[go: up one dir, main page]

JPS6357394B2 - - Google Patents

Info

Publication number
JPS6357394B2
JPS6357394B2 JP24588885A JP24588885A JPS6357394B2 JP S6357394 B2 JPS6357394 B2 JP S6357394B2 JP 24588885 A JP24588885 A JP 24588885A JP 24588885 A JP24588885 A JP 24588885A JP S6357394 B2 JPS6357394 B2 JP S6357394B2
Authority
JP
Japan
Prior art keywords
ceramic
carbide
metallization
metallized
metallizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24588885A
Other languages
Japanese (ja)
Other versions
JPS61174185A (en
Inventor
Tomomasa Emoto
Kazunori Koga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP24588885A priority Critical patent/JPS61174185A/en
Publication of JPS61174185A publication Critical patent/JPS61174185A/en
Publication of JPS6357394B2 publication Critical patent/JPS6357394B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐高温、高強度材料、耐摩材料等の用
途に使用される炭化物系セラミツク体を金属化す
るための方法に関するものである。 セラミツク体、特にアルミナ(Al2O3)セラミ
ツク体への金属化法は古くからセラミツクコンデ
ンサーの電極付けや真空管、気密端子などの金属
封着技術として用いられ、更に、真空管がトラン
ジスタ、集積回路に移行するにつれ配線用導体と
しての利用が急速に進み、最近ではセラミツク多
層配線基板の導体部形成のためには欠くことので
きない重要な技術となつている。 このようなセラミツク体上への金属化法として
は厚膜や薄膜による方法、無電解メツキ法による
ほか、高温処理による耐熱金属化粉末焼結法、活
性金属法などが知られている。 アルミナセラミツク体の金属化方法としては、
一般的に蒸着法を用いて金属を高真空中で活性な
超微粒子状にしてセラミツク体表面に物理的に被
着させる方法、あるいは例えばモリブデン
(Mo)粉末とマンガン(Mn)粉末を含む金属化
用組成物を適当な粘結剤と溶剤とから成るバイン
ダー、溶剤を用いてペースト状となし、これをセ
ラミツク体上に塗布した後、水蒸気を含む弱酸性
の水素雰囲気あるいは水素と窒素の混合雰囲気中
で焼成して金属化層を形成する方法が採用されて
いる。 後者の方法においては、水蒸気を含む水素もし
くは更に窒素を含有する雰囲気中での焼成過程
で、MnがMnOに酸化され、セラミツク体中の
Al2O3、SiO2と反応してMnO―Al2O3―SiO2の流
動性ガラスが形成され、これがAl2O3粒子間に浸
透してマトリツクスを形成するため、金属化層と
Al2O3焼結体との強固な接着が得られる。このた
め、ガラス形成を促進しより強固な接着を得るた
め前記金属化組成物にAl2O3、SiO2、CaO等のガ
ラス成分を添加することが一般的に行なわれてい
る。 上記の方法で形成された金属化層は、その上に
Niメツキが施された後、半田付けやロウ付けを
行うことができる。 このように従来から一般に広く用いられている
アルミナ、ベリリリア等の酸化物系セラミツク体
上への金属化方法は数多く開発され、基本的には
上記のように高活性化された蒸着金属微粒子によ
る方法と酸化物系セラミツクとなじみの良いガラ
スを介して金属成分を接着する方法とが技術的に
は確立している。 しかるに、近年セラミツクの新規材料の開発に
伴い、従来の酸化物系セラミツクにはない優れた
性質、例えば高温高強度、高耐熱衝撃性、耐薬品
性をもち、物理的、化学的にも安定な炭化珪素等
の炭化物系セラミツク材料が使用されるに至り、
その用途も電子部品材料にとどまらず、ガスター
ビンやシーリング等の産業機械用材料へと広がつ
ている。 炭化物系セラミツクをこれら産業機械部品とし
て使用する場合、セラミツク体同士接合したり、
セラミツク体と金属部材とを接合することは必要
不可欠であり、その方法の一つとしてセラミツク
体の接合部分に金属化層を施した後、金属を接着
することは有効な手段である。 しかしながら、炭化物系セラミツク体は従来の
アルミナセラミツク体等に用いていた金属化組成
物及びそれを用いた方法によつては、セラミツク
体と金属化層との強固な接着が得られなかつた。 例えば、蒸着法によれば工程の特殊性とともに
基本的に物理的な接着であるために接着強度が弱
く、かりに強度を向上すべく加熱すると反応性が
高いために炭化物を生成し、脆弱な反応相を形成
し、更に接着強度が低下する。またガラスを介し
て接着する方法では、ガラスが炭化物系セラミツ
クとは濡れ性が悪く、高温焼成するとガラス中の
SiO2が炭化物により還元されて強度が低下する
ために強固な接着強度が得られず、優れた金属化
層を形成することは困難であり、炭化物系セラミ
ツクに有効な金属化方法が待望されていた。 従つて、本発明の目的は、炭化物系セラミツク
体の表面に強固に接着された金属化層を形成する
ための方法を提供することにある。 本発明によれば、W粉末80〜30重量部とSi粉末
20〜70重量部とさらにバインダーとを含有せしめ
た金属化用組成物ペーストを、炭化物系セラミツ
ク体の所要箇所に塗布した後、窒素雰囲気以外の
非酸化性雰囲気中で1300〜1600℃の範囲内の温度
で焼成することを特徴とする炭化物系セラミツク
体の金属化方法が提供される。炭化物系セラミツ
クは一般に熱膨張係数が小さく、焼結法により多
少異なるが常温から約400℃の温度範囲で下記の
熱膨張係数を有している。 炭化珪素(SiC)セラミツク
:3.5〜5.5(×10-6/℃) 炭化タンタル(TaC)セラミツク
:6.6〜8.4 炭化チタン(TiC)セラミツク:7.4 炭化ほう素(B4C)セラミツク:4.5 炭化タングステン(WC)セラミツク:4〜6.2 従つて、これら炭化物系セラミツクの金属化方
法においては、金属化用組成物とセラミツクの熱
膨張係数の差を小さくする必要上、少なくとも一
種の金属化用金属粉末として低熱膨張係数の高融
点金属を用い、更に炭化物系セラミツクと金属化
層との強固な接着を得るために、炭化物系セラミ
ツクと濡れ性の良い金属を混合することが最も重
要な因子であることを本発明者等は見い出した。 本発明においては、前記低熱膨張係数の高融点
金属として、熱膨張係数が常温で4.3×10-6/℃
であるWが用いられる。 また炭化物系セラミツクと濡れ性の良い金属と
しては、Cu,Zn,B,Al,Si,Co,Niがある
が、その中からSiが選択される。 Siは、SiCセラミツク、TaCセラミツク、TiC
セラミツク、B4Cセラミツク、WCセラミツクの
炭化物セラミツクに対して好適である。 上記WとSiとは、Wを80重量部〜30重量部と、
Siを20重量部〜70重量部との配合比で、それら粉
末が混合される。 なお、上記の配合比は、金属化される炭化物系
セラミツクの熱膨張係数を配慮しながら、上記範
囲内で適宜設定すればよい。 次に、上記した金属化用組成物を用いて炭化珪
素質セラミツクの表面を金属化する方法の具体例
を挙げると、上述したWとSiの粉末にα―テルビ
ノール又は水等の周知の溶剤、エチルセルローズ
又はポリビニルアルコール等の周知の粘結剤から
