[go: up one dir, main page]

JPS6357233B2 - - Google Patents

Info

Publication number
JPS6357233B2
JPS6357233B2 JP59141273A JP14127384A JPS6357233B2 JP S6357233 B2 JPS6357233 B2 JP S6357233B2 JP 59141273 A JP59141273 A JP 59141273A JP 14127384 A JP14127384 A JP 14127384A JP S6357233 B2 JPS6357233 B2 JP S6357233B2
Authority
JP
Japan
Prior art keywords
resin
hole
metal plate
composite molded
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59141273A
Other languages
Japanese (ja)
Other versions
JPS6034836A (en
Inventor
Hideki Asano
Toshikazu Narahara
Tsuneo Narisawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59141273A priority Critical patent/JPS6034836A/en
Publication of JPS6034836A publication Critical patent/JPS6034836A/en
Publication of JPS6357233B2 publication Critical patent/JPS6357233B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Mounting Components In General For Electric Apparatus (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は金属板と樹脂との複合成形品、特に貫
通孔を有する金属板に樹脂突起部を一体成形して
なる金属板と樹脂との複合成形品に関するもので
ある。 金属板と樹脂との複合成形品(以下、単に複合
成形品と称する)は近年オーデイオまたはヴイデ
オ用機器の部品取付用に用いられるようになつて
きたが、これらの複合成形品はその使用場所によ
つては、金属板に対する樹脂突起部の垂直度およ
び樹脂突起部相互間の平行度に対して高い精度が
要求される。 第1図は従来使用されている複合成形品の構成
を示すもので、貫通孔1を有する金属板2と、こ
の貫通孔1を介して金属板2の両面に成形された
樹脂つば部31,32および樹脂つば部31と一
体になつている樹脂突起部4とよりなるものであ
る。 第2図はこのような複合成形品の成形用金型の
構成を示すもので、100は貫通孔1を有する金
属板2が固定され、樹脂つば部31とこれと一体
形成される樹脂突起部4および樹脂流入用のラン
ナ部51の設けられている第一の金型、200は
金属板2の他の面に位置する樹脂つば部32およ
びこれらの樹脂つば部32を連絡するランナ部5
2ならびにこれらとゲート6を介して接続するス
プル71の設けられている第二の金型、300は
第二の金型200のスプル71を連絡するランナ
部53およびスプル72の設けられている第三の
金型であり、第1の金型100内に貫通孔1を有
する金属板2を固定し、第二の金型200および
第三の金型300を重ねてスプル72,71を通
じて樹脂を圧入することにより、金属板2の両面
に金属板2の貫通孔1内の樹脂を介して一体化さ
れた樹脂つば部31,32を有し樹脂突起部4の
設けられた複合成形品が作成される。 このように形成された複合成形品には、これを
構成する金属と樹脂との熱膨張率の差により大き
な熱応力が発生するため、金属板の反りあるいは
ボス、リブ等の樹脂突起部の傾きなどを生じ、精
度の良い複合成形品が得られなかつた。 この問題を避けるため、従来は、金属板上に成
形する樹脂突起部の数を少なくして樹脂の量を少
なくする方法、特に樹脂突起部相互間を結ぶラン
ナ部を少なくして樹脂の量を少なくする方法が用
いられている。しかし、使用樹脂量を少なくする
と、例えば、精度上の問題から、数個の部品に分
割成形する必要を生じ、工程数が多くなり、樹脂
を溶融させ一度に樹脂突起部を成形できるこの種
複合成形品の利点が失われる。また、ランナ部は
成形時の溶融樹脂の流路となる部分であるから、
この部分の樹脂量を減らすことは、流路の断面積
を少なくすること、あるいはゲートの数を多くす
ることを意味する。しかし前者を採用した場合に
は、流動抵抗が増加し、成形性が悪くなるため、
不良品の発生量が多くなり、また金属板表面上に
形成する樹脂突起部の数を少なくする必要が生ず
る点で問題があり、後者を採用する場合には、ゲ
ート加工が多くなるため、金型製造工程が多くな
ることが問題となる。 これらの点が特に問題となるのは、樹脂突起部
の高さが高く、しかも、精密な垂直度を要求され
る場合である。例えば、直径3〜8mm、高さ15〜
40mmの円形断面の樹脂突起部の場合には、樹脂突
起部の金属板表面からの垂線に対する傾き角の正
切(以下においては、傾き精度と称する。第1図
に示したδとhを測定して、δ/hで与えられ
る。)が1/200〜1/100程度となり、それ以上の精
度を得ることが困難であつた。 また、成形直後の精度を良好にするために、第
3−a図に示す如く樹脂つば部31および32を
大きくしたもの、あるいは、第4−a図および第
4−b図に示す如く、金属板2の樹脂突起部4か
ら4方向に等間隔の位置に4個の貫通孔11を設
け、この貫通孔11を介して金属板2と一体化さ
れたリブ33および樹脂つば部34によつて樹脂
突起部4を保持したものがある。なお、第3図お
よび第4図において第1図と同一部分には同一符
号が付してあり、以下本明細書の各図においては
同一部分には同一符号が付してある。 第3−a図に示した形状の複合成形品において
は、第3−b図に示すような力80で金属板2に
固定されているため、樹脂つば部31,32には
矢印81で示すような変形を生ずる力が負荷さ
れ、長期間使用するうちに樹脂つば部31,32
が第3−c図に示すような形状に変形し、精度が
悪くなる。特にこの複合成形品は第5図に示すよ
うに複数の樹脂突起部4を樹脂通路となるランナ
部51を用いて成形するため、成形後もランナ部
51が残つており、ランナ部51に第5−a図に
示すような残留応力82が生じ、長期間使用する
うちに、例えば、第5−b図に示す如く樹脂突起
部4がランナ部51側に傾くような変形を生ず
る。 一方、第4図に示した複合成形品は、第3−a
図に示した複合成形品に較べ第6図に示すように
傾き精度が悪い。第6図は樹脂にポリアセタール
を用い、樹脂突起部の形状を同一にした場合の成
形時の樹脂温度(℃)と傾き精度(δ/h)との
関係を示したもので、A、Bはそれぞれ、第3
図、第4図の複合成形品の場合を示している。ま
た、樹脂の流入および冷却の点から見て、残留応
力の不均一が生じ易いため、長期間使用するうち
に生ずる寸法変化も第3図の形状のものに比べて
劣る場合が多い。 この他、第7図に示す如く、樹脂突起部4側の
樹脂つば部を省き、かつ金属板2の貫通孔1を樹
脂突起部4の大きさ以内で大きくしたものもある
が、この形状の複合成形品の傾き精度も、第3
図、第4図に示したものと同等であるか劣つてい
る。 本発明は、これら従来技術の欠点を改善し、寸
法精度の良好な金属板と樹脂との複合成形品を提
供することを目的とするもので、貫通孔を有する
金属板と、この金属板の平面から突出した樹脂突
起部とを有し、前記樹脂突起部と一体をなす前記
貫通孔内の樹脂によつて前記樹脂突起部を前記金
属板に係止する金属板と樹脂との複合成形品にお
いて、前記貫通孔が前記樹脂突起部直下に設けら
れている中央貫通孔と、該中央貫通孔の周辺部に
位置する補助貫通孔とからなり、前記樹脂突起部
の設けられている側の前記金属板に接触し前記中
央貫通孔及び前記補助貫通孔の少なくとも一部を
覆い、前記樹脂突起部の設けられていない側の前
記金属板に接触し、前記中央貫通孔のみを覆う樹
脂つば部を有することを特徴とするものである。 すなわち、本発明は、樹脂突起部の傾き精度が
残留応力によつて支配されることを実験で確認
し、残留応力による樹脂突起部の変形を防止する
手段として、樹脂突起部の設けられている側の中
央貫通孔と補助貫通孔の少なくとも一部を覆う樹
脂つば部と、樹脂突起部の設けられていない側の
中央貫通孔を覆う樹脂つば部を設け、貫通孔内の
樹脂の収縮力によつて樹脂突起部を金属板に固定
するようにしたものである。 ここで用いられる金属板の厚さ、貫通孔の寸
法、形状、配置、樹脂つば部の寸法、形状、配置
等は、必要とする傾き精度に応じて選ばれるが、
特に、金属板については厚さが2mm以上の鋼板を
用い、貫通孔については樹脂突起部の中心を中心
とする半径10mm以上の円の円周上に中心を有する
直径3mm以上の貫通孔をもうけた場合に高い傾き
精度が得られる。樹脂突起部の直下に貫通孔を有
する場合には、貫通孔の直径が3mm以上で、金属
板表面により画定される平面への樹脂突起部の直
下の貫通孔と樹脂つば部との投影面積の比が1/
15以下である場合に高い傾き精度が得られ、何れ
の場合も樹脂つば部の厚さは1.5mm以上の場合に
傾き精度が良好となる。 以下、実施例について説明する。 第8−a図および第8−b図は一実施例のそれ
ぞれ上面および第8−a図のX1−Y1−Z1断面を
示すもので、金属板2には樹脂突起部4の軸線と
中心を同じくする円の円周上に等間隔に中心が配
置された貫通孔であつて直径の等しい3個の貫通
孔111,112および113が設けられてお
り、樹脂つば部35および36はこれらの貫通孔
111,112および113を被覆し得る大きさ
になつている。 第9−a図および第9−b図は、他の実施例の
それぞれ上面および第9−a図のX1′−Y1′−
Z1′断面を示すもので、第8図の実施例と異なる
ところは、貫通孔111,112,113のそれ
ぞれの一部分が樹脂つば部35の周縁から外方へ
位置し、樹脂つば部はそれぞれの貫通孔の一部分
をおおつている点である。この場合、貫通孔の中
心が位置するようになつた樹脂突起部と同軸の円
の円周が樹脂つば部35よりはみ出さない、即
ち、円の直径が樹脂つば部35を画定する円の直
径以内となつている。 第10−a図および第10−b図はそれぞれ他
の実施例の上面および第10−a図のX2−Y2
Z3の断面を示すもので、第8図の実施例と異なる
ところは、貫通孔111,112および113の
他に、樹脂突起部4の直下に別の中央貫通孔11
4を有する点である。この場合、樹脂突起部4直
下の中央貫通孔114の直径は他の貫通孔11
1,112,113の直径と異なつても良く、こ
こで樹脂突起部4の直下とは樹脂突起部4と中央
貫通孔114の中心が一致していることを意味す
る。このように樹脂突起部4直下に中央貫通孔1
14を設けることにより、金属板2と樹脂つば部
35,36との結合をより強固にすることができ
る。 第11−a図、第11−b図、第11−c図、
第12−a図、第12−b図および第12−c図
はそれぞれ異なる他の実施例のそれぞれ上面、断
面(第11−a図のX3−Y3−Z3断面、第12−
a図のX4−Y4−Z4断面)および下面を示すもの
で、第8図および第10図と異なるところは、下
面の樹脂つば部を貫通孔111,112,113
および114の周辺のみにそれぞれ別個にもうけ
た点である。各図の361,362,6および3
64はこれらの樹脂つば部を示している。 これらの実施例においては、円周上に位置する
貫通孔が3個の例を示したが、3個以上であれば
よく、この3個以上とした理由は下記の通りであ
る。すなわち、貫通孔が1個の場合には、従来例
の説明において述べたように長期間使用するうち
に第3−c図に示すごとき変形が生じ、樹脂つば
部の効果が少なくなり、精度が悪くなる。また、
貫通孔が2個の場合、例えば第13−a図および
第13−b図(第13−a図は第13−b図の上
面図)に示す如く2個の貫通孔111および11
2が設けられている場合には、長期間使用するう
ちに貫通孔111,112を結ぶ方向はよいが、
これと直角の方向には第13−b図に示す如く残
留応力よつて変形を生じ精度が悪くなる。これら
の点を考慮に入れると、樹脂つば部の変形を防止
するには最低3個の貫通孔を必要とすることにな
る。 また、成形時の樹脂流路となるランナ部が成形
品に残り、この部分の残留応力により精度が悪く
なる点についても、貫通孔が1個の場合は第5−
a図、第5−b図の従来例に示したように変形を
生じ、また貫通孔が2個の場合は、第14図およ
び第15図に示すように変形を生じる。第14図
は2個の貫通孔111および112がランナ部5
1に対して直角に位置する場合で、第14−a図
は上面、第14−b図は断面を示している。この
場合にはランナ部51のある側の樹脂つば部5と
ランナ部のない樹脂つば部36には異なる状態の
変形を生じる。第15図は2個の貫通孔111,
112がランナ部51方向に位置する場合で、第
15−a図は上面、第15−b図は断面、第15
−c図は側面を示しており、この場合は、第15
−c図で示すように樹脂つば部に変形を生じ樹脂
つば部の効果が少なくなる。従つて貫通孔を3個
以上設ければ、どの方向にランナ部を配置しても
樹脂つば部の反りを貫通孔内の樹脂部が抑止する
ことができ、樹脂突起部の傾き精度が良好とな
る。 第1表は、この実施例の複合成形品の成形後1
週間を経過した時のボス倒れ率(樹脂突起部の断
面が円形の場合の傾き精度)(%)を従来の複合
成形品と比較して示したもので、試料はいずれも
金属板に鋼板を用い樹脂にポリアセタールを用い
たものである。なお、いずれの場合も、直径8
mm、長さ40mmのボスを直径3mmの貫通孔を有する
The present invention relates to a composite molded product of a metal plate and a resin, and particularly to a composite molded product of a metal plate and a resin, which is formed by integrally molding a resin protrusion on a metal plate having a through hole. Composite molded products made of metal plates and resin (hereinafter simply referred to as composite molded products) have recently come to be used for mounting parts of audio or video equipment, but these composite molded products are Therefore, high precision is required for the perpendicularity of the resin protrusions with respect to the metal plate and the parallelism between the resin protrusions. FIG. 1 shows the structure of a conventionally used composite molded product, which includes a metal plate 2 having a through hole 1, a resin collar 31 molded on both sides of the metal plate 2 through the through hole 1, 32 and a resin protrusion 4 that is integrated with the resin collar 31. FIG. 2 shows the configuration of a mold for forming such a composite molded product, in which a metal plate 2 having a through hole 1 is fixed at 100, a resin collar 31 and a resin protrusion integrally formed therewith. 4 and a first mold in which a runner part 51 for resin inflow is provided, 200 a resin collar part 32 located on the other surface of the metal plate 2, and a runner part 5 that connects these resin collar parts 32.
2 and a second mold in which a sprue 71 is connected to these through the gate 6, and 300 is a second mold in which a runner part 53 and a sprue 72 are provided, which connect the sprue 71 of the second mold 200. The metal plate 2 having the through hole 1 is fixed in the first mold 100, the second mold 200 and the third mold 300 are overlapped, and the resin is applied through the sprues 72 and 71. By press-fitting, a composite molded product is created that has resin collars 31 and 32 integrated on both sides of the metal plate 2 via the resin in the through hole 1 of the metal plate 2, and is provided with a resin protrusion 4. be done. Composite molded products formed in this way are subject to large thermal stress due to the difference in coefficient of thermal expansion between the metal and resin that make up the product, resulting in warpage of the metal plate or inclination of resin protrusions such as bosses and ribs. etc., and a composite molded product with good precision could not be obtained. In order to avoid this problem, conventional methods have been to reduce the amount of resin by reducing the number of resin protrusions molded on the metal plate, and in particular to reduce the amount of resin by reducing the number of runners that connect the resin protrusions. A method of reducing this is used. However, if the amount of resin used is reduced, for example, due to accuracy problems, it becomes necessary to mold the parts separately, which increases the number of steps. The advantages of the molded product are lost. In addition, since the runner part is the part that becomes the flow path for the molten resin during molding,
Reducing the amount of resin in this portion means reducing the cross-sectional area of the flow path or increasing the number of gates. However, if the former is adopted, flow resistance increases and formability deteriorates, so
There are problems in that the number of defective products increases and the number of resin protrusions formed on the metal plate surface needs to be reduced.If the latter is adopted, gate processing will be required, so it will be difficult to use the metal plate. The problem is that the number of mold manufacturing steps increases. These points become particularly problematic when the height of the resin protrusion is high and precise perpendicularity is required. For example, diameter 3~8mm, height 15~
