JPS6357520B2 - - Google Patents
Info
- Publication number
- JPS6357520B2 JPS6357520B2 JP58223139A JP22313983A JPS6357520B2 JP S6357520 B2 JPS6357520 B2 JP S6357520B2 JP 58223139 A JP58223139 A JP 58223139A JP 22313983 A JP22313983 A JP 22313983A JP S6357520 B2 JPS6357520 B2 JP S6357520B2
- Authority
- JP
- Japan
- Prior art keywords
- degreasing
- reversal
- electrolysis
- ratio
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005238 degreasing Methods 0.000 claims description 75
- 238000005868 electrolysis reaction Methods 0.000 claims description 31
- 229910052751 metal Inorganic materials 0.000 claims description 27
- 239000002184 metal Substances 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 18
- 230000004913 activation Effects 0.000 claims description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 21
- 230000000694 effects Effects 0.000 description 19
- 239000000243 solution Substances 0.000 description 12
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 239000004094 surface-active agent Substances 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 239000007769 metal material Substances 0.000 description 6
- 241000221561 Ustilaginales Species 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000012670 alkaline solution Substances 0.000 description 4
- 229910001882 dioxygen Inorganic materials 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 description 4
- 239000001488 sodium phosphate Substances 0.000 description 4
- 229910000162 sodium phosphate Inorganic materials 0.000 description 4
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- POWFTOSLLWLEBN-UHFFFAOYSA-N tetrasodium;silicate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-][Si]([O-])([O-])[O-] POWFTOSLLWLEBN-UHFFFAOYSA-N 0.000 description 3
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910001297 Zn alloy Inorganic materials 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000002932 luster Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
- Electroplating Methods And Accessories (AREA)
Description
(産業上の利用分野)
本発明は金属表面の脱脂及び活性化に関するも
のであり、金属素材と対極としての不溶性電極を
脱脂液中に浸漬し、金属素材と対極の間に高速度
で正及び負の電圧を交互に印加することにより電
流反転電解を行なうとともに負の電圧の印加に対
する正の電圧の印加の割合を変えることにより、
効率よく金属表面の脱脂及び活性化を行なう方法
である。
(従来技術)
一般に金属表面にめつき、塗装などを施す場合
には、表面に付着した油脂、錆などの汚れは製品
の品質を低下させるので前処理により除去しなけ
ればならない。前処理が品質やコストに与える影
響は大きく、めつき工場における不良発生原因の
大半は前処理の不完全によるものといわれてい
る。
金属表面に付着している汚れを大別すると有機
質、無機質及び両者の混合したものがあり、油脂
質の汚れは普通溶剤脱脂、アルカリ脱脂、電解脱
脂の工程で除去される。最終の電解脱脂は予備脱
脂である溶剤脱脂、アルカリ脱脂で除去できない
油脂質汚れを完全に除去する仕上げ脱脂方法とし
て利用されている。電解脱脂はアルカリ液中で電
解することにより、電解にともなつて金属表面か
ら発生する水素ガス又は酸素ガスにより物理的に
除去する効果が大きく、短時間で脱脂ができると
ともに除去されにくい油脂質も容易に除去が可能
である。
現在一般に利用されている電解脱脂方法には次
のものがある。
(1) 陰極電解脱脂:この方法は被処理金属を陰極
にして、発生する水素ガスにより脱脂するもの
で、陽極電解に比較して発生するガス量が多い
ために脱脂効果は大きいが、電流分布が不均一
になり均一な脱脂効果が得にくい。脱脂液中に
溶解した鉄、銅、亜鉛などが電析し密着不良を
起したり、発生した水素を吸蔵して脆化するな
どの欠点がある。
(2) 陽極電解脱脂:この方法は被処理金属を陽極
にして発生する酸素ガスにより脱脂するもの
で、汚れの電析による付着はないが、陽極で処
理するために金属の種類によつては溶解により
表面が肌荒れを起したり、又は陽極酸化により
不働態化皮膜が生成し、めつきの密着不良を生
じる場合がある。
(3) PR電解脱脂:この方法には陽極10〜30秒、
陰極10〜30秒、1周期20秒以上の極性変換の非
常に少ないPR法と陰極で2分以上脱脂を行な
い次いで10〜30秒陽極脱脂を行なう方法の二つ
がある。この方法によれば陽極及び陰極のみの
電解脱脂の欠点をある程度補うことはできる
が、正負の変換回数が少ないため後述のように
脱脂、活性化の効果が少なく、かつ陰極脱脂と
陽極脱脂のそれぞれの設備を設置しなければな
らないなどの問題がある。
本発明においては、金属表面の脱脂及び活性化
において従来の陰極又は陽極直流電解に伝えて、
0.1Hz以上の周期の高速電流反転電解で、かつ反
転比率を変えることにより脱脂効果を高め、短時
間で脱脂を完了させることのできることが明らか
となつた。さらにこの方法によると金属素材の光
沢を維持しながら活性な表面を得ることができ、
めつきの密着性をよくすることのできることを見
出した。
(発明の目的)
本発明の目的は従来の電解脱脂方法の代りに
0.1Hz以上の高速電流反転電解により脱脂を行な
うことによつて脱脂効果を高め、短時間で効率よ
く脱脂を行なうとともに、金属素材の光沢を消失
させず、活性で密着性のよい金属表面を得るため
の脱脂方法を提供するものである。
(発明の構成)
本発明は鉄鋼、銅合金、亜鉛合金などの表面処
理を施す金属素材を不溶性電極の対極として、ア
ルカリ脱脂液などの液中に浸漬し被処理金属と対
極との間に0.1Hz以上の周期で負及び正の電圧を
交互に印加することにより高速電流反転電解を行