成るバインダーを添加して流動性を備えたペース
ト状にし、これをスクリーン印刷、羽毛塗り、ブ
ラシユバンド、スプレー、あるいは浸漬等の手段
でもつて炭化珪素質セラミツク体の被金属化対象
表面に塗布した後、減圧下、アルゴンガス、水素
等の非酸化雰囲気中にて1300℃〜1600℃の範囲の
適宜温度で焼成する。 上記の金属化用粉末の配合比については、前記
範囲外では、炭化物系セラミツク表面に対する金
属化状態が不良で、接合強度の十分なものが得ら
れない。 また焼成温度に関しては、1300℃未満ではWと
Siとからなる液相が生成されず、炭化物系セラミ
ツクとの濡れ性が不充分で、良好な金属化が進行
しなく、一方1600℃を越えると炭化物セラミツク
との反応が激しくなつてWCの生成が顕著とな
り、炭化物系セラミツク表面層に多孔質層が形成
される結果、十分な接着強度の金属化層が得られ
ない。 そして、非酸化性焼成雰囲気として、窒素雰囲
気を採用すると、焼成中に金属化組成物中のSi
(珪素)がN2(窒素)と反応して、窒化珪素を生
成するため、良好な金属化層が形成されなくな
る。 本発明方法によれば、後述する試験法による値
で6Kg/mm2以上の曲げ強度を有する金属化層が
炭化物系セラミツク体表面に生成される。 以下、本発明の実施例について説明する。 (実施例 1) タングステン(W)粉末と珪素(Si)粉末とを
表1に示した割合(重量%)で配合し、有機バイ
ンダーを添加して金属化用組成物(メタライズペ
ースト)を作り、炭化物系セラミツクの代表的な
ものである炭化珪素質セラミツク体上にスクリー
ン印刷し、その後、アルゴン雰囲気の炉中におい
て、1400℃で焼成してセラミツク体表面を金属化
させた。 表1に掲げた金属化状態は金属化された表面を
目視観察した結果である。この結果は、金属化面
の表面に亀裂やボイドの発生状態に応じて優劣を
つけているため、表面状態の優劣の結果によつて
金属化面の接着性の良否が判断できる。
The present invention relates to a method for metallizing carbide ceramic bodies used for applications such as high temperature resistant, high strength materials, and wear resistant materials. Metallization of ceramic bodies, especially alumina (Al 2 O 3 ) ceramic bodies, has been used for a long time as a metal sealing technique for attaching electrodes to ceramic capacitors and for vacuum tubes and airtight terminals. With this transition, its use as a wiring conductor has rapidly progressed, and recently it has become an indispensable and important technology for forming conductor parts of ceramic multilayer wiring boards. Known methods for metallizing ceramic bodies include thick film or thin film methods, electroless plating methods, heat-resistant metallized powder sintering methods using high temperature treatment, and active metal methods. The method for metallizing alumina ceramic bodies is as follows:
Generally, metals are formed into active ultrafine particles in a high vacuum using vapor deposition and physically deposited on the ceramic surface, or metallization including, for example, molybdenum (Mo) powder and manganese (Mn) powder. The paste composition is made into a paste using a binder and solvent, which is made of a suitable binder and solvent, and after this is applied onto a ceramic body, it is placed in a weakly acidic hydrogen atmosphere containing water vapor or a mixed atmosphere of hydrogen and nitrogen. A method of forming a metallized layer by firing inside is adopted. In the latter method, Mn is oxidized to MnO during the firing process in an atmosphere containing hydrogen containing water vapor or nitrogen, and the
A fluid glass of MnO- Al2O3 - SiO2 is formed by reacting with Al2O3 and SiO2 , and this penetrates between the Al2O3 particles to form a matrix, so that the metallized layer and
Strong adhesion with Al 2 O 3 sintered body can be obtained. For this reason, it is common practice to add glass components such as Al 2 O 3 , SiO 2 , CaO, etc. to the metallization composition to promote glass formation and obtain stronger adhesion. The metallization layer formed by the method described above is
After Ni plating has been applied, soldering and brazing can be performed. In this way, many methods have been developed for metallizing oxide-based ceramic bodies such as alumina and beryllia, which have been widely used in the past.Basically, the method using highly activated vapor-deposited metal fine particles as described above has been developed. The method of adhering metal components through glass, which is compatible with oxide ceramics, has been technically established. However, in recent years, with the development of new ceramic materials, materials with excellent properties not found in conventional oxide ceramics, such as high strength at high temperatures, high thermal shock resistance, chemical resistance, and physical and chemical stability, have been developed. Carbide ceramic materials such as silicon carbide came into use,