In the case of a resin protrusion with a circular cross section of 40 mm, the inclination angle of the resin protrusion with respect to the perpendicular from the metal plate surface is exactly right (hereinafter referred to as inclination accuracy. δ and h shown in Fig. 1 are measured. (given by δ/h) is approximately 1/200 to 1/100, and it has been difficult to obtain higher accuracy. In addition, in order to improve the accuracy immediately after molding, resin collars 31 and 32 are made larger as shown in Figure 3-a, or metal parts are used as shown in Figures 4-a and 4-b. Four through holes 11 are provided at equal intervals in four directions from the resin protrusion 4 of the plate 2, and the rib 33 and resin collar 34 are integrated with the metal plate 2 through the through holes 11. There is one that holds a resin protrusion 4. Note that in FIGS. 3 and 4, the same parts as in FIG. 1 are given the same reference numerals, and the same parts in the various figures of this specification are given the same reference numerals. In the composite molded product having the shape shown in Fig. 3-a, since it is fixed to the metal plate 2 with a force 80 as shown in Fig. 3-b, the resin collar portions 31 and 32 are When a force that causes such deformation is applied, and the resin collar parts 31 and 32 are used for a long period of time, the resin collar parts 31 and 32
is deformed into the shape shown in Fig. 3-c, resulting in poor accuracy. In particular, in this composite molded product, as shown in FIG. 5, the plurality of resin protrusions 4 are molded using runner parts 51 that serve as resin passages, so the runner parts 51 remain even after molding, and the runner parts 51 have nozzles. Residual stress 82 as shown in FIG. 5-a is generated, and after long-term use, the resin protrusion 4 is deformed, for example, inclining toward the runner portion 51 as shown in FIG. 5-b. On the other hand, the composite molded product shown in FIG.
As shown in FIG. 6, the inclination accuracy is poor compared to the composite molded product shown in the figure. Figure 6 shows the relationship between the resin temperature (°C) and inclination accuracy (δ/h) during molding when polyacetal is used as the resin and the shape of the resin protrusion is the same. respectively, the third
4 shows the case of the composite molded product shown in FIG. Further, from the viewpoint of resin inflow and cooling, residual stress tends to be uneven, so dimensional changes that occur during long-term use are often inferior to those of the shape shown in FIG. 3. In addition, as shown in FIG. 7, there is a model in which the resin collar on the side of the resin protrusion 4 is omitted and the through hole 1 of the metal plate 2 is enlarged within the size of the resin protrusion 4; The inclination accuracy of composite molded products is also the third
It is equivalent to or inferior to that shown in FIG. The present invention aims to improve the drawbacks of these conventional techniques and provide a composite molded product of a metal plate and resin with good dimensional accuracy. A composite molded product of a metal plate and resin, which has a resin protrusion protruding from a plane, and the resin protrusion is locked to the metal plate by the resin in the through hole that is integrated with the resin protrusion. In the above, the through hole is composed of a central through hole provided directly below the resin protrusion, and an auxiliary through hole located in a peripheral area of the central through hole, and the through hole is provided on the side where the resin protrusion is provided. a resin collar that contacts the metal plate and covers at least a portion of the central through hole and the auxiliary through hole, and that contacts the metal plate on the side where the resin protrusion is not provided and covers only the central through hole; It is characterized by having. That is, the present invention has confirmed through experiments that the inclination accuracy of the resin protrusion is controlled by residual stress, and the resin protrusion is provided as a means for preventing deformation of the resin protrusion due to residual stress. A resin collar part that covers at least part of the central through hole and the auxiliary through hole on the side, and a resin collar part that covers the central through hole on the side where the resin protrusion is not provided are provided to reduce the shrinkage force of the resin in the through hole. Therefore, the resin protrusion is fixed to the metal plate. The thickness of the metal plate used here, the dimensions, shape, and arrangement of the through holes, and the dimensions, shape, and arrangement of the resin collar are selected depending on the required inclination accuracy.
In particular, for the metal plate, use a steel plate with a thickness of 2 mm or more, and for the through hole, make a through hole with a diameter of 3 mm or more whose center is on the circumference of a circle with a radius of 10 mm or more centered on the center of the resin protrusion. High tilt accuracy can be obtained when When a through hole is provided directly below the resin protrusion, the diameter of the through hole is 3 mm or more, and the projected area of the through hole directly below the resin protrusion and the resin collar on the plane defined by the metal plate surface. The ratio is 1/
High inclination accuracy can be obtained when the thickness is 15 or less, and in either case, good inclination accuracy is obtained when the thickness of the resin collar portion is 1.5 mm or more. Examples will be described below. Figures 8-a and 8-b show the top surface of one embodiment and the X 1 -Y 1 -Z 1 cross section of Figure 8-a, respectively. There are three through holes 111, 112 and 113 having the same diameter and whose centers are arranged at equal intervals on the circumference of a circle having the same center as the resin collar parts 35 and 36. The size is such that these through holes 111, 112 and 113 can be covered. Figures 9-a and 9-b show the top surface of another embodiment and the X 1 '-Y 1 '- of Figure 9-a, respectively.
This shows a Z 1 ' cross section, and the difference from the embodiment shown in FIG. This point covers part of the through hole. In this case, the circumference of the circle coaxial with the resin protrusion where the center of the through hole is located does not protrude beyond the resin collar 35, that is, the diameter of the circle is the diameter of the circle defining the resin collar 35. It is within. Figures 10-a and 10-b are the top surfaces of other embodiments and X 2 -Y 2 - of Figure 10-a, respectively.
This shows a cross section of Z3 , and the difference from the embodiment shown in FIG.
It is a point with a value of 4. In this case, the diameter of the central through hole 114 directly below the resin protrusion 4 is the same as that of the other through holes 11.
1, 112, and 113, and the term "directly below the resin protrusion 4" means that the center of the resin protrusion 4 and the center through hole 114 are aligned. In this way, the central through hole 1 is placed directly below the resin protrusion 4.
By providing 14, the connection between the metal plate 2 and the resin collar portions 35 and 36 can be made stronger. Figure 11-a, Figure 11-b, Figure 11-c,
Figures 12-a, 12-b, and 12-c are top views and cross-sections (X 3 -Y 3 -Z 3 cross section in Figure 11-a, 12-
This figure shows the cross - section (
and 114, respectively. 361, 362, 6 and 3 in each figure
Reference numeral 64 indicates these resin collars. In these embodiments, the number of through holes located on the circumference is three, but the number of through holes may be three or more, and the reason why the number of through holes is three or more is as follows. In other words, when there is only one through hole, as described in the explanation of the conventional example, deformation as shown in Figure 3-c occurs after long-term use, reducing the effectiveness of the resin collar and reducing accuracy. Deteriorate. Also,
When there are two through holes, for example, two through holes 111 and 11 as shown in FIG. 13-a and FIG. 13-b (FIG. 13-a is a top view of FIG. 13-b)
2, the direction in which the through holes 111 and 112 are connected is good after long-term use, but
In a direction perpendicular to this, deformation occurs due to residual stress as shown in Figure 13-b, resulting in poor accuracy. Taking these points into consideration, at least three through holes are required to prevent the resin collar from deforming. In addition, the runner part that becomes the resin flow path during molding remains in the molded product, and the accuracy deteriorates due to residual stress in this part.
Deformation occurs as shown in the conventional examples shown in FIGS. a and 5-b, and when there are two through holes, deformation occurs as shown in FIGS. 14 and 15. FIG. 14 shows that two through holes 111 and 112 are connected to the runner part 5.
Fig. 14-a shows the top surface, and Fig. 14-b shows the cross-section. In this case, the resin collar portion 5 on the side with the runner portion 51 and the resin collar portion 36 without the runner portion undergo different deformations. FIG. 15 shows two through holes 111,
112 is located in the direction of the runner part 51, FIG. 15-a is a top view, FIG. 15-b is a cross-sectional view, and FIG.
Figure -c shows the side view, in this case the 15th
As shown in figure -c, the resin collar portion is deformed and its effectiveness is reduced. Therefore, if three or more through holes are provided, the resin part in the through hole can prevent the resin collar from warping no matter which direction the runner part is placed, and the inclination accuracy of the resin protrusion can be improved. Become. Table 1 shows the results after molding of the composite molded product of this example.
The boss collapse rate (inclination accuracy when the cross section of the resin protrusion is circular) (%) is shown in comparison with conventional composite molded products after a week has passed. The resin used is polyacetal. In addition, in any case, the diameter is 8
mm, with a 40mm long boss and a 3mm diameter through hole.

