner diameter direction.
Therefore, this count output 50 is compared with the target number of moving tracks 52 set in the moving track number setting register 51 by a comparator 53, and when they match, a track search scanning stop signal 54 is sent to the track search scanning drive circuit 26. to end the track search.
第7図は情報担体5に形成された案内トラツク
55を検索走査するときの横断トラツクの計数と
偏心の影響を示す図である。 FIG. 7 is a diagram showing the influence of eccentricity and counting of traverse tracks when searching and scanning the guide tracks 55 formed on the information carrier 5.
情報担体5の中心O1とモーター回転中心O2と
は△なる偏心がある。第7図aにおいて、現在ト
ラツク56上に静止している微小スポツト光はト
ラツキング制御をかけない状態では情報担体5の
偏心によつて±△の範囲にある案内トラツクを横
切る。トラツク検索走査機構10によつて現在ト
ラツク56から目標トラツク57へ検索走査を開
始した場合、走査速度は第7図bの破線のように
一定速度まで加速されて定速度走行した後ブレー
キをかけて減速して目標トラツク57の終点でス
トツプする。このとき、走査のスタート点付近と
終点付近では走査速度が情報担体5の回転速度よ
りも遅いので偏心によつて同一トラツクを複数回
横切ることになつて、第6図aの差信号23に示
されるように位相反転が生じ、内径方向横断パル
ス44と外径方向横断パルス48が同時に発生す
る。この横断パルス44と48のパルス数の差が
正味の横断トラツク数である。よつて、横断トラ
ツク数をカウントするアツプダウンカウンター4
9のカウント出力50が目標トラツクまでの移動
すべきトラツク数と一致したとき検索速度を零に
して走査をやめれば所望の目標トラツク57をア
クセスできるのである。 There is an eccentricity of △ between the center O 1 of the information carrier 5 and the motor rotation center O 2 . In FIG. 7a, the minute spot light currently stationary on the track 56 crosses the guide track within the range of ±Δ due to the eccentricity of the information carrier 5 when no tracking control is applied. When a search scan is started from the current track 56 to the target track 57 by the track search scanning mechanism 10, the scanning speed is accelerated to a constant speed as shown by the broken line in FIG. It decelerates and stops at the end point of the target track 57. At this time, since the scanning speed is slower than the rotational speed of the information carrier 5 near the start point and end point of scanning, the same track is traversed multiple times due to eccentricity, as shown in the difference signal 23 in FIG. 6a. A phase reversal occurs such that the inner radial transverse pulse 44 and the outer radial transverse pulse 48 occur simultaneously. The difference between the number of transverse pulses 44 and 48 is the net number of transverse tracks. Therefore, the up-down counter 4 counts the number of traverse tracks.
When the count output 50 of 9 matches the number of tracks to be moved to the target track, the desired target track 57 can be accessed by reducing the search speed to zero and stopping scanning.
以上説明してきたように本発明の構成によれば
円板状の情報担体のトラツクの計数を正確に行な
うことができ、偏心の大小にかかわらず高速のト
ラツク検索ができる。また本発明は、トラツク横
断方向による差信号の位相反転とオントラツク時
の和信号の減少および和信号のピークと差信号の
零交叉点の位相が情報担体の反射率の変化に関係
なく一致するので安定な横断方向の検出ができる
ので良好な高速検索を可能とするものである。 As explained above, according to the configuration of the present invention, it is possible to accurately count the tracks of a disc-shaped information carrier, and it is possible to perform a high-speed track search regardless of the magnitude of eccentricity. In addition, the present invention has the advantage that the phase inversion of the difference signal in the cross-track direction, the decrease in the sum signal during on-track, and the phase of the peak of the sum signal and the zero crossing point of the difference signal match regardless of changes in the reflectance of the information carrier. Since stable detection in the transverse direction is possible, good high-speed search is possible.