ない脱脂効果を上げるとともに、金属の溶解及び
不働態化を防止して清浄で活性な金属表面を得る
ものである。さらに負の電圧印加に対する正の反
転電圧印加の割合、すなわち反転比率を変化させ
ることによつても清浄で活性な金属表面を得るも
のである。
第1図は従来の陰極直流電解法による電圧の印
加方法を示し、第2図は従来の陽極直流電解法に
よる印加方法を示し、第3図は本発明による電圧
の印加方法を示すものである。図において時間
T1の間は被処理金属に負の電圧を印加して水素
ガスを発生させ、時間T2の間は被処理金属に正
の電圧を印加して酸素ガスを発生させながら電解
脱脂を行なうものである。さらに高速電流反転電
解においては、負の印加電圧時間T1と反転する
正の印加電圧時間の比率、すなわち反転比率によ
つて効果が異なるので、この反転比率を変化させ
ることによつても清浄で活性な金属表面を得るも
のである。
次に本発明の実施例により、さらに詳細に説明
する。
(実施例 1)
電解液 炭酸ナトリウム30g/
リン酸ナトリウム 20 〃
水酸化ナトリウム 5 〃
界面活性剤 1 〃
浴温度 50℃
電流密度 10A/dm2
反転比率 10%
処理時間 5分
上記の条件で防錆処理鋼板に対し炭素板を対極
とし、反転比率を
正の電流が流れる時間(T1)/1周期の時間(T1+T2
)×100
=反転比率(%)
としてこの反転比率を10%とし、周波数を変化さ
せたときの脱脂率は第1表のとおりであつた。
(Industrial Application Field) The present invention relates to degreasing and activation of metal surfaces, in which a metal material and an insoluble electrode as a counter electrode are immersed in a degreasing solution, and positive and By performing current reversal electrolysis by alternately applying negative voltages and changing the ratio of positive voltage application to negative voltage application,
This is a method for efficiently degreasing and activating metal surfaces. (Prior Art) Generally, when plating or painting a metal surface, dirt such as oil or rust adhering to the surface must be removed by pre-treatment because it degrades the quality of the product. Pretreatment has a significant impact on quality and cost, and it is said that the majority of defects in plating factories are due to incomplete pretreatment. Dirt adhering to metal surfaces can be roughly divided into organic, inorganic, and mixtures of both. Oil and lipid stains are usually removed through solvent degreasing, alkaline degreasing, and electrolytic degreasing. Final electrolytic degreasing is used as a final degreasing method to completely remove oil and lipid stains that cannot be removed by solvent degreasing or alkaline degreasing. Electrolytic degreasing is performed by electrolyzing in an alkaline solution, which has a great effect of physically removing the hydrogen gas or oxygen gas generated from the metal surface during electrolysis.It can be degreased in a short time and also removes oils and lipids that are difficult to remove. It can be easily removed. Electrolytic degreasing methods commonly used at present include the following. (1) Cathode electrolytic degreasing: This method uses the metal to be treated as a cathode to degrease using the generated hydrogen gas.Compared to anodic electrolysis, the degreasing effect is greater because the amount of gas generated is larger, but the current distribution becomes uneven, making it difficult to obtain a uniform degreasing effect. There are drawbacks such as iron, copper, zinc, etc. dissolved in the degreasing solution being electrodeposited, causing poor adhesion, and embrittlement due to absorption of generated hydrogen. (2) Anodic electrolytic degreasing: This method uses the metal to be treated as an anode to degrease using the generated oxygen gas, and there is no electrodeposition of dirt, but since it is treated with an anode, depending on the type of metal, The surface may become rough due to dissolution, or a passivation film may be formed due to anodic oxidation, resulting in poor plating adhesion. (3) PR electrolytic degreasing: This method involves applying anode for 10 to 30 seconds;
