[go: up one dir, main page]

JPS6356936A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6356936A
JPS6356936A JP20224186A JP20224186A JPS6356936A JP S6356936 A JPS6356936 A JP S6356936A JP 20224186 A JP20224186 A JP 20224186A JP 20224186 A JP20224186 A JP 20224186A JP S6356936 A JPS6356936 A JP S6356936A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor substrate
polycrystalline silicon
oxide film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20224186A
Other languages
Japanese (ja)
Inventor
Tsuneo Hamaguchi
恒夫 濱口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP20224186A priority Critical patent/JPS6356936A/en
Publication of JPS6356936A publication Critical patent/JPS6356936A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PURPOSE:To shorten the production time by using an silicon substrate, to which hydrophilic treatment is executed, as a support substrate for a semiconductor substrate isolated by a dielectric. CONSTITUTION:An oxide film 102 is formed onto the surface of a substrate 101 consisting of N-type single crystal silicon, predetermined sections in the oxide film 102 are removed, and grooves 103 are shaped, using residual sections as masks. The oxide films 102 are gotten rid of, and the oxide film 102 is formed onto the upper surfaces of the grooves 103 and the surface of the substrate 101 again. Polycrystalline silicon is grown thicker than the depth of the grooves 103 and a polycrystalline silicon layer 104 is formed and polycrystalline silicon except the insides of the grooves 103 is taken away, thus flattening the surface. The oxide film 102 and the surface of the polycrystalline silicon layer 104 are hydrophilic-treated. The back of the substrate 101 is ground, the noses of the oxide film 102 are exposed, an impurity is introduced to a ground surface to shape P layers 106 and 107, and an N<+> layer 108 is formed to the P layer 106. Electrodes 109, 110 and 111 are each shaped. Accordingly, the production time is shortened while the semiconductor substrate can be ground uniformly.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に誘電体分離
法を用いる半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a semiconductor device using a dielectric isolation method.

〔従来の技術〕[Conventional technology]

従来、誘電体分離法を用いる半導体装置の製造方法とし
ては、多結晶シリコンを支持基板としたものがエヌイー
シー・リサーチアンドデベロプメント(NECRESE
RCII & DEVEl、OPMENT)57巻(1
980年)39頁に発表されている。
Conventionally, as a method for manufacturing semiconductor devices using a dielectric separation method, a method using polycrystalline silicon as a support substrate was developed by NEC Research and Development (NECRESE).
RCII & DEVEL, OPMENT) Volume 57 (1
980), published on page 39.

次に、その製造方法の一例を図面を用いて説明する。Next, an example of the manufacturing method will be explained using the drawings.

第2図(a)〜(d)は、従来の高耐圧誘電体分離型サ
イリスタの製造方法を説明するための工程順に示した半
導体チップの断面図である。
FIGS. 2(a) to 2(d) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining a conventional method of manufacturing a high voltage dielectric isolation type thyristor.

まず、第2図(a)に示すように、N型単結晶シリコン
かならる半導体基板101に遼択エツチングを行なって
、素子領域分離用の満103を形成したのち表面を熱酸
化することにより、酸1ヒ膜102を形成する。
First, as shown in FIG. 2(a), selective etching is performed on a semiconductor substrate 101 made of N-type single crystal silicon to form a layer 103 for separating element regions, and then the surface is thermally oxidized. , an acid-1 arsenic film 102 is formed.

次に、第2[2(b)に示すように、?r8103が形
成された酸化膜102上に多結晶シリコン層104を厚
く堆積して満1033埋める。
Next, as shown in the second [2(b), ? A polycrystalline silicon layer 104 is thickly deposited on the oxide film 102 on which r8103 is formed to completely fill the area.

次に、第2図(c)に示すように、その多結晶シリコン
層104を支持基板として、半導体基板101の裏面を
研磨して、単結晶シリコンアイランド101Aを形成す
る。
Next, as shown in FIG. 2(c), the back surface of the semiconductor substrate 101 is polished using the polycrystalline silicon layer 104 as a support substrate to form a single crystal silicon island 101A.