第1図は本発明の一実施例の概略構成図、第2
図は情報担体の構造の一部を示す斜視図、第3図
は溝状案内トラツクで反射された反射レーザー光
束の光検出器上の光量分布を説明する図、第4図
は光検出器の出力波形と差信号、和信号の波形を
示す図、第5図はトラツク横断を計数するための
信号処理回路のブロツク図、第6図は第5図の各
部の信号波形を示す図、第7図は情報担体の偏心
とトラツク検索の様子を示す図である。
1……レーザー光源、2……レーザー光束、3
……トラツキングミラー、4……絞りレンズ、5
……情報担体、6……微小スポツト光、7……絞
りレンズ駆動装置、8……案内トラツク、9……
モーター、10……トラツク検索走査機構、1
1,11a〜11d……反射レーザー光束、12
……1/4波長板、13……偏心ビームスプリツタ
ー、14……複プリズム、16……レンズ、17
a〜17b……複ビーム光束、18……フオーカ
ス検出用光検出器、19……トラツキング検出用
光検出器、20,22……差動増幅器、25……
信号処理回路、26……検索走査駆動回路、27
……加算増幅器、30a〜30e……案内トラツ
ク、31……記録面、32……基材、33a〜3
3b……トラツクエツジ、35,36……フイル
ター、37,38……波形整形回路、41,45
……単安定マルチバイブレーター、43,47…
…アンドゲート、49……アツプダウンカウンタ
ー、51……移動トラツク数設定レジスター、5
3……コンパレーター。
FIG. 1 is a schematic configuration diagram of an embodiment of the present invention, and FIG.
The figure is a perspective view showing a part of the structure of the information carrier, FIG. 3 is a diagram explaining the light intensity distribution of the reflected laser beam reflected by the groove-shaped guide track on the photodetector, and FIG. FIG. 5 is a block diagram of a signal processing circuit for counting track crossings. FIG. 6 is a diagram showing signal waveforms of each part of FIG. 5. The figure shows eccentricity of an information carrier and track search. 1... Laser light source, 2... Laser beam, 3
...Tracking mirror, 4...Aperture lens, 5
... Information carrier, 6 ... Minute spot light, 7 ... Aperture lens drive device, 8 ... Guide track, 9 ...
Motor, 10... Track search scanning mechanism, 1
1, 11a to 11d...Reflected laser beam, 12
...1/4 wavelength plate, 13... Eccentric beam splitter, 14... Biprism, 16... Lens, 17
a to 17b...Double beam light flux, 18...Photodetector for focus detection, 19...Photodetector for tracking detection, 20, 22...Differential amplifier, 25...
Signal processing circuit, 26...Search scanning drive circuit, 27
... Summing amplifier, 30a-30e ... Guide track, 31 ... Recording surface, 32 ... Base material, 33a-3
3b...Track block, 35, 36...Filter, 37, 38...Waveform shaping circuit, 41, 45
...monostable multivibrator, 43,47...
...And gate, 49...Up-down counter, 51...Movement track number setting register, 5
3... Comparator.
Claims (1)
光記録デイスクに光ビームを照射するレーザ光源
と、前記光ビームを単一の微小スポツト光として
トラツクに照射する集光手段と、前記微小スポツ
ト光をトラツクに追従せしめるトラツキング手段
と、前記集光手段を所定のトラツクに移送するト
ラツク検索手段と、光ビームがトラツクで回折さ
れた±1次回折光を受光する2分割受光手段と、
前記光ビームのトラツク横断方向を検出するトラ
ツク横断方向検出手段と、前記光ビームが横断し
たトラツク数を計数する横断トラツク計数手段と
を有し、前記トラツク横断方向検出手段は前記2
分割受光手段の2出力の和信号を基準にして、前
記2分割受光手段の2出力の差信号との位相関係
から光ビームのトラツク横断方向を検出して、前
記差信号と共に前記横断トラツク計数手段に印加
してトラツクの偏心による横断トラツク数の計数
誤差を補正するようにしたことを特徴とする光学
情報記録再生装置のトラツク検索装置。1. A laser light source that irradiates a light beam onto an optical recording disk having a continuous groove-like track with a uniform depth, a condensing means that irradiates the track with the light beam as a single minute spot light, and a a tracking means for causing the spot light to follow a track; a track search means for transporting the light condensing means to a predetermined track; and a two-split light receiving means for receiving ±1st-order diffracted light from the light beam diffracted by the track;
The track crossing direction detecting means includes a track crossing direction detecting means for detecting the track crossing direction of the light beam, and a crossing track counting means for counting the number of tracks crossed by the light beam.