There are two methods: a PR method with very little polarity change in which the cathode is used for 10 to 30 seconds and one cycle is 20 seconds or more, and a method in which degreasing is carried out at the cathode for 2 minutes or more and then anodic degreasing is carried out for 10 to 30 seconds. This method can compensate to some extent for the drawbacks of electrolytic degreasing of only the anode and cathode, but because the number of positive and negative conversions is small, the degreasing and activation effects are small as described later, and both cathodic degreasing and anodic degreasing are There are problems such as the need to install additional equipment. In the present invention, in the degreasing and activation of metal surfaces, in addition to conventional cathodic or anodic direct current electrolysis,
It has become clear that high-speed current reversal electrolysis with a cycle of 0.1 Hz or more and by changing the reversal ratio can enhance the degreasing effect and complete degreasing in a short time. Furthermore, this method makes it possible to obtain an active surface while maintaining the luster of the metal material.
We have discovered that it is possible to improve the adhesion of plating. (Object of the invention) The object of the present invention is to
By performing degreasing using high-speed current reversal electrolysis at 0.1 Hz or higher, the degreasing effect is enhanced, degreasing is carried out efficiently in a short time, and the luster of the metal material is not lost, resulting in an active and highly adhesive metal surface. The present invention provides a degreasing method for (Structure of the Invention) In the present invention, a metal material to be surface-treated such as steel, copper alloy, zinc alloy, etc. is immersed in a liquid such as an alkaline degreasing solution as a counter electrode of an insoluble electrode, and a 0.1. This method performs high-speed current reversal electrolysis by applying negative and positive voltages alternately at a frequency of Hz or more, increasing the degreasing effect and preventing metal dissolution and passivation to obtain a clean and active metal surface. be. Furthermore, a clean and active metal surface can also be obtained by changing the ratio of the application of a positive inversion voltage to the application of a negative voltage, that is, the inversion ratio. FIG. 1 shows a voltage application method using a conventional cathodic direct current electrolysis method, FIG. 2 shows a voltage application method using a conventional anodic direct current electrolysis method, and FIG. 3 shows a voltage application method according to the present invention. time in diagram
During time T 1 , a negative voltage is applied to the metal to be treated to generate hydrogen gas, and during time T 2 , a positive voltage is applied to the metal to be treated to generate oxygen gas while performing electrolytic degreasing. It is. Furthermore, in high-speed current reversal electrolysis, the effect differs depending on the ratio of the negative applied voltage time T 1 to the positive applied voltage time for reversal, that is, the reversal ratio, so changing the reversal ratio can also improve cleanliness. This results in an active metal surface. Next, the present invention will be explained in more detail using examples. (Example 1) Electrolyte Sodium carbonate 30g / Sodium phosphate 20 Sodium hydroxide 5 Surfactant 1 Bath temperature 50℃ Current density 10A/dm 2 Reversal ratio 10% Treatment time 5 minutes Rust prevention under the above conditions A carbon plate is used as the opposite electrode to the treated steel plate, and the reversal ratio is calculated as the time for positive current to flow (T 1 )/time for one cycle (T 1 + T 2
) x 100 = reversal ratio (%) This reversal ratio was set as 10%, and the degreasing ratio was as shown in Table 1 when the frequency was changed.