【表】 さ1.5mmの鋼板に一体成形したもので、本発明の
第8図の複合成形品では、樹脂つば部の直径が20
mmで、貫通孔の中心が配置される円の直径を15mm
としたものを用い、従来品の第3図の複合成形品
では樹脂つば部の直径20mmのものを用い、従来品
の第4図の複合成形品では直径16mmの円の円周上
にリブ固定孔の中心が配置されるものを用いた。
また成形条件A、B、C、Dは、金型温度60℃、
シリンダ温度190℃は一定とし、射出圧力をそれ
ぞれ800、1000、1200、1400Kg/cm2としたもので
ある。 この表から明らかなように、リブで支持する第
4図の複合成形品は複数個の貫通孔を有している
が、第3図の単一貫通孔のものよりもボス倒れを
生じ易いことを示している。 また、第8図の複合成形品はボス倒れ率の点で
第4図の複合成形品とは極端に差があり、成形直
後および長期間放置後の傾き精度は良好であり、
かつ第4図の複合成形品に比べ形状が単純である
ため、流動、冷却に伴う残留応力の不均一がなく
なり、傾き精度が良好となる。 さらに、円の円周上に中心が位置される貫通孔
以外に、樹脂突起部の直下に別な中央貫通孔を設
置したものは、中央貫通孔内の樹脂によつて応力
がより均一に分散されるので、樹脂突起間の距離
のばらつきをより少なくすることができる。しか
し、この中央貫通孔を設置してもしなくても、樹
脂突起部の傾き精度にはほとんど差はない。な
お、樹脂突起部直下に別な中央貫通孔を設けた場
合には、樹脂突起部直下の中央貫通孔と樹脂つば
部の金属板表面方向の投影面積の比αは傾き精度
δ/hに影響するため、金属板に2mm以上の鋼板
を用い各貫通孔の直径が3mm以上でαが1/15以下
とすることによつて良好な傾き精度を保持するこ
とができる。第16図はαとδ/hとの関係を示
すもので、金属板に2mmの鋼板を用い、貫通孔の
直径3mmとし、樹脂つば部の厚さを1.5mmとして
求めたもので、αが1/15以下になるとδ/hが小
くなることを示している。また、第11図、第1
2図のように樹脂突起部側の樹脂つば部を一体と
し、その反対側で各貫通孔ごとに独立させた場合
にも効果にはほとんど差はない。 第17図は金属板の厚さと樹脂突起部の傾き精
度との関係についての実験結果を示すもので、横
軸、縦軸には、それぞれ金属板の厚さ(mm)、
δ/nがとつてあり、C、DおよびEはそれぞれ
成形直後、90℃、500h放置後、および90℃、
1000h放置後の値を示している。この図は金属板
として厚さ2mm以上の鋼板を用いると、樹脂突起
部の傾き精度が厚さ2mm未満の場合に比べてきわ
めて良好となり、厚さによる差がほとんどなくな
ることを示している。したがつて、金属板とし
て、厚さ2mm以上の鋼板を用いることが傾き精度
を良好にする上で望ましい。なお、この実験にお
ける金属板の厚さのばらつきは±0.2mmで、各測
定点は成形品10個の平均値である。 なお、金属板の厚さはランナ部を金属板の片面
に配置した場合の金属板のそりによつても影響を
受ける。第18−a図は第18−b図における
a、lを用いて反り率をa/l×100とした場合の反 り率と金属板の厚さとの関係を示すもので、横
軸、縦軸にそれぞれ金属板の厚さ(mm)、反り率
(%)がとつてあり、この図は金属板の厚さが2.0
mm以上になると反りがきわめて少なくなり、厚さ
による差がほとんどなくなることを示している。 これらの樹脂突起部の傾き精度および金属板の
反りの点で金属板の厚さは2mm以上にすることが
望ましい。 第19図は、貫通孔の直径と残留応力との関係
を実験で確認した結果を示しており、横軸、縦溝
には、それぞれ貫通孔の直径(mm)、残留応力
(Kg/cm2)がとつてあり、FおよびGは金属板の
板厚がそれぞれ1mmおよび2mmの場合を示してい
る。この図は貫通孔が直径3mm以上の場合は、直
径3mm未満の場合に比べて、残留応力が少なく、
直径による差がほとんどなくなることを示してい
る。この場合、残留応力が大きいほど、長期間使
用するうちに生ずる変形が大きくなり、クラツク
が発生し易くなる。したがつて、貫通孔の直径は
3mm以上が望ましい。貫通孔の中心が樹脂突起部
と同軸の円の円周上に配置される時の円の直径と
残留応力との関係を示したのが第20図で横軸、
縦軸にそれぞれ貫通孔を設置する円の直径(mm)、
残留応力(Kg/cm2)がとつてあり、金属板の板厚
2mm、貫通孔の直径3mmの場合である。この図は
貫通孔の直径を3mm以上にした場合には、金属板
の貫通孔を、樹脂突起部の中心から直径10mm以上
の円の円周上に等間隔に設置すると、残留応力の
発生が10mm未満の場合に比べて少なくなることを
示しており、直径10mm以上の円の円周上に貫通孔
を設置することが望ましい。 ここで、円周上に設置する貫通孔の直径を等し
くし、かつ間隔を等しくする理由について説明す
る。すなわち、貫通孔の直径が等しくない場合は
単位面積当りの残留応力は等しいから、直径の大
きい貫通孔の部分に大きな力が生ずることにな
り、各貫通孔間の残留応力に不均衡が生じ、長期
間使用する場合の変形が大きくなる原因となる。
また、貫通孔の間隔が等しくない場合にも、同様
に残留応力の不均衡が生ずる。すなわち、貫通孔
の直径を等しくし、貫通孔の間隔を等しくした場
合が最も残留応力の均衡がとれた状態であり、変
形が少なくなる。しかし、樹脂突起部の直下に中
央貫通孔を併設する場合に、この中央貫通孔の直
径が他の貫通孔の直径と等しいことは必ずしも必
要ではない。これは樹脂突起部直下の中央貫通孔
は樹脂突起部と中心を同じくしているので、他の
貫通孔の中心が位置する円の円周の中心となり、
貫通孔間の残留応力に不均衡をもたらされないか
らである。また、樹脂突起部直下の中央貫通孔で
発生する応力は樹脂突起部を金属板に固定する方
向にのみ作用し、傾きを生じさせる方向の成分を
有しない。 また、樹脂突起部直下に中央貫通孔が併設され
ている場合には次のような利点がある。樹脂と金
属とは熱膨張率に差があるから、第21図(第2
1−a図は横断面、第21−b図は縦断面を示
す)に示すように、貫通孔111と貫通孔111
内の樹脂9との間にはわずかな間隙91を生ず
る。しかし、樹脂つば部の収縮により、貫通孔1
11内の樹脂9は貫通孔111の壁に接し、応力
の作用している状態となる。したがつて、樹脂突
起部に外力が作用した場合には、作用応力と前述
の応力を合せた力が貫通孔111内の樹脂9に作
用し、しかも、金属板と接していることにより、
接触部で大きな応力集中が生ずる。ところが樹脂
突起部直下に設置されている中央貫通孔114内
の樹脂9には第22図に示すように樹脂つば部の
この中央貫通孔114と周辺の貫通孔111,1
12,113とを結ぶ矢印で示す方向に対して、
各方向より等しい応力83が作用しているので、
中央貫通孔114の壁と接しない状態にある。し
たがつて、外力が作用した場合においても、単な
る固定部断面積以上の高い強度が得られる。これ
は、周辺の貫通孔111,112,113の直径
が等しく、間隔が等しい場合に生ずる現象であ
り、この条件が満足されないと、必ずしもこのよ
うにはならない。なお、樹脂突起部の直下に中央
貫通孔を1個のみ設置し、他に貫通孔を設置して
いない場合にもこのような間隙が生ずるように思
われるが、一般には、第23図に示すように樹脂
つば部31にはランナ部51が設置されているた
め、このランナ部51における矢印84で示す残
留応力により貫通孔1内の樹脂9が貫通孔1の壁
に接する場合が多くなつている。これに対して、
本発明の場合には、ランナ部が存在したとして
も、周辺の貫通孔が緩衝の役割を果たし、直接、
樹脂突起部の直下の貫通孔内の樹脂に影響を及ぼ
す度合が少なくなる。 第24図は樹脂つば部の厚さと樹脂突起部の傾
き精度との関係の実験結果を示すもので、横軸、
縦軸には、それぞれ樹脂つば部の厚さ(mm)、
δ/hがとつてあり、樹脂つば部の直径が10mmの
場合である。この図は厚さ1.5mm以上の場合は厚
さ1.5mm未満の場合に比べて傾き精度がきわめて
良好となることを示している。したがつて、樹脂
つば部の厚さは1.5mm以上にするのが望ましい。 第25−a図および第25−b図は他の実施例
のそれぞれ上面および断面を示すもので、金属板
の一つの面と接触する樹脂つば部と樹脂突起部4
1の断面寸法が等しい、即ち、一つの面にある樹
脂つば部と樹脂突起部とが同一のものである場合
で、この場合にも同様な効果が得られる。 第26図はさらに他の実施例で樹脂突起部直下
の中央貫通孔114と円周上に位置する貫通孔1
11……が連続している場合であり、第27図は
両貫通孔111,112……,114を直線溝状
の貫通孔115で連結してある場合で、このよう
な貫通孔を有する金属板を用いた複合成形品は回
転トルクのかかる部分に用いた場合効果的であ
る。第28図は樹脂突起部直下の中央貫通孔11
4と直線溝状の貫通孔115との結合部の曲率半
径と90℃で連続加熱した場合の割れ発生時間との
関係を示すもので、横軸、縦軸にはそれぞれ曲率
半径(mm)および割れ発生時間(h)がとつてあ
り、曲率半径が1mm以上が望ましいことを示して
いる。 第29−a図および第29−b図はさらに他の
実施例を示すもので、樹脂突起部42が矩形の場
合を示している。 本発明において用いる樹脂には、ポリアセター
ル、ポリプロピレン、アクリロニトリル・ブタジ
エンゴム・スチレン共重合体(ABS樹脂)、ポリ
スチレン、アクリロニトリル・アクリルゴム・ス
チレン共重合体(AAS樹脂)、アクリロニトリ
ル・エチレンプロピレンゴム・スチレン共重合体
(AES樹脂)、ナイロン6、ナイロン66、ナイロ
ン12、ポリスルフオン、ポリエーテルスルフオ
ン、ポリフエニレンサルフアイド、ポリフエニレ
ンオキシド等の熱可塑性樹脂、エポキシ樹脂、不
飽和ポリエステル樹脂等の熱硬化性樹脂およびこ
れらの樹脂に無機充填剤あるいは有機充填剤を配
合したものが用いられるが、以上のものに限定さ
れない。 第30図a,b,c,d,e及びfは樹脂とし
てそれぞれ、ポリアセタール、ガラス繊維30%ポ
リアセタール、ナイロン6、ガラス繊維20%ポリ
ブチレンテレフタレート、ABC樹脂および炭酸
カルシウム配合ポリプロピレンを用いた場合の金
属板の反り率ε(%)を成形条件との関連におい
て示してあり、金属板が樹脂突起部側へ変形した
場合を+とし、逆の場合を−としてある。横軸に
はシリンダ温度(℃)、射出圧力(MPaおよびKg
f/cm2)金型温度(℃)、射出時間(s)がとつ
てあり、縦軸には反り率ε(%)がとつてある。
この実験結果は、2組の樹脂突起部直下の貫通孔
とこれらと同心の円周上に位置する3個の貫通孔
をもうけた一定形状の鋼板の表裏にそれぞれ厚さ
t1、t2のつば部樹脂層をもうけて反り率の測定を
行なつたもので、図の、、、はそれぞ
れ、t1/t2=2.3、1.5、1.1、0.67の場合を示して
おり、それぞれ下記の条件の内それぞれの横軸の
成形条件以外を一定として測定したものである。 (a)および(b) θc(シリンダ温度):200℃ P(射出圧力):98MPa(1000Kgf/cm2) θd(金型温度):60℃ ti(射出時間):8s (c) θc:190℃ P:98MPa(1000Kgf/cm2) θd:70℃ ti:8s (d) θc:255℃ P:98MPa(1000Kgf/cm2) θd:90℃ ti:8s (e) θc:240℃ P:98MPa(1000Kgf/cm2) θd:40℃ ti:8s (f) θc:220℃ P:98MPa(1000Kgf/cm2) θd:40℃ ti:8s なお、温度の上限は樹脂の劣化により、射出圧
力、射出時間の上限はばり発生により決まり、温
度、射出圧力、射出時間の下限は金型内に樹脂を
完全に充填し得る限界により決まる。 この測定結果は、ポリアセタール、ナイロン
6、ABS樹脂、炭酸カルシウム入りポリプロピ
レンが反り率の点で優れていることを示している
が、ナイロン6は吸水し易く、ポリプロピレンは
金属との接触により劣化し、ABS樹脂は耐候性
が良くない。これに対してポリアセタールはこれ
らの諸点でも良い結果を示し、変形が少なく、成
形性が良好な点で複合成形品に最も適している。 本発明による複合成形品は、従来の複合成形品
に比べて、樹脂突起部の傾き精度が良好であるほ
か、成形品の変形が少なくなり、また、残留応力
の不均衡が少ないため、長期間使用した場合の寸
法変化が少なく、外力を負荷した場合の強度が高
くなる。従つて、耐久性の面から見て、長期間精
度良く、クラツクの発生のない状態で使用するこ
とができる。また、従来の複合成形品と異なり、
樹脂つば部の反りが少ないために、複合成形品の
表面近傍に他の駆動部品を駆動させるような部品
に適用しても障害が生ずることがない。それ故、
従来は適用されなかつたような精密部品にも適用
できる。すなわち、従来は精度を必要とする突起
部は金属棒を金属板にかしめる方法で固定されて
いたため、突起部を一個一個かしめる製造工程を
必要としたが、本発明の場合には、樹脂突起部を
すべて一度の射出成形で成形することが可能であ
るため、製造工程を大幅に合理化することが出
来、製品のコスト低減が可能となる。 以上の如く、本発明金属板と樹脂との複合成形
品は寸法精度の良好なこの種複合成形品の提供を
可能とするもので、工業的効果の大なるものであ
る。
[Table] In the composite molded product of the present invention shown in Fig. 8, which is integrally molded on a steel plate with a diameter of 1.5 mm, the diameter of the resin collar is 20 mm.
mm, the diameter of the circle in which the center of the through hole is located is 15 mm
The conventional composite molded product shown in Figure 3 uses a resin collar with a diameter of 20 mm, and the conventional composite molded product shown in Figure 4 uses a rib fixed on the circumference of a circle with a diameter of 16 mm. The one in which the center of the hole was located was used.
In addition, molding conditions A, B, C, and D are mold temperature 60℃,
The cylinder temperature was kept constant at 190°C, and the injection pressures were set to 800, 1000, 1200, and 1400 Kg/ cm2 , respectively. As is clear from this table, although the composite molded product shown in Figure 4 supported by ribs has multiple through holes, it is more likely to cause boss collapse than the one with a single through hole shown in Figure 3. It shows. Furthermore, the composite molded product shown in Figure 8 is extremely different from the composite molded product shown in Figure 4 in terms of the boss collapse rate, and the inclination accuracy is good immediately after molding and after being left for a long time.