次に、第2図(d)に示すように、単結晶アイラン′ド
l0IAにアノード110、ゲート109及びカソード
111を有すサイリスタを形成することにより、半導体
装置が完成する。
Next, as shown in FIG. 2(d), a thyristor having an anode 110, a gate 109, and a cathode 111 is formed on the single crystal island 10IA, thereby completing the semiconductor device.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、なから、上述した従来の半導体装置の製造方法
では、支持基板として用いる多結晶シリコンを数百μm
堆績するのに多くの時間と費用がかかること、また多結
晶シリコン層104を支持基板として、単結晶シリコン
基板を研磨する際に、多結晶シリコン層104が均一の
厚さになっていないこと、更に、多結晶シリコンの成長
時に成長面と反対面にも多結晶シリコンが成長する等の
理由で、単結晶シリコンからなる半導体基板を均一に研
磨することができないこと等の問題点があった。
However, in the conventional semiconductor device manufacturing method described above, the polycrystalline silicon used as the support substrate has a thickness of several hundred μm.
It takes a lot of time and money to deposit, and when polishing a single crystal silicon substrate using the polycrystalline silicon layer 104 as a support substrate, the polycrystalline silicon layer 104 does not have a uniform thickness. Furthermore, there were other problems such as the inability to uniformly polish a semiconductor substrate made of single-crystal silicon because polycrystalline silicon also grows on the opposite surface to the growth surface during growth of polycrystalline silicon. .

本発明の目的は製造時間が短縮され、半導体基板が均一
に研磨できる半導体装置の製造方法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device that can shorten manufacturing time and uniformly polish a semiconductor substrate.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置の製造方法は、半導体基板表面に素
子領域分離用の溝を形成する工程と、この溝を含む全面
に絶縁膜を形成したのち前記溝を含む半導体基板表面に
多結晶シリコン層を形成する工程と、この多結晶シリコ
ン層をエツチングし、多結晶シリコン層を溝中にのみ残
して前記半導体基板表面を平坦化する工程と、前記絶縁
膜と前記講中の多結晶シリコン層を含む前記半導体基板
表面を親水性化処理したのちこの半導体基板表面に親水
性化処理されたシリコン基板表面を密着し固定させる工
程と、前記シリコン基板が固定された前記半導体基板の
裏面を研磨し、前記講中に形成された絶縁膜の先端を露
出させる工程と、前記半導体基板の研磨面に半導体素子
を形成する工程とを含んで構成される。
The method for manufacturing a semiconductor device of the present invention includes the steps of forming a groove for separating element regions on the surface of a semiconductor substrate, forming an insulating film on the entire surface including the groove, and then layering a polycrystalline silicon layer on the surface of the semiconductor substrate including the groove. a step of etching this polycrystalline silicon layer to planarize the surface of the semiconductor substrate leaving the polycrystalline silicon layer only in the groove; and etching the insulating film and the polycrystalline silicon layer in the groove. a step of making the surface of the semiconductor substrate hydrophilic, and then adhering and fixing the surface of the silicon substrate that has been made hydrophilic to the surface of the semiconductor substrate; polishing the back surface of the semiconductor substrate to which the silicon substrate is fixed; The method includes a step of exposing the tip of the insulating film formed during the polishing, and a step of forming a semiconductor element on the polished surface of the semiconductor substrate.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図(a)〜(g)は本発明の一実施例を説明するた
めの工程順に示した半導体チップの断面図である。
FIGS. 1(a) to 1(g) are cross-sectional views of a semiconductor chip shown in order of steps for explaining an embodiment of the present invention.

まず、第1図(a)に示すように、N型単結晶シリコン
からなる半導体基板101の表面に二酸化シリコンから
なる酸化膜102を形成したのち、この酸1ヒ膜102
の所定部分を写真食刻法により除去し、残りの部分の酸
化膜102をマスクとして、半導体基板101内に素子
領域分離用の渦103を形成する。この溝103はドラ
イエツチングまたは水酸化カリウム溶液またはエチレン
ジアミンピロカテコール等を用いる異方性エツチングに
より形成することができる。
First, as shown in FIG. 1(a), an oxide film 102 made of silicon dioxide is formed on the surface of a semiconductor substrate 101 made of N-type single crystal silicon, and then this oxide film 102 is made of silicon dioxide.
A predetermined portion of the oxide film 102 is removed by photolithography, and a vortex 103 for separating device regions is formed in the semiconductor substrate 101 using the remaining oxide film 102 as a mask. This groove 103 can be formed by dry etching or anisotropic etching using a potassium hydroxide solution, ethylenediamine pyrocatechol, or the like.