【表】
第1表に比較のため反転比率50%のPR電解の
脱脂率も示した。PR電解の周波数0は極性変換
のない陰極電解の脱脂率であり、この結果から周
波数の少ないPR電解脱脂はほぼ陰極電解と同じ
脱脂効果しか得られず、極性変換による反転効果
のないことが明らかである。それに対して、高速
電流反転電解による脱脂率は、従来の陰極電解及
びPR電解よりも著しく大きく周波数が100Hzを超
えると脱脂効果は若干低下する傾向にあるが、第
1表の結果よりみて0.1Hz以上の高速電流反転電
解において効率よく短時間で脱脂できることが明
らかである。
(実施例 2)
実施例1と同一条件により反転比率を変化させ
たときの脱脂率は第2表のとおりであつた。[Table] For comparison, Table 1 also shows the degreasing rate of PR electrolysis with a reversal ratio of 50%. Frequency 0 of PR electrolysis is the degreasing rate of cathodic electrolysis without polarity change, and from this result it is clear that PR electrolytic degreasing with a low frequency can obtain almost the same degreasing effect as cathodic electrolysis, and there is no reversal effect due to polarity change. It is. On the other hand, the degreasing rate by high-speed current reversal electrolysis is significantly higher than that by conventional cathode electrolysis and PR electrolysis, and the degreasing effect tends to decrease slightly when the frequency exceeds 100Hz, but from the results in Table 1, it is found that the degreasing efficiency is 0.1Hz. It is clear that the above-described high-speed current reversal electrolysis can efficiently degrease in a short time. (Example 2) Table 2 shows the degreasing ratio when the reversal ratio was changed under the same conditions as in Example 1.
【表】
この結果より、反転比率0、すなわち陰極電解
及び陰極時間と陽極時間を1対1で反転させた反
転比率50%と高い場合は脱脂率が低く、10〜30%
の反転比率のときに脱脂率が大きい。このように
電流反転電解の周波数と同様に正電流を流す反転
比率も脱脂効果に大きく関与している。本実施例
では反転比率10%で最も良好な脱脂率となつた
が、被処理金属の種類、脱脂液の種類によつて反
転比率は当然異なるものである。例えば黄銅の表
面に脱脂されにくい油脂性研摩剤を塗布したもの
を水酸化ナトリウム10g/、陰イオン界面活性
剤10g/を含む脱脂液中で脱脂した場合には反
転比率30%前後で脱脂効果が大きく良好な金属表
面が得られる。[Table] From this result, when the reversal ratio is 0, that is, the reversal ratio is 50%, which is a one-to-one reversal of cathode electrolysis and cathode time and anode time, the degreasing rate is low and is 10 to 30%.
The degreasing rate is large when the inversion ratio is . As described above, as well as the frequency of current reversal electrolysis, the reversal ratio at which a positive current is passed is also greatly involved in the degreasing effect. In this example, the best degreasing rate was achieved with a reversal ratio of 10%, but the reversal ratio naturally varies depending on the type of metal to be treated and the type of degreasing liquid. For example, when a brass surface coated with an oil-based abrasive that is difficult to degrease is degreased in a degreasing solution containing 10 g of sodium hydroxide and 10 g of an anionic surfactant, the degreasing effect is achieved at a reversal ratio of around 30%. A large and good metal surface is obtained.