Moreover, since the shape is simpler than that of the composite molded product shown in FIG. 4, non-uniformity of residual stress due to flow and cooling is eliminated, and the inclination accuracy is improved. Furthermore, in addition to the through-hole whose center is located on the circumference of a circle, a separate central through-hole is installed directly below the resin protrusion, and the stress is more evenly distributed by the resin in the central through-hole. Therefore, variations in the distance between the resin protrusions can be further reduced. However, whether or not this central through hole is provided, there is almost no difference in the inclination accuracy of the resin protrusion. In addition, when a separate central through hole is provided directly below the resin protrusion, the ratio α of the projected area of the central through hole directly below the resin protrusion and the resin flange in the metal plate surface direction will affect the tilt accuracy δ/h. Therefore, good inclination accuracy can be maintained by using a steel plate of 2 mm or more as the metal plate, making each through hole have a diameter of 3 mm or more, and α of 1/15 or less. Figure 16 shows the relationship between α and δ/h. It was calculated using a 2 mm steel plate as the metal plate, a through hole diameter of 3 mm, and a resin collar thickness of 1.5 mm. This shows that δ/h becomes smaller when it becomes 1/15 or less. Also, Figure 11,
There is almost no difference in the effect even when the resin collar on the resin protrusion side is integrated and each through hole is made independent on the opposite side as shown in Figure 2. Figure 17 shows the experimental results regarding the relationship between the thickness of the metal plate and the inclination accuracy of the resin protrusion.The horizontal and vertical axes are the thickness of the metal plate (mm),
δ/n is set, and C, D and E are respectively immediately after molding, after being left at 90℃ for 500 hours, and at 90℃,
The value is shown after being left for 1000 hours. This figure shows that when a steel plate with a thickness of 2 mm or more is used as the metal plate, the inclination accuracy of the resin protrusion is much better than when the thickness is less than 2 mm, and there is almost no difference due to thickness. Therefore, it is desirable to use a steel plate with a thickness of 2 mm or more as the metal plate in order to improve the tilt accuracy. Note that the variation in the thickness of the metal plate in this experiment was ±0.2 mm, and each measurement point was the average value of 10 molded products. Note that the thickness of the metal plate is also affected by the warpage of the metal plate when the runner portion is disposed on one side of the metal plate. Figure 18-a shows the relationship between the warpage rate and the thickness of the metal plate when the warpage rate is a/l x 100 using a and l in Figure 18-b. The thickness (mm) and warpage rate (%) of the metal plate are shown respectively. This figure shows the thickness of the metal plate 2.0
This shows that when the thickness exceeds mm, the warpage becomes extremely small, and there is almost no difference due to thickness. In view of the inclination accuracy of these resin protrusions and the warpage of the metal plate, it is desirable that the thickness of the metal plate be 2 mm or more. Figure 19 shows the results of an experiment confirming the relationship between the diameter of the through-hole and the residual stress . ) are taken, and F and G indicate the case where the thickness of the metal plate is 1 mm and 2 mm, respectively. This figure shows that when the through hole has a diameter of 3 mm or more, the residual stress is lower than when the diameter is less than 3 mm.
This shows that there is almost no difference due to diameter. In this case, the greater the residual stress, the greater the deformation that occurs during long-term use, and the more likely cracks will occur. Therefore, the diameter of the through hole is preferably 3 mm or more. Figure 20 shows the relationship between the diameter of the circle and the residual stress when the center of the through hole is placed on the circumference of a circle coaxial with the resin protrusion, and the horizontal axis and
The diameter of the circle in which each through hole is installed on the vertical axis (mm),
The residual stress (Kg/cm 2 ) is constant, the thickness of the metal plate is 2 mm, and the diameter of the through hole is 3 mm. This figure shows that when the diameter of the through-holes is 3 mm or more, residual stress can be generated by placing the through-holes in the metal plate at equal intervals on the circumference of a circle with a diameter of 10 mm or more from the center of the resin protrusion. This indicates that the number of through holes is smaller than that when the diameter is less than 10 mm, and it is desirable to install the through hole on the circumference of a circle with a diameter of 10 mm or more. Here, the reason why the diameters of the through holes installed on the circumference are made equal and the intervals are made equal will be explained. In other words, if the diameters of the through holes are unequal, the residual stress per unit area is the same, so a large force will be generated in the part of the through hole with a large diameter, resulting in an imbalance in the residual stress between the through holes. This may cause significant deformation when used for a long period of time.
Furthermore, if the intervals between the through holes are not equal, an imbalance in residual stress will similarly occur. That is, when the diameters of the through holes are made equal and the intervals between the through holes are made equal, the residual stress is most balanced and deformation is reduced. However, when a central through hole is provided directly below the resin protrusion, it is not necessarily necessary that the diameter of this central through hole be equal to the diameters of the other through holes. This is because the center through hole directly below the resin protrusion has the same center as the resin protrusion, so it becomes the center of the circumference of the circle where the centers of the other through holes are located.
This is because residual stress between the through holes does not become unbalanced. Further, the stress generated in the central through hole directly below the resin protrusion acts only in the direction of fixing the resin protrusion to the metal plate, and does not have a component in the direction of causing inclination. Further, when the central through hole is provided directly below the resin protrusion, there are the following advantages. Since there is a difference in thermal expansion coefficient between resin and metal,
1-a shows a cross section, and FIG. 21-b shows a longitudinal section), the through-hole 111 and the through-hole 111
A slight gap 91 is created between the inner resin 9 and the inner resin 9. However, due to shrinkage of the resin collar, the through hole 1
The resin 9 in the through hole 111 comes into contact with the wall of the through hole 111 and is under stress. Therefore, when an external force acts on the resin protrusion, the combined force of the applied stress and the above-mentioned stress acts on the resin 9 in the through hole 111, and since it is in contact with the metal plate,