Its uses are not limited to electronic component materials, but are also expanding to materials for industrial machinery such as gas turbines and sealing. When carbide ceramics are used as industrial machine parts, ceramic bodies may be joined together,
It is essential to join a ceramic body and a metal member, and one effective method is to apply a metallized layer to the joint portion of the ceramic body and then bond the metal. However, with respect to carbide-based ceramic bodies, strong adhesion between the ceramic body and the metallized layer cannot be obtained using the metallization compositions and methods using the same, which have been used in conventional alumina ceramic bodies. For example, according to the vapor deposition method, the adhesive strength is weak because it is basically a physical adhesive in addition to the special process, and when heated to improve the strength, carbide is generated due to the high reactivity, resulting in brittle reactions. A phase is formed, further reducing adhesive strength. In addition, in the method of adhering through glass, the glass has poor wettability with carbide ceramics, and when fired at high temperatures, the bonds in the glass
Since SiO 2 is reduced by carbide and its strength is reduced, strong adhesive strength cannot be obtained and it is difficult to form an excellent metallized layer.Therefore, an effective metallization method for carbide ceramics has been long-awaited. Ta. SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a method for forming a strongly adhered metallization layer on the surface of a carbide-based ceramic body. According to the present invention, 80 to 30 parts by weight of W powder and Si powder
After applying a metallizing composition paste containing 20 to 70 parts by weight and a binder to the required locations of the carbide ceramic body, it is heated within the range of 1300 to 1600°C in a non-oxidizing atmosphere other than a nitrogen atmosphere. A method for metallizing a carbide ceramic body is provided, which comprises firing at a temperature of . Carbide ceramics generally have a small coefficient of thermal expansion, and although it varies somewhat depending on the sintering method, it has the following coefficient of thermal expansion in the temperature range from room temperature to about 400°C. Silicon carbide (SiC) ceramic
:3.5 to 5.5 (×10 -6 /℃) Tantalum carbide (TaC) ceramic
: 6.6 to 8.4 Titanium carbide (TiC) ceramic: 7.4 Boron carbide (B 4 C) ceramic: 4.5 Tungsten carbide (WC) ceramic: 4 to 6.2 Therefore, in the metallization method of these carbide ceramics, Since it is necessary to reduce the difference in thermal expansion coefficient between the composition and the ceramic, a high melting point metal with a low thermal expansion coefficient is used as at least one metal powder for metallization, and furthermore, strong adhesion between the carbide ceramic and the metallized layer is obtained. The inventors have found that the most important factor for this purpose is to mix carbide ceramic and a metal with good wettability. In the present invention, the high melting point metal with a low coefficient of thermal expansion has a coefficient of thermal expansion of 4.3×10 -6 /°C at room temperature.