【表】
第3表は反転比率と周波数を変化させたときの
スマツトの発生率を示したものである。周波13.3
Hzでは反転比率に関係なくスマツトは全く発生し
ないが、0.1Hz及び1Hzでは反転比率10〜30%の
範囲でスマツトが発生し、50%以上の反転比率で
発生しなくなる。このように周波数及び反転比率
を選定することによりスマツトのない活性な金属
表面が得られる。
(実施例 3)
電解液
No.1 水酸化ナトリウム5g/、炭酸ナトリウ
ム30g/、リン酸ナトリウム20g/、界
面活性剤1g/
No.2 水酸化ナトリウム40g/、オルソ硅酸ナ
トリウム50g/、界面活性剤2g/
No.3 水酸化ナトリウム5g/、オルソ硅酸ナ
トリウム50g/、界面活性剤2g/
No.4 炭酸ナトリウム30g/、リン酸ナトリウ
ム20g/、界面活性剤1g/
煮沸脱脂液 水酸化ナトリウム40g/、炭酸ナ
トリウム30g/、リン酸ナトリウム5g/
、界面活性剤2g/
浴温度 50℃
電流密度 10A/dm2
周波数 13.3Hz
反転比率 5%
処理時間 5min
素材 鋼板を赤棒及び白棒の油性研摩剤でバフ研
摩したもの[Table] Table 3 shows the incidence of smuts when changing the inversion ratio and frequency. frequency 13.3
At Hz, smut does not occur at all regardless of the reversal ratio, but at 0.1 Hz and 1 Hz, smut occurs when the reversal ratio is in the range of 10 to 30%, and does not occur when the reversal ratio is 50% or higher. By selecting the frequency and inversion ratio in this manner, an active metal surface free of smuts is obtained. (Example 3) Electrolyte No. 1 Sodium hydroxide 5g/, Sodium carbonate 30g/, Sodium phosphate 20g/, Surfactant 1g/ No. 2 Sodium hydroxide 40g/, Sodium orthosilicate 50g/, Surface active Agent 2g/ No. 3 Sodium hydroxide 5g/, Sodium orthosilicate 50g/, Surfactant 2g/ No. 4 Sodium carbonate 30g/, Sodium phosphate 20g/, Surfactant 1g/ Boiled degreasing liquid Sodium hydroxide 40g /, Sodium carbonate 30g/, Sodium phosphate 5g/
, surfactant 2g / Bath temperature 50℃ Current density 10A/dm 2 Frequency 13.3Hz Reversal ratio 5% Processing time 5min Material Steel plate buffed with red and white oil-based abrasives
【表】
上記の条件で炭素板を対極とし、油性研摩剤で
バフ研摩した鋼板を各種の脱脂液中で脱脂したと
きの脱脂率は第4表のとおりであつた。
この結果より、電解脱脂では浴組成により脱脂
効果は異なるが、電流反転電解脱脂はすべての脱
脂液において陰極電解脱脂よりもその効果がすぐ
れており、電流反転電解の脱脂に有効に働いてい
ることが明らかである。煮沸浸漬脱脂と電流反転
電解脱脂を組合せて用いることによりさらに脱脂
効率を高めることができるとともに、赤棒のよう
な研摩剤汚れは電流反転電解脱脂のみでも大きな
脱脂効果が得られる。このように電流反転電解の
効果が大きいために、例えばNo.4のような弱アル
カリ脱脂液でも脱脂が可能であり、脱脂液に腐食
されやすい銅合金、亜鉛合金、アルミニウム合金
等の脱脂にも有効に利用できる。
(実施例 4)
電解液 水酸化ナトリウム40g/
オルソ硅酸ナトリウム 20g/
界面活性剤 1g/
浴温度 50℃
電流密度 10A/dm2
周波数 13.3Hz
反転比率 5%
処理時間 5min
素材 15%硫酸、1%硝酸の混液に浸漬しスマツ
トを生成させた鋼板
上記の条件で炭素板を対極とし、スマツトを生
成させた鋼板の脱スマツトを行なつた結果は第5
表のとおりであつた。[Table] Table 4 shows the degreasing efficiency when steel plates buffed with an oil-based abrasive were degreased in various degreasing solutions using a carbon plate as a counter electrode under the above conditions. These results show that although the degreasing effect of electrolytic degreasing differs depending on the bath composition, current reversal electrolytic degreasing is more effective than cathodic electrolytic degreasing in all degreasing solutions, and that current reversing electrolytic degreasing is effective in degreasing. is clear. The degreasing efficiency can be further increased by using a combination of boiling immersion degreasing and current reversal electrolytic degreasing, and even current reversing electrolytic degreasing alone can have a great degreasing effect on abrasive stains like red bars. Because of the great effect of current reversal electrolysis, it is possible to degrease even with a weakly alkaline degreasing solution such as No. 4, and it can also be used to degrease copper alloys, zinc alloys, aluminum