Using the sum signal of the two outputs of the divided light receiving means as a reference, the track crossing direction of the light beam is detected from the phase relationship with the difference signal of the two outputs of the two divided light receiving means, and together with the difference signal, the cross track counting means 1. A track retrieval device for an optical information recording/reproducing device, characterized in that the error in counting the number of traversed tracks due to eccentricity of the track is corrected by applying a current to the track.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13094280A JPS5755542A (en) | 1980-09-19 | 1980-09-19 | Track retrieving device of optical information recorder and reproducer |
US06/301,420 US4484319A (en) | 1980-09-19 | 1981-09-11 | Apparatus for locating a track on disc-like optical information carriers |
EP81107323A EP0048441B1 (en) | 1980-09-19 | 1981-09-16 | Track searching arrangement for an optical information recording and reproducing apparatus |
DE8181107323T DE3175265D1 (en) | 1980-09-19 | 1981-09-16 | Track searching arrangement for an optical information recording and reproducing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13094280A JPS5755542A (en) | 1980-09-19 | 1980-09-19 | Track retrieving device of optical information recorder and reproducer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5755542A JPS5755542A (en) | 1982-04-02 |
JPS6360449B2 true JPS6360449B2 (en) | 1988-11-24 |
Family
ID=15046271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13094280A Granted JPS5755542A (en) | 1980-09-19 | 1980-09-19 | Track retrieving device of optical information recorder and reproducer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5755542A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2600880B2 (en) * | 1987-08-29 | 1997-04-16 | 富士通株式会社 | Accessing optical recording tracks |
DE3887126T2 (en) * | 1987-08-29 | 1994-04-28 | Fujitsu Ltd | METHODS TO ACCESS AN OPTICAL RECORDING TRACK. |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5128720A (en) * | 1974-09-04 | 1976-03-11 | Mitsubishi Electric Corp | |
JPS598893B2 (en) * | 1975-03-17 | 1984-02-28 | 株式会社日立製作所 | information reproducing device |
-
1980
- 1980-09-19 JP JP13094280A patent/JPS5755542A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5755542A (en) | 1982-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4484319A (en) | Apparatus for locating a track on disc-like optical information carriers | |
KR880000362B1 (en) | Signal detecting system at a optical information apparatus | |
US4621353A (en) | Optical memory system providing improved focusing control and improved beam combining and separating apparatus | |
US4744069A (en) | Optical disc apparatus with access system having object lens control | |
JP2573301B2 (en) | Disk unit | |
JPS6360449B2 (en) | ||
JPS6236286B2 (en) | ||
US4888759A (en) | Laser optical memory system having beam combining and separating apparatus for combining and separating reading and writing laser beams | |
JPH0799592B2 (en) | Optical information storage carrier | |
US4633457A (en) | Optical information reading apparatus | |
JPH0150972B2 (en) | ||
JPS6233648B2 (en) | ||
US4559622A (en) | Optical memory system providing improved focus detection and control by detecting reflected beam diameter variations at spaced predetermined locations in the system | |
US7038979B2 (en) | Method and apparatus for a high-speed search of an optical medium | |
JPS6233649B2 (en) | ||
JPS60229238A (en) | Track retrieval device | |
JP2732592B2 (en) | Optical disk drive | |
JPH0684185A (en) | Optical disk apparatus | |
JP2775806B2 (en) | Pregroove crossing signal detection device | |
JP2689522B2 (en) | Optical disk drive | |
US4622659A (en) | Focus detection and control apparatus for maintaining accurate focusing in an optical memory system by detecting reflected beam diameter variations at spaced predetermined locations | |
JP2619850B2 (en) | Information recording medium | |
JP2570915B2 (en) | Light spot control method | |
JPH02123577A (en) | Method for controlling tracking | |
JPH0445912B2 (en) |