W is used. Metals that have good wettability with carbide ceramics include Cu, Zn, B, Al, Si, Co, and Ni, among which Si is selected. Si is SiC ceramic, TaC ceramic, TiC
It is suitable for carbide ceramics such as ceramic, B 4 C ceramic, and WC ceramic. The above W and Si are 80 parts by weight to 30 parts by weight of W,
These powders are mixed at a blending ratio of 20 parts by weight to 70 parts by weight of Si. The above compounding ratio may be appropriately set within the above range while taking into account the thermal expansion coefficient of the carbide ceramic to be metallized. Next, to give a specific example of a method for metallizing the surface of silicon carbide ceramic using the above-mentioned metallization composition, the above-mentioned W and Si powder is mixed with a well-known solvent such as α-terbinol or water, A binder consisting of a well-known binder such as ethyl cellulose or polyvinyl alcohol is added to form a fluid paste, which is then carbonized by means such as screen printing, feather painting, brush banding, spraying, or dipping. After coating the surface of the siliceous ceramic body to be metallized, it is fired at an appropriate temperature in the range of 1300°C to 1600°C in a non-oxidizing atmosphere such as argon gas or hydrogen under reduced pressure. If the blending ratio of the metallizing powder is outside the above range, the metallization state on the carbide ceramic surface will be poor and sufficient bonding strength will not be obtained. Regarding the firing temperature, if it is less than 1300℃, it will be W.
A liquid phase consisting of Si is not generated, and the wettability with the carbide ceramic is insufficient, and good metallization does not proceed.On the other hand, when the temperature exceeds 1600℃, the reaction with the carbide ceramic becomes intense and WC is formed. This becomes noticeable and a porous layer is formed on the surface layer of the carbide ceramic, making it impossible to obtain a metallized layer with sufficient adhesive strength. If a nitrogen atmosphere is adopted as the non-oxidizing firing atmosphere, Si in the metallized composition will be removed during firing.
(silicon) reacts with N 2 (nitrogen) to form silicon nitride, which prevents the formation of a good metallization layer. According to the method of the present invention, a metallized layer having a bending strength of 6 kg/mm 2 or more as determined by the test method described below is formed on the surface of a carbide ceramic body. Examples of the present invention will be described below. (Example 1) Tungsten (W) powder and silicon (Si) powder were blended in the proportions (wt%) shown in Table 1, and an organic binder was added to make a metallization composition (metallization paste). Screen printing was performed on a silicon carbide ceramic body, which is a typical type of carbide ceramic, and the surface of the ceramic body was metallized by firing at 1400°C in a furnace with an argon atmosphere. The metallization states listed in Table 1 are the results of visual observation of the metallized surface. Since the results are graded according to the degree of occurrence of cracks and voids on the surface of the metallized surface, it is possible to judge whether the adhesion of the metallized surface is good or bad based on the results of the surface condition.