alloys, etc. that are easily corroded by degreasing solutions. Can be used effectively. (Example 4) Electrolyte Sodium hydroxide 40g / Sodium orthosilicate 20g / Surfactant 1g / Bath temperature 50℃ Current density 10A/dm 2 Frequency 13.3Hz Reversal ratio 5% Processing time 5min Materials 15% sulfuric acid, 1% A steel plate that was immersed in a nitric acid mixture to form smuts.The steel plate that had formed smuts was de-smutted under the above conditions using a carbon plate as the counter electrode.
It was as shown in the table.
【表】
すなわち、陰極電解ではスマツトはそのまま残
つてめつき後の外観及び密着を悪くするが、電流
解による処理では脱脂と同時にスマツトも除去さ
れ清浄で活性な金属表面が得られる。またスマツ
トは常温の5%の塩酸溶液中で電流反転電解によ
り5A/dm2以下の電流密度で2〜3分処理する
ことにより容易に除去された。このようにアルカ
リ脱脂液、塩酸溶液中等で容易にスマツトが除去
され活性化されるために、スマツト除去を容易に
するためのシアン化合物、キレート剤等の特殊な
添加剤を加える必要のない大きな利点もある。
さらに電流反転電解脱脂及び活性化をした金属
に電気めつきを施し、折り曲げ、加熱、衝撃試験
をした結果、極めて強力な密着性を示し、高速電
流反転電解が脱脂、活性化に十分な効果のあるこ
とが認められた。
(発明の効果)
叙上のように本発明によれば、
(1) 高速で極性を変換させ電流反転電解を行ない
水素ガスと酸素ガスを早い速度で交互に発生さ
せるために、付着力の強い汚れも容易に除去で
きる。
(2) 被処理金属の溶解により浴中に不純物として
存在する金属イオンの電着を防止することがで
きるとともに、不純物の影響が少ないために脱
脂液を長期間使用でき経済的であり、公害防止
面からの効果も大きい。
(3) 陽極電解で生成する不働態化皮膜の生成がな
くなるので後処理としての酸による活性化処理
工程が省ける。
(4) 脱脂効果が大きいため、鉄鋼以外のアルカリ
溶液に腐食されやすい金属に対しては、腐食し
ない程度の弱アルカリ溶液による脱脂も可能で
ある。
(5) 金属素材の溶解を少なくすることができるた
め素材の加工光沢を維持することができるとと
もに、スマツトの発生も少なく、発生した場合
にはアルカリ溶液及び酸溶液中で本方法で電解
することによりスマツトの除去ができ、活性な
金属表面が得られる。
等の効果を有するもので、本発明は金属素材の脱
脂に用いられるのみならずバフかすの除去、スマ
ツトの除去、スケールの除去、錆落しの効果もす
るものである。[Table] In other words, in cathodic electrolysis, smut remains as it is, impairing the appearance and adhesion after plating, but in treatment with electric current, smut is removed at the same time as degreasing, resulting in a clean and active metal surface. Smuts were easily removed by current reversal electrolysis in a 5% hydrochloric acid solution at room temperature for 2 to 3 minutes at a current density of 5 A/dm 2 or less. Since smut is easily removed and activated using alkaline degreasing solution, hydrochloric acid solution, etc., there is no need to add special additives such as cyanide compounds or chelating agents to facilitate smut removal, which is a major advantage. There is also. Furthermore, the results of electroplating, bending, heating, and impact tests on the metal that had been degreased and activated by current reversal electrolysis showed extremely strong adhesion, indicating that high-speed current reversal electrolysis is sufficiently effective for degreasing and activation. One thing was recognized. (Effects of the Invention) As described above, according to the present invention, (1) In order to perform current reversal electrolysis by converting polarity at high speed and alternately generating hydrogen gas and oxygen gas at high speed, Dirt can also be easily removed. (2) By dissolving the metal to be treated, it is possible to prevent the electrodeposition of metal ions that exist as impurities in the bath, and since the influence of impurities is small, the degreasing liquid can be used for a long period of time, making it economical and preventing pollution. The effect from the surface is also great. (3) Since the formation of a passivation film produced by anodic