Large stress concentrations occur at the contact area. However, as shown in FIG. 22, the resin 9 in the central through hole 114 installed directly below the resin protrusion has holes in the central through hole 114 and surrounding through holes 111, 1 in the resin collar.
With respect to the direction shown by the arrow connecting 12 and 113,
Since equal stress 83 is acting from each direction,
It is in a state where it does not touch the wall of the central through hole 114. Therefore, even when an external force is applied, a high strength greater than the mere cross-sectional area of the fixed portion can be obtained. This is a phenomenon that occurs when the peripheral through holes 111, 112, and 113 have the same diameter and are spaced at equal intervals, and unless these conditions are met, this will not necessarily occur. It should be noted that such a gap seems to occur even when only one central through hole is installed directly under the resin protrusion and no other through holes are installed, but in general, the gap shown in Figure 23 is Since the runner part 51 is installed in the resin flange part 31 as shown in FIG. There is. On the contrary,
In the case of the present invention, even if there is a runner part, the surrounding through-holes serve as a buffer, and the
The degree of influence on the resin in the through hole directly below the resin protrusion is reduced. Figure 24 shows the experimental results of the relationship between the thickness of the resin collar and the inclination accuracy of the resin protrusion.
The vertical axis shows the thickness of the resin collar (mm),
This is a case where δ/h is set and the diameter of the resin collar is 10 mm. This figure shows that when the thickness is 1.5 mm or more, the inclination accuracy is much better than when the thickness is less than 1.5 mm. Therefore, it is desirable that the thickness of the resin collar be 1.5 mm or more. Figures 25-a and 25-b show a top surface and a cross section of another embodiment, respectively, and show a resin collar portion and a resin protrusion portion 4 that are in contact with one surface of the metal plate.
1 have the same cross-sectional dimensions, that is, the resin collar and the resin protrusion on one surface are the same, and the same effect can be obtained in this case as well. FIG. 26 shows still another embodiment, with a central through hole 114 directly below the resin protrusion and through holes 1 located on the circumference.
11... are continuous, and FIG. 27 shows a case where both through holes 111, 112..., 114 are connected by a straight groove-shaped through hole 115. Composite molded products using plates are effective when used in areas subject to rotational torque. Figure 28 shows the central through hole 11 directly below the resin protrusion.
This graph shows the relationship between the radius of curvature of the joint between 4 and the straight groove-shaped through hole 115 and the time for cracking to occur when continuously heated at 90°C. It shows that the cracking generation time (h) is set and the radius of curvature is desirably 1 mm or more. Figures 29-a and 29-b show still another embodiment, in which the resin protrusion 42 is rectangular. The resins used in the present invention include polyacetal, polypropylene, acrylonitrile/butadiene rubber/styrene copolymer (ABS resin), polystyrene, acrylonitrile/acrylic rubber/styrene copolymer (AAS resin), and acrylonitrile/ethylene propylene rubber/styrene copolymer. Thermosetting of polymers (AES resin), thermoplastic resins such as nylon 6, nylon 66, nylon 12, polysulfon, polyether sulfon, polyphenylene sulfide, polyphenylene oxide, epoxy resin, unsaturated polyester resin, etc. Polymer resins and mixtures of these resins with inorganic fillers or organic fillers are used, but the present invention is not limited to these. Figure 30 a, b, c, d, e, and f show the results when polyacetal, 30% glass fiber polyacetal, nylon 6, 20% glass fiber polybutylene terephthalate, ABC resin, and polypropylene blended with calcium carbonate are used as resins, respectively. The warpage rate ε (%) of the metal plate is shown in relation to the molding conditions, and the case where the metal plate deforms toward the resin protrusion is indicated as +, and the opposite case is indicated as -. The horizontal axis shows cylinder temperature (℃) and injection pressure (MPa and kg).
f/cm 2 ) Mold temperature (°C) and injection time (s) are plotted, and the warpage rate ε (%) is plotted on the vertical axis.
The results of this experiment showed that a steel plate of a certain shape had two through-holes directly below the resin protrusions and three through-holes located on the circumference concentric with these.
The warp rate was measured after forming the resin layer on the brim at t 1 and t 2. In the figure, , , and indicate the cases where t 1 /t 2 = 2.3, 1.5, 1.1, and 0.67, respectively. The measurements were made under the following conditions except for the molding conditions on the respective horizontal axes. (a) and (b) θ c (cylinder temperature): 200℃ P (injection pressure): 98MPa (1000Kgf/cm 2 ) θ d (mold temperature): 60℃ t i (injection time): 8s (c) θ c : 190℃ P: 98MPa (1000Kgf/cm 2 ) θ d : 70℃ t i : 8s (d) θ c : 255℃ P: 98MPa (1000Kgf/cm 2 ) θ d : 90℃ t i : 8s ( e) θ c : 240℃ P: 98MPa (1000Kgf/cm 2 ) θ d : 40℃ t i : 8s (f) θ c : 220℃ P: 98MPa (1000Kgf/cm 2 ) θ d : 40℃ t i : 8s The upper limit of temperature is determined by the deterioration of the resin, the upper limit of injection pressure and injection time is determined by the occurrence of burrs, and the lower limit of temperature, injection pressure and injection time is determined by the limit that can completely fill the mold with resin. This measurement result shows that polyacetal, nylon 6, ABS resin, and polypropylene containing calcium carbonate are superior in terms of warpage rate, but nylon 6 easily absorbs water, and polypropylene deteriorates due to contact with metals. ABS resin does not have good weather resistance. On the other hand, polyacetal shows good results in these respects, is less deformed, and has good moldability, making it the most suitable for composite molded products. Compared to conventional composite molded products, the composite molded product of the present invention has better inclination accuracy of the resin protrusion, less deformation of the molded product, and less unbalanced residual stress, so it can last for a long time. Dimensional changes are small when used, and strength is increased when external forces are applied. Therefore, from the viewpoint of durability, it can be used for a long period of time with good precision and without cracks. Also, unlike conventional composite molded products,
Since the resin flange has little warpage, no trouble will occur even if it is applied to a component that drives other drive components near the surface of a composite molded product. Therefore,
It can also be applied to precision parts that were not previously applicable. In other words, in the past, protrusions that required precision were fixed by caulking a metal rod to a metal plate, which required a manufacturing process in which each protrusion was caulked one by one.However, in the case of the present invention, resin Since all the protrusions can be molded in a single injection molding process, the manufacturing process can be significantly streamlined and the cost of the product can be reduced. As described above, the composite molded product of the metal plate and resin of the present invention makes it possible to provide this type of composite molded product with good dimensional accuracy, and has great industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の複合成形品の構成と傾き精度の
悪い状態を示す断面図、第2図は複合成形品の成
形用金型の構成を示す断面図、第3−a図は従来
の複合成形品の他の例の断面図、第3−b図は第
3−a図に示した樹脂つば部に加わる力の方向を
示す断面図、第3−c図は第3−a図に示した樹
脂つば部分の変形状態を模式的に示す断面図、第
4−a図および第4−b図はそれぞれ同じく他の
例の上面図および断面図、第5−a図および第5
−b図は第3−a図に示す形状の複合成形品がラ
ンナ部の存在による残留応力により樹脂つば部が
変形する場合の方向を示す断面図および変形状態
を模式的に示す断面図、第6図は第3図および第
4図の複合成形品における樹脂温度とδ/hとの
関係を示す特性線図、第7図は従来の複合成形品
の他の例を示す断面図、第8−a図および第8−
b図はそれぞれ本発明複合成形品の一実施例の上
面図および断面図、第9−a図および第9−b図
はそれぞれ同じく他の実施例の上面図および断面
図、第10−a図および第10−b図はさらに他
の実施例を示す上面図および断面図、第11−a
図、第11−b図および第11−c図はそれぞれ
同じく他の実施例の上面図、断面図および下面
図、第12−a図、第12−b図および第12−
c図はそれぞれ同じく他の実施例の上面図、断面
図および下面図、第13図は本発明との比較のた
めに示した貫通孔2個の場合の樹脂つば部の変形
状態を模式的に示す図で、第13−a図および第
13−b図はそれぞれ上面図および断面図、第1
4−a図および第14−b図はそれぞれ本発明と
の比較のために示したランナ部を有する貫通孔2
個の場合の樹脂つば部の変形状態を模式的に示す
上面図および断面図、第15−a図、第15−b
図および第15−c図はそれぞれ同じくランナ部
を有する貫通孔2個の場合の樹脂つば部の変形状
態を模式的に示す上面図、断面図および側面図、
第16図は本発明複合成形品の樹脂突起部直下の
貫通孔と樹脂つば部の金属板表面方向の投影面積
の比と樹脂突起部の傾き精度との関係を示す特性
線図、第17図は本発明複合成形品の金属板の厚
さと樹脂突起部の傾き精度との関係を示す特棒線
図、第18−a図は同じく金属板の厚さと反り率
との関係を示す特性線図、第18−b図は反り率
の定義を示す断面図、第19図は同じく貫通孔と
残留応力との関係を示す特性線図、第20図は同
じく貫通孔を設置する円の直径と残留応力との関
係を示す特性線図、第21−a図および第21−
b図は貫通孔と貫通孔内の樹脂との関係を示す模
式図で第21−a図は横断面図、第21−b図は
縦断面図、第22図は同じく樹脂突起部直下の中
央貫通孔と円周上に配設された貫通孔とを有する
場合に樹脂つば部に生ずる残留応力の方向を示す
模式的に示す横断面図、第23図はランナ部を有
する従来の複合成形品の貫通孔と貫通孔内の樹脂
との関係を模式的に示す断面図、第24図は本発
明複合成形品の樹脂つば部の厚さと樹脂突起部の
傾き精度との関係を示す特性線図、第25−a図
および第25−b図はそれぞれ同じく他の実施例
の上面図および断面図、第26図および第27図
は同じくそれぞれ異なる他の実施例の貫通孔の平
面図、第28図は第27図の実施例の貫通孔の直
線溝結合部の曲率半径と連続加熱における割れ発
生時間との関係を示す特性線図、第29−a図お
よび第29−b図はそれぞれ本発明複合成形品の
他の実施例の上面図および断面図、第30図は本
発明複合成形品に使用する樹脂の成形条件と反り
率との関係を示す特性線図である。 111,112,113……貫通孔、114…
…中央貫通孔、115……(直線溝状の)貫通
孔、2……金属板、35,36……樹脂つば部、
4……樹脂突起部、51……ランナ部、9……
(貫通孔内の)樹脂。
Figure 1 is a cross-sectional view showing the configuration of a conventional composite molded product and a state with poor tilt accuracy. Figure 2 is a cross-sectional view showing the configuration of a mold for molding the composite molded product. Figure 3-a is a cross-sectional view of the conventional composite molded product. A cross-sectional view of another example of the molded product, Figure 3-b is a cross-sectional view showing the direction of the force applied to the resin collar shown in Figure 3-a, and Figure 3-c is shown in Figure 3-a. A sectional view schematically showing the deformed state of the resin collar portion, FIGS.
Figure 3-b is a cross-sectional view showing the direction in which the resin collar portion of the composite molded product having the shape shown in Figure 3-a is deformed due to residual stress due to the presence of the runner portion, and a cross-sectional view schematically showing the deformed state. 6 is a characteristic diagram showing the relationship between resin temperature and δ/h in the composite molded products shown in FIGS. 3 and 4, FIG. 7 is a sectional view showing another example of the conventional composite molded product, and FIG. -Figure a and 8th-
Figure b is a top view and a sectional view of one embodiment of the composite molded article of the present invention, Figures 9-a and 9-b are a top view and a sectional view of another embodiment, respectively, and Figure 10-a. FIG. 10-b is a top view and a sectional view showing still another embodiment, and FIG. 11-a is a top view and a cross-sectional view showing still another embodiment.
Figures 11-b and 11-c are top views, cross-sectional views, bottom views, 12-a, 12-b, and 12-c of other embodiments, respectively.
Figure c is a top view, cross-sectional view, and bottom view of other embodiments, respectively, and Figure 13 schematically shows the deformed state of the resin collar in the case of two through holes shown for comparison with the present invention. 13-a and 13-b are a top view, a cross-sectional view, and a first
Figure 4-a and Figure 14-b each show a through hole 2 having a runner portion for comparison with the present invention.
A top view and a sectional view schematically showing the deformed state of the resin collar in the case of 15-a and 15-b.
15-c are a top view, a cross-sectional view, and a side view schematically showing the deformed state of the resin collar in the case of two through holes having the same runner portion, respectively;
FIG. 16 is a characteristic diagram showing the relationship between the ratio of the projected area in the metal plate surface direction of the through hole directly below the resin protrusion of the composite molded product of the present invention and the resin collar portion, and the inclination accuracy of the resin protrusion, and FIG. 17 18-a is a special bar diagram showing the relationship between the thickness of the metal plate and the inclination accuracy of the resin protrusion of the composite molded product of the present invention, and FIG. 18-a is a characteristic diagram showing the relationship between the thickness of the metal plate and the warpage rate. , Figure 18-b is a cross-sectional view showing the definition of warpage rate, Figure 19 is a characteristic diagram showing the relationship between through holes and residual stress, and Figure 20 is a diagram showing the relationship between the diameter of the circle where the through hole is installed and the residual stress. Characteristic diagrams showing the relationship with stress, Figures 21-a and 21-
Figure b is a schematic diagram showing the relationship between the through hole and the resin in the through hole, Figure 21-a is a cross-sectional view, Figure 21-b is a longitudinal cross-sectional view, and Figure 22 is the center directly below the resin protrusion. FIG. 23 is a cross-sectional view schematically showing the direction of residual stress generated in the resin collar when it has through holes and through holes arranged on the circumference, and FIG. 23 is a conventional composite molded product having a runner part. 24 is a cross-sectional view schematically showing the relationship between the through hole and the resin in the through hole, and FIG. 24 is a characteristic diagram showing the relationship between the thickness of the resin collar and the inclination accuracy of the resin protrusion of the composite molded product of the present invention. , 25-a and 25-b are a top view and a sectional view of another embodiment, respectively, FIGS. 26 and 27 are a plan view of a through hole of another embodiment, and 28. The figure is a characteristic diagram showing the relationship between the radius of curvature of the straight groove joint part of the through hole and the crack generation time in continuous heating in the embodiment shown in Fig. 27, and Figs. 29-a and 29-b are respectively according to the present invention. A top view and a sectional view of another example of the composite molded product, and FIG. 30 are characteristic diagrams showing the relationship between molding conditions and warpage rate of the resin used in the composite molded product of the present invention. 111, 112, 113...through hole, 114...
... central through hole, 115 ... (straight groove-shaped) through hole, 2 ... metal plate, 35, 36 ... resin collar part,
4...Resin protrusion, 51...Runner part, 9...
Resin (in the through hole).