【表】【table】

【表】 以上実験の結果等から、タングステン80〜30%
に対して珪素20〜70%の割合のメタライズペース
トの場合に優れた金属化表面が得られ、タングス
テン60〜40%に対して珪素40〜60%のメタライズ
ペーストが最適であることが判つた。 次に、表1中の試料No.4のメタライズペースト
を二個の炭化珪素質セラミツク体の端面に塗布し
た後、塗布面を当接した状態で上記の条件で焼成
し接合した試験片について、接合面に応力がかか
るようにして曲げ強度を測定した結果、18Kg/mm
の値が得られた。また、No.3のものでは9Kg/
mm2、No.5のものでは16Kg/mm2の強度を示した。
比較のために試料No.1のメタライズペーストを用
いて上記と同一の実験を行つたところ、2Kg/mm
であつた。 なお、上記試験片の作製方法及び曲げ強度の測
定方法は次の通りである。 3.5mm×20mm×15mmの平板状の2個の炭化珪素
質セラミツク体の3.5mm×20mmの端面にメタライ
ズペーストを塗布した後、塗布面を付き合わせた
状態で焼成し、次いで、その接合されたセラミツ
ク体をダイアモンドカツターで切り出し、3mm×
3mm×30mmでその長さ方向の中央に接合部が存在
する試験片を作製した。 この試験片の曲げ強度の測定は接合部を上部荷
重点とし、下部の支点間距離を20mmとした3点曲
げ法により行つた。 さらに、前記試料No.3のメタライズペースト
(W70重量%、Si30重量%)による炭化珪素質セ
ラミツク体表面の金属化処理を、 1200℃ Ar雰囲気中 1200℃ N2 〃 1400℃ Ar 〃 1400℃ 減圧下(10-2torr) 1700℃ Ar 〃 1700℃ N2 〃 で各々実施した結果、その成績は金属化状態が
、が×、、が〇、が△、が×であつ
た。 以上述べたように、本発明による金属化方法に
よれば、炭化物系セラミツク体、特に、炭化珪素
質セラミツク体に対して、アルミナ等の酸化物系
セラミツク体と同様、容易に強固な金属化層を形
成することが可能となり、しかる後に、該金属化
表面にニツケル、銅等のメツキを行つた後、金属
を半田、銀ロウ付け等の既存の技術により接合す
ることが可能となつた。 このように本発明による金属化技術を利用し、
従来のロウ付け等の技術を組合わせることによ
り、炭化物系セラミツク体を高温機構部材あるい
は、メカニカルシール等の耐摩耗部品として使用
する場合の複合化及び電気・電子部品の電極端子
等への利用が可能となり、その効果は絶大であ
る。
[Table] Based on the results of the above experiments, tungsten is 80 to 30%
It has been found that metallizing pastes with a ratio of 20-70% silicon to tungsten give excellent metallized surfaces, and metallizing pastes with a ratio of 40-60% silicon to 60-40% tungsten are optimal. Next, after applying the metallizing paste of sample No. 4 in Table 1 to the end surfaces of two silicon carbide ceramic bodies, the test pieces were fired and bonded under the above conditions with the coated surfaces in contact with each other. The bending strength was measured with stress applied to the joint surface, and the result was 18Kg/mm.
A value of 2 was obtained. Also, No. 3 has 9Kg/
mm 2 , No. 5 showed a strength of 16 Kg/mm 2 .
For comparison, we conducted the same experiment as above using sample No. 1 metallized paste, and found that it was 2Kg/mm.
It was 2 . In addition, the method for producing the above-mentioned test piece and the method for measuring the bending strength are as follows. After applying metallizing paste to the 3.5 mm x 20 mm end faces of two 3.5 mm x 20 mm x 15 mm flat silicon carbide ceramic bodies, the coated surfaces were fired with the coated surfaces facing each other, and then the joined Cut out the ceramic body with a diamond cutter, 3mm x
A test piece measuring 3 mm x 30 mm and having a joint at the center of its length was prepared. The bending strength of this test piece was measured by a three-point bending method in which the joint was used as the upper load point and the distance between the lower supports was 20 mm. Furthermore, the surface of the silicon carbide ceramic body was metallized using the metallization paste of Sample No. 3 (W70% by weight, Si 30% by weight) at 1200℃ in Ar atmosphere 1200℃ N 2 〃 1400℃ Ar 〃 1400℃ under reduced pressure (10 -2 torr) As a result of carrying out experiments at 1700°C Ar, 1700°C N 2 , the results were that the metallization state was: ×, 〇, △, and ×. As described above, according to the metallization method of the present invention, a strong metallization layer can be easily formed on a carbide-based ceramic body, particularly a silicon carbide-based ceramic body, in the same manner as on an oxide-based ceramic body such as alumina. After that, it became possible to plate the metallized surface with nickel, copper, etc., and then join the metals using existing techniques such as soldering and silver brazing. In this way, using the metallization technology according to the present invention,
By combining conventional brazing and other techniques, carbide ceramic bodies can be used as high-temperature mechanical components or wear-resistant parts such as mechanical seals, and can be used as electrode terminals for electrical and electronic components. It is possible, and the effects are tremendous.