electrolysis is eliminated, the activation treatment step with acid as a post-treatment can be omitted. (4) Since the degreasing effect is large, it is also possible to degrease metals other than steel that are easily corroded by alkaline solutions using a weak alkaline solution that does not corrode. (5) Since it is possible to reduce the dissolution of the metal material, it is possible to maintain the processing gloss of the material, and there is also less occurrence of smut, and if it occurs, it can be electrolyzed in an alkaline solution or an acid solution using this method. The smut can be removed and an active metal surface obtained. The present invention is not only useful for degreasing metal materials, but also has the effect of removing buff scum, smut, scale, and rust.
第1図は従来の陰極電解法、第2図は従来の陽
極電解法、第3図は本発明による高速電流反転電
解法の電圧波形を示す。
FIG. 1 shows the voltage waveforms of the conventional cathodic electrolysis method, FIG. 2 shows the voltage waveforms of the conventional anodic electrolysis method, and FIG. 3 shows the voltage waveforms of the high-speed current reversal electrolysis method according to the present invention.
Claims (1)
浸漬し、前記被処理金属と対極との間に0.1Hz以
上の周期の高速で負及び正の電圧を交互に印加す
ると共に、被処理金属に正の電圧を印加する時間
と負の電圧を印加する時間との割合、すなわち 正の電流が流れる時間T1/1周期の時間(T1+T2)×
100 を反転比率とするとき、反転比率をほぼ5%〜30
%とすることを特徴とする高速電流反転電解によ
る脱脂及び活性化方法。[Scope of Claims] 1. A metal to be treated and an insoluble counter electrode are each immersed in a degreasing solution, and negative and positive voltages are alternately applied between the metal to be treated and the counter electrode at high speed with a cycle of 0.1 Hz or more. In addition, the ratio of the time for applying a positive voltage to the time for applying a negative voltage to the metal to be processed, that is, the time for positive current to flow T 1 /time for one cycle (T 1 + T 2 )×
When 100 is the reversal ratio, the reversal ratio is approximately 5% to 30
% degreasing and activation method by high-speed current reversal electrolysis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22313983A JPS60116800A (en) | 1983-11-29 | 1983-11-29 | Degreasing and activation method using high-speed current reversal electrolysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22313983A JPS60116800A (en) | 1983-11-29 | 1983-11-29 | Degreasing and activation method using high-speed current reversal electrolysis |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60116800A JPS60116800A (en) | 1985-06-24 |
JPS6357520B2 true JPS6357520B2 (en) | 1988-11-11 |
Family
ID=16793397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22313983A Granted JPS60116800A (en) | 1983-11-29 | 1983-11-29 | Degreasing and activation method using high-speed current reversal electrolysis |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60116800A (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007308779A (en) * | 2006-05-22 | 2007-11-29 | Toto Ltd | Plating pretreatment method and apparatus for city water made of lead-containing copper alloy |
KR101863831B1 (en) | 2012-01-20 | 2018-06-01 | 로무 가부시키가이샤 | Portable telephone having cartilage conduction section |