次に、第1図(b)に示すように、マスクとして用いた
酸化膜102を除去して、再度二酸化シリコンにより酸
化膜102を満103の上面および満103間の半導体
基板101の表面に形成する。
Next, as shown in FIG. 1(b), the oxide film 102 used as a mask is removed, and an oxide film 102 is again formed using silicon dioxide on the upper surface of the full 103 and the surface of the semiconductor substrate 101 between the full 103. do.

次に、第1図(C)に示すように、多結晶シリコンを気
相成長法により、講103の深さ以上の厚さに成長させ
て7111103を埋める多結晶シリコン層104を形
成する。
Next, as shown in FIG. 1C, polycrystalline silicon is grown to a thickness equal to or greater than the depth of the groove 103 by vapor phase growth to form a polycrystalline silicon layer 104 that fills the area 7111103.

次に、第1図(d)に示すように多結晶シリコン層10
4をドライエツチングまたはポリッシングなどの方法を
用いて溝103中以外の半導体基板101の表面上の多
結晶シリコンを除去し、表面を平坦にする。
Next, as shown in FIG. 1(d), a polycrystalline silicon layer 10
4, the polycrystalline silicon on the surface of the semiconductor substrate 101 except in the groove 103 is removed using a method such as dry etching or polishing to flatten the surface.

次に、第1図(e)に示すように、酸化膜102及び多
結晶シリコン層104の表面を親水性化処理を行なう。
Next, as shown in FIG. 1(e), the surfaces of the oxide film 102 and the polycrystalline silicon layer 104 are subjected to hydrophilic treatment.

この処理は例えば硫酸と過酸化水素の混合液に浸すこと
によってなされる。別に親水性化処理を施したシリコン
基板105を用意し前記親水性化処理を施した半導体基
板表面に密着させ、シラノール接合を行なう。
This treatment is carried out, for example, by immersing it in a mixture of sulfuric acid and hydrogen peroxide. A silicon substrate 105 that has been separately subjected to hydrophilic treatment is prepared and brought into close contact with the surface of the semiconductor substrate that has been subjected to the hydrophilic treatment to perform silanol bonding.

シラ、ノール接合とは、親水性化処理を施されたウェハ
面同志を密着させ熱処理(例えばi 000°C)を行
なうことにより、ウェハ表面の水酸基同士が熱処理によ
って1120となり、脱水縮合を起こず結果ウェハの接
合が行なわれることをいう。この方法は、例えばアイイ
ーイーイー、インターナショナル エレクトロン デバ
イス ミーティング (IEEE、Internati
onal  Electro[I Device  M
eat−ing)のテクニカルダイジェスト(Tech
nical DigesL) 684−687頁(19
85年)に報告されている。
Sila-knoll bonding is a process in which the wafer surfaces that have been subjected to hydrophilic treatment are brought into close contact with each other and heat treated (for example, at 000°C), so that the hydroxyl groups on the wafer surface become 1120 by the heat treatment, and dehydration condensation does not occur. This means that the resulting wafers are bonded. This method is used, for example, at the International Electron Device Meeting (IEEE, International
onal Electro[I Device M
eat-ing) technical digest (Tech
nical DigesL) pages 684-687 (19
It was reported in 1985).

次に、第1図(f)に示すように、半導体基板101の
裏面を研磨し、渦103中に形成された酸化膜1.02
の先端を露出させる。この研磨法では砥粒としてコロイ
ダルシリカを用い、化学液として有機アミンを用いるこ
とにより、R4103を被覆している酸化膜102の加
工速度は半導体基板】01よりも小さくなるため、研磨
加工を酸化膜102の先端で止めることは容易である。
Next, as shown in FIG. 1(f), the back surface of the semiconductor substrate 101 is polished, and the oxide film 1.02 formed in the vortex 103 is
expose the tip. In this polishing method, colloidal silica is used as the abrasive grains and organic amine is used as the chemical liquid, so the processing speed of the oxide film 102 covering R4103 is lower than that of the semiconductor substrate ]01, so the polishing process is performed on the oxide film 102. It is easy to stop at the tip of 102.