Claims (1)

【特許請求の範囲】[Claims] 1 W粉末80〜30重量部とSi粉末20〜70重量部と
さらにバインダーとを含有せしめた金属化用組成
物ペーストを、炭化物系セラミツク体の所要箇所
に塗布した後、窒素雰囲気以外の非酸化性雰囲気
中で1300〜1600℃の範囲内の温度で焼成すること
を特徴とする炭化物系セラミツク体の金属化方
法。
1. After applying a metallizing composition paste containing 80 to 30 parts by weight of W powder, 20 to 70 parts by weight of Si powder, and a binder to the required locations of the carbide-based ceramic body, 1. A method for metallizing a carbide-based ceramic body, which comprises firing at a temperature within the range of 1300 to 1600°C in a neutral atmosphere.
JP24588885A 1985-11-01 1985-11-01 Method for metallizing carbide ceramic bodies Granted JPS61174185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24588885A JPS61174185A (en) 1985-11-01 1985-11-01 Method for metallizing carbide ceramic bodies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24588885A JPS61174185A (en) 1985-11-01 1985-11-01 Method for metallizing carbide ceramic bodies

Publications (2)

Publication Number Publication Date
JPS61174185A JPS61174185A (en) 1986-08-05
JPS6357394B2 true JPS6357394B2 (en) 1988-11-11

Family

ID=17140300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24588885A Granted JPS61174185A (en) 1985-11-01 1985-11-01 Method for metallizing carbide ceramic bodies

Country Status (1)

Country Link
JP (1) JPS61174185A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3711540B2 (en) 2002-09-17 2005-11-02 日本航空電子工業株式会社 Thin connector

Also Published As

Publication number Publication date
JPS61174185A (en) 1986-08-05

Similar Documents

Publication Publication Date Title
US3620799A (en) Method for metallizing a ceramic body
EP0083834B1 (en) Metal ceramics composites and a method for producing said composites
US4409079A (en) Method of metallizing sintered ceramics
US4624404A (en) Method for bonding ceramics and metals
EP0122522B1 (en) Method of manufacturing sintered ceramic body
JP2003527292A (en) Method for assembling parts made of SiC-based material by non-reactive refractory brazing, solder composition for brazing and refractory joints and assemblies obtained by this method
JPS62197379A (en) Aluminum nitride substrate
JPS6227037B2 (en)
JP3095490B2 (en) Ceramic-metal joint
JPS6365635B2 (en)
JPH0159238B2 (en)
JPS59137373A (en) Ceramic bonding method
JPH075408B2 (en) Ceramic metallization composition, metallization method and metallized product
JPS6111912B2 (en)
JPS6357394B2 (en)
JP3370060B2 (en) Ceramic-metal joint
JPH05170552A (en) Aluminum nitride substrate having metallized layer and metallization of the substrate
JPS6054914B2 (en) Composition and method for metallizing silicon nitride ceramic bodies
JPH0816033B2 (en) Composition of metallizing paste for silicon nitride and metallizing method using the same
JPS59223280A (en) Method of bonding ceramic and metal
Grant Norton The influence of contact angle, wettability, and reactivity on the development of indirect-bonded metallizations for aluminum nitride
JPS5948778B2 (en) Method for manufacturing ceramic-metal composite
KR0180485B1 (en) Method for producing silicon nitride sintered body and metal joined body
JPH0240028B2 (en) SERAMITSUKUSUTOKINZOKU * DOSHUSERAMITSUKUSUDOSHIMATAHAISHUSERAMITSUKUSUKANNOSETSUGOHOHO
JPS6350382A (en) Formation of metal coating for ceramic