Claims (1)

【特許請求の範囲】 1 貫通孔を有する金属板と、該金属板の平面か
ら突出した樹脂突起部とを有し、前記樹脂突起部
と一体をなす前記貫通孔内の樹脂によつて前記樹
脂突起部を前記金属板に係止する金属板と樹脂と
の複合成形品において、前記貫通孔が前記樹脂突
起部直下に設けられている中央貫通孔と、該中央
貫通孔の周辺部に位置する補助貫通孔とからな
り、前記樹脂突起部の設けられている側の前記金
属板に接触し前記中央貫通孔及び前記補助貫通孔
の少なくとも一部を覆い、前記樹脂突起部の設け
られていない側の前記金属板に接触し前記中央貫
通孔のみを覆う、樹脂つば部を有していることを
特徴とする金属板と樹脂との複合成形品。 2 前記複合成形品において、前記樹脂つば部が
前記金属板の両面を画定する平面と平行な平面に
より画定される板状体である特許請求の範囲第1
項記載の金属板と樹脂との複合成形品。 3 前記複合成形品において、前記中央貫通孔と
前記樹脂つば部との前記金属板表面により画定さ
れる平面への投影面積の比が1/15以下である特
許請求の範囲第1項記載の金属板と樹脂との複合
成形品。 4 前記複合成形品において、前記樹脂つば部及
び前記突起部がポリアセタールからなる特許請求
の範囲第1項記載の金属板と樹脂との複合成形
品。 5 前記複合成形品において、前記金属板の一つ
の面と接触する前記樹脂つば部が前記樹脂突起部
と同一のものである特許請求の範囲第1項記載の
金属板と樹脂との複合成形品。
[Scope of Claims] 1. A metal plate having a through hole and a resin protrusion protruding from the plane of the metal plate, wherein the resin is absorbed by the resin in the through hole that is integrated with the resin protrusion. In a composite molded product of a metal plate and resin that locks a protrusion to the metal plate, the through hole is located at a central through hole provided directly below the resin protrusion and at a peripheral portion of the central through hole. an auxiliary through hole, which contacts the metal plate on the side where the resin protrusion is provided and covers at least a portion of the central through hole and the auxiliary through hole, and the side where the resin protrusion is not provided; A composite molded product of a metal plate and resin, characterized in that it has a resin collar that contacts the metal plate and covers only the central through hole. 2. In the composite molded product, the resin collar is a plate-shaped body defined by a plane parallel to a plane defining both surfaces of the metal plate.
Composite molded product of metal plate and resin as described in section. 3. The metal according to claim 1, wherein in the composite molded product, the ratio of the projected areas of the central through hole and the resin collar portion to a plane defined by the surface of the metal plate is 1/15 or less. Composite molded product of plate and resin. 4. The composite molded product of a metal plate and resin according to claim 1, wherein in the composite molded product, the resin collar portion and the protrusion portion are made of polyacetal. 5. The composite molded product of a metal plate and resin according to claim 1, wherein in the composite molded product, the resin collar portion that contacts one surface of the metal plate is the same as the resin protrusion. .
JP59141273A 1984-07-06 1984-07-06 Composite molding of metallic plate and resin Granted JPS6034836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59141273A JPS6034836A (en) 1984-07-06 1984-07-06 Composite molding of metallic plate and resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59141273A JPS6034836A (en) 1984-07-06 1984-07-06 Composite molding of metallic plate and resin

Publications (2)

Publication Number Publication Date
JPS6034836A JPS6034836A (en) 1985-02-22
JPS6357233B2 true JPS6357233B2 (en) 1988-11-10

Family

ID=15288053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59141273A Granted JPS6034836A (en) 1984-07-06 1984-07-06 Composite molding of metallic plate and resin

Country Status (1)

Country Link
JP (1) JPS6034836A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63155383U (en) * 1987-03-31 1988-10-12
JP4744041B2 (en) * 2001-09-25 2011-08-10 株式会社マルイ Press massage aid

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605179B2 (en) * 1978-04-11 1985-02-08 株式会社日立製作所 Composite molded product of metal plate and resin

Also Published As

Publication number Publication date
JPS6034836A (en) 1985-02-22

Similar Documents

Publication Publication Date Title
JPS605179B2 (en) Composite molded product of metal plate and resin
GB1599747A (en) Composite article comprising a glass panel and a surrounding frame therefor
JPS6357233B2 (en)
EP0659533B1 (en) Injection mold
WO2025036116A1 (en) Oil spray ring and electric motor
JP2536126Y2 (en) Armature core insulation mechanism
US20100080865A1 (en) Seal Structure and Seal Method
JPH02233383A (en) Heat insulating container and its manufacture
JP2687533B2 (en) Method for manufacturing window glass with gasket
JPH0753389B2 (en) Manufacturing method of window glass with gasket
JP4019242B2 (en) Golf ball manufacturing method and golf ball
JP2975031B2 (en) Manufacturing method of window glass with frame
JPH01189481A (en) Preparation of heat insulating body
GB2195102A (en) Method of making a key switching device
JPH08154364A (en) Resin mold body and method of manufacturing the same
JPH05220758A (en) Temperature difference molding method
WO2005051630A1 (en) Molded member having insert member and method for manufacture thereof
CN217107280U (en) Connecting structure between plastic flange plate and lug of fuel pump
JPH08267517A (en) Mold structure
JPH06190932A (en) Manufacture of fiber-reinforced resin molded body having core materials
JPS6367126A (en) Method for forming molding of gasket
JPS6149109B2 (en)
JPS6241448B2 (en)
JP2004058559A (en) Reinforcement structure and mold structure for molding the reinforcement structure
JPS62141944A (en) Stator core