次に、第1 [3(g )に示すように、従来技術によ
り半導体基板101の研磨面に不純物を導入し所望の深
さの2層106.107を形成し、さらにP J?W 
106にN4層108を形成する。次いで、2層106
上にグー1−電極109、P Pit 107にアノー
ド電極110を、さらにN+層108上にカンード電極
]1]をそれぞれ形成することにより誘電体分離の半導
体装置を完成させる。
Next, as shown in 1st [3(g)], impurities are introduced into the polished surface of the semiconductor substrate 101 using the conventional technique to form two layers 106 and 107 of a desired depth, and further PJ? W
An N4 layer 108 is formed on 106. Then, two layers 106
A dielectrically isolated semiconductor device is completed by forming a goo1-electrode 109 on top, an anode electrode 110 on P Pit 107, and a canned electrode [1] on N+ layer 108.

このように、本実施例においてはシリコン基板105を
支持基板として用いることにより、r、を東のように多
結晶シリコンを堆積する必要はなくなると共に、半導体
基板101の裏面をより均一に研磨することが可能とな
る。
In this way, by using the silicon substrate 105 as a supporting substrate in this embodiment, it is not necessary to deposit polycrystalline silicon as in the case of the above example, and the back surface of the semiconductor substrate 101 can be polished more uniformly. becomes possible.

尚、」二層実施例においては、サイリスタの製Jム方法
の場合について述べたが、それにとどまらず高耐圧を目
脂した、MOSあるいはバイポーラ逓積回路の製造にも
同様に適用することができる。
In the two-layer embodiment, the method for manufacturing a thyristor has been described, but the method is not limited to that and can be similarly applied to the manufacturing of MOS or bipolar multiplication circuits with high withstand voltage. .

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、誘電体で分飛された半導
体基板の支持基板として親水性1に11四埋を施したシ
リコン基板を用いることにより、従来のように多結晶シ
リコンを堆f青する必要がなくなるため、製造時間が短
縮されると共に、半導体基板を均一に研磨できるという
効果がある。
As explained above, the present invention uses a silicon substrate with a hydrophilicity of 1 to 11 as a support substrate for a semiconductor substrate separated by a dielectric material, thereby making it possible to deposit polycrystalline silicon as in the conventional method. This eliminates the need for polishing, which has the effect of shortening manufacturing time and uniformly polishing the semiconductor substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(g>は本発明の一実施例を説明するた
めの工程順に示した半導体チップの断面図、第2図(a
)〜(d)は従来の半導体装置の製造方法を説明するた
めの工程順に示した半導体チップの断面図である。 1、01・・・半導体基板、102・・・酸化膜、10
3・・・溝、]04・・・多結晶シリコン層、105・
・・シリコン基板、106.107・・・Y)層、10
8・・N+層、109・・・ゲー1へ、110・・・ア
、ノート、111・・・カソード。 茅 l 歯 第 1 回 lθ3 ノ藺! χ 2 図
FIGS. 1(a) to (g) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining one embodiment of the present invention, and FIG.
) to (d) are cross-sectional views of a semiconductor chip shown in order of steps for explaining a conventional method of manufacturing a semiconductor device. 1, 01... Semiconductor substrate, 102... Oxide film, 10
3... Groove, ]04... Polycrystalline silicon layer, 105...
...Silicon substrate, 106.107...Y) layer, 10
8...N+ layer, 109...to game 1, 110...a, note, 111...cathode. The first lθ3 no Ichi! χ2 diagram

Claims (1)

【特許請求の範囲】[Claims] 半導体基板表面に素子領域分離用の溝を形成する工程と
、該溝を含む全面に絶縁膜を形成したのち前記溝を含む
半導体基板表面に多結晶シリコン層を形成する工程と、
前記多結晶シリコン層をエッチングし、多結晶シリコン
層を前記溝中にのみ残して前記半導体基板表面を平坦化
する工程と、前記絶縁膜と前記溝中の多結晶シリコン層
を含む前記半導体基板表面を親水性化処理したのち該半
導体基板表面に親水性化処理されたシリコン基板表面を
密着し固定させる工程と、前記シリコン基板が固定され
た前記半導体基板の裏面を研磨し、前記溝中に形成され
た絶縁膜の先端を露出させる工程と、前記半導体基板の
研磨面に半導体素子を形成する工程とを含むことを特徴
とする半導体装置の製造方法。
forming a trench for element region isolation on the surface of the semiconductor substrate; forming an insulating film over the entire surface including the trench; and then forming a polycrystalline silicon layer on the surface of the semiconductor substrate including the trench;
etching the polycrystalline silicon layer to planarize the semiconductor substrate surface by leaving the polycrystalline silicon layer only in the groove; and a step of planarizing the semiconductor substrate surface including the insulating film and the polycrystalline silicon layer in the groove. a step of making the semiconductor substrate hydrophilic and then adhering and fixing the hydrophilic silicon substrate surface to the surface of the semiconductor substrate; and polishing the back surface of the semiconductor substrate to which the silicon substrate is fixed to form a groove in the groove. A method for manufacturing a semiconductor device, comprising: exposing a tip of the insulating film that has been polished; and forming a semiconductor element on the polished surface of the semiconductor substrate.
JP20224186A 1986-08-27 1986-08-27 Manufacture of semiconductor device Pending JPS6356936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20224186A JPS6356936A (en) 1986-08-27 1986-08-27 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20224186A JPS6356936A (en) 1986-08-27 1986-08-27 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6356936A true JPS6356936A (en) 1988-03-11

Family

ID=16454290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20224186A Pending JPS6356936A (en) 1986-08-27 1986-08-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6356936A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647548A (en) * 1987-01-09 1989-01-11 Philips Nv Manufacture of semiconductor device
US5051378A (en) * 1988-11-09 1991-09-24 Sony Corporation Method of thinning a semiconductor wafer
JPH05152263A (en) * 1991-11-25 1993-06-18 Mitsubishi Materials Corp One-face polishing method of silicon wafer by both-face polishing machine
JPH05259268A (en) * 1992-03-11 1993-10-08 Nec Corp Semiconductor device and its manufacture
US7927975B2 (en) 2009-02-04 2011-04-19 Micron Technology, Inc. Semiconductor material manufacture

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647548A (en) * 1987-01-09 1989-01-11 Philips Nv Manufacture of semiconductor device
US5051378A (en) * 1988-11-09 1991-09-24 Sony Corporation Method of thinning a semiconductor wafer
JPH05152263A (en) * 1991-11-25 1993-06-18 Mitsubishi Materials Corp One-face polishing method of silicon wafer by both-face polishing machine
JPH05259268A (en) * 1992-03-11 1993-10-08 Nec Corp Semiconductor device and its manufacture
US7927975B2 (en) 2009-02-04 2011-04-19 Micron Technology, Inc. Semiconductor material manufacture
US8389385B2 (en) 2009-02-04 2013-03-05 Micron Technology, Inc. Semiconductor material manufacture

Similar Documents

Publication Publication Date Title
US5013681A (en) Method of producing a thin silicon-on-insulator layer
JP2980497B2 (en) Method of manufacturing dielectric-isolated bipolar transistor
JPS5851422B2 (en) Oxide separation process
JPH01503026A (en) Method for manufacturing thin monocrystalline silicon islands on insulators
JP2001196566A (en) Semiconductor substrate and method of manufacturing the same
US4968628A (en) Method of fabricating back diffused bonded oxide substrates
JP2602597B2 (en) Method for manufacturing thin film SOI substrate
JPS62293761A (en) Semiconductor device and manufacture of the same
JPS6356936A (en) Manufacture of semiconductor device
JPH04206766A (en) Manufacturing method of semiconductor device
JPH05275666A (en) Manufacture of soi structural body
KR0150998B1 (en) SOI wafer manufacturing method using double stopper
JPH1197654A (en) Manufacture of semiconductor board
US7504314B2 (en) Method for fabricating oxygen-implanted silicon on insulation type semiconductor and semiconductor formed therefrom
JPS61133641A (en) Manufacture of semiconductor device
JPS5828731B2 (en) All silicon materials available.
JPH0341984B2 (en)
JPH08191138A (en) Manufacture of soi substrate
WO2022001779A1 (en) Method for manufacturing semiconductor-on-insulator structure
KR100511900B1 (en) Method of manufacturing SOI substrate
JP2001144273A (en) Method for fabricating semiconductor device
JPH05109693A (en) Manufacture of soi substrate
JPH0223629A (en) Manufacture of semiconductor device
JPS61174645A (en) Manufacture of semiconductor device
JPH0645429A (en) Manufacture of semiconductor device