TWI724317B (en) | 2012-06-29 | 2021-04-11 | 日商精良股份有限公司 | Headphones and stereo headphones |
WO2015025829A1 (en) | 2013-08-23 | 2015-02-26 | ローム株式会社 | Portable telephone |
JP6551919B2 (en) | 2014-08-20 | 2019-07-31 | 株式会社ファインウェル | Watch system, watch detection device and watch notification device |
CN107113481B (en) | 2014-12-18 | 2019-06-28 | 株式会社精好 | Connecting device and electromagnetic type vibration unit are conducted using the cartilage of electromagnetic type vibration unit |
JP6551929B2 (en) | 2015-09-16 | 2019-07-31 | 株式会社ファインウェル | Watch with earpiece function |
CN108496345B (en) | 2016-01-19 | 2021-02-26 | 株式会社精好 | Pen type calling-in and calling-out communication device |
JP2020053948A (en) | 2018-09-28 | 2020-04-02 | 株式会社ファインウェル | Hearing device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5643320A (en) * | 1979-09-14 | 1981-04-22 | Bayer Ag | Macrocyclic polycarbonate |
-
1983
- 1983-11-29 JP JP22313983A patent/JPS60116800A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5643320A (en) * | 1979-09-14 | 1981-04-22 | Bayer Ag | Macrocyclic polycarbonate |
Also Published As
Publication number | Publication date |
---|---|
JPS60116800A (en) | 1985-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102572078B1 (en) | Passivation Surface Treatment of Stainless Steel | |
JPH03501753A (en) | Electrochemical processing method for articles made of conductive materials | |
CN107675193A (en) | A kind of raw material of aluminum alloy preprocess method | |
CN1451058A (en) | Continuous electrolytic pickling method for metallic products using alternate current suplied cells | |
JPS6357520B2 (en) | ||
US3915812A (en) | Method of manufacturing tinned plates having high corrosion resistant property | |
JP3673477B2 (en) | Method for forming a film of magnesium alloy | |
US2092130A (en) | Anodic cleaning process | |
CN108707959A (en) | A kind of neutral environmentally friendly electrochemistry rust remover and technique for applying | |
US3756931A (en) | Electrolytic cleaning and corrosi on removal process | |
JPS6043439B2 (en) | Method for manufacturing wear-resistant zinc articles | |
JP3764774B2 (en) | Method for pretreatment of magnesium or its alloy surface | |
JPH0240751B2 (en) | ||
JPH0285394A (en) | Electroplating method of stainless steel plate | |
US3213008A (en) | Electrolytic polishing of stainless steel | |
JP2764199B2 (en) | Plating method for aluminum and aluminum alloy and electrolytic solution | |
JP3297860B2 (en) | Acid etching solution for aluminum alloy or aluminum die casting | |
JPS6312159B2 (en) | ||
JPS6144200A (en) | Production of steel sheet galvanized on one side | |
JPS5887296A (en) | Method for applying gold plating directly on stainless steel | |
JPH03223482A (en) | Method for deoiling copper and copper alloy | |
JP2004156129A (en) | Water for removing oxide film or rust of metal, and method for removing oxide film or rust of metal using the water for removing oxide film or rust of metal | |
JPS61166999A (en) | Method for cleaning surface of steel sheet | |
JPH0369996B2 (en) | ||
Fink et al. | The Bullard‐Dunn Electrochemical Metal Descaling Process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |