JPS6356825B2 - - Google Patents
Info
- Publication number
- JPS6356825B2 JPS6356825B2 JP61077911A JP7791186A JPS6356825B2 JP S6356825 B2 JPS6356825 B2 JP S6356825B2 JP 61077911 A JP61077911 A JP 61077911A JP 7791186 A JP7791186 A JP 7791186A JP S6356825 B2 JPS6356825 B2 JP S6356825B2
- Authority
- JP
- Japan
- Prior art keywords
- joint
- rotating
- permanent magnet
- bearing
- fluid transfer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000012530 fluid Substances 0.000 claims description 23
- 238000007789 sealing Methods 0.000 claims description 20
- 239000003302 ferromagnetic material Substances 0.000 claims description 12
- 230000005294 ferromagnetic effect Effects 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims 1
- 239000000463 material Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 4
- 239000004809 Teflon Substances 0.000 description 4
- 229920006362 Teflon® Polymers 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- KPLQYGBQNPPQGA-UHFFFAOYSA-N cobalt samarium Chemical compound [Co].[Sm] KPLQYGBQNPPQGA-UHFFFAOYSA-N 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- -1 for example Substances 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Landscapes
- Joints Allowing Movement (AREA)
- Quick-Acting Or Multi-Walled Pipe Joints (AREA)
- Centrifugal Separators (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、面シールを介して高速回転する回転
部と固定部との間で流体移送を行う流体移送用高
速回転ジヨイントに関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-speed rotation joint for fluid transfer that transfers fluid between a rotating part that rotates at high speed and a fixed part via a face seal.
流体中の微粒子は、遠心力場におかれるとその
粒子の質量に応じた力を受ける。この力が粒子の
自己拡散力より充分大きい場合には、粒子は沈降
して液層から分離し、固層を形成する。しかし、
粒子が小さいと完全な沈降はせず、遠心力と自己
拡散力のつりあうところで層を形成する。また、
流体は、狭い空隙を流れる時、壁面に接している
部分の流速は中心部より遅くなり、空隙の中心に
向かつて放物線流速分布をとる。この空隙に垂直
に遠心力場を加えると、流体中の粒子は、遠心力
と自己拡散力のつりあう位置での固有の流速で空
隙中を移動することになる。このような性質を利
用して流体中の微粒子を分離分析するのがS−
FFF(Sedimentation Field Flow
Fractionation)である。
When particles in a fluid are placed in a centrifugal force field, they receive a force proportional to their mass. If this force is sufficiently greater than the self-diffusion force of the particles, the particles will settle and separate from the liquid layer, forming a solid layer. but,
If the particles are small, they will not settle completely and will form a layer where centrifugal force and self-diffusion force are balanced. Also,
When fluid flows through a narrow gap, the flow velocity in the portions that are in contact with the walls is slower than in the center, and takes on a parabolic flow velocity distribution toward the center of the gap. When a centrifugal force field is applied perpendicularly to this gap, particles in the fluid will move through the gap at a specific flow velocity at a position where centrifugal force and self-diffusion force are balanced. S- is a method that utilizes these properties to separate and analyze fine particles in fluids.
FFF (Sedimentation Field Flow)
Fractionation).
遠心力場を用いるS−FFFでは、溶液が吸引
されてポンプで送液され、回転ジヨイント、回転
カラム、そして再び回転ジヨイントを経由して検
出器へ導かれる。このように外部から回転軸を通
して流体を出し入れする必要があるため、所定の
シール圧を保ちながら回転ジヨイントを高速回転
させる。従つて、ここではシール圧やシール面で
の発熱、摩耗その他種々の問題が発生する。その
ためシール面では、一方に硬質の材料を用い、他
方に例えばプラスチツクなど軟質の材料を用いて
いる。シール材としては、例えばテフロン(登録
商標)にグラフアイトを入れたグラフアイト・テ
フロンが一般に使用されるが、さらにこれを上回
る材料が要求される場合には、ポリイミドにテフ
ロン若しくはグラフアイトを入れたベスペルパー
ツと呼ばれる材料が使用されている。 In S-FFF, which uses a centrifugal force field, the solution is aspirated and pumped through a rotating joint, a rotating column, and then back to a rotating joint to a detector. Since it is necessary to take in and out fluid from the outside through the rotating shaft, the rotating joint is rotated at high speed while maintaining a predetermined sealing pressure. Therefore, various problems such as sealing pressure, heat generation on the sealing surface, and wear occur here. For this reason, one side of the sealing surface is made of a hard material, and the other side is made of a soft material such as plastic. As a sealing material, for example, graphite/Teflon, which is made by adding graphite to Teflon (registered trademark), is generally used, but if a material that exceeds this is required, it is possible to use polyimide with Teflon or graphite added. A material called Vespel parts is used.
従来、遠心力場を用いるS−FFFでは、展開
液として水や有機溶媒が用いられているが、これ
らは、液のフローレートがそれほど高くない。ま
た、回転カラムは、中が完全にオープンになつた
中空のカラムであるため、カラム内圧損失も少な
い。従つて、液圧は、数Kg/cm2あればよいことに
なる。他方、摩耗に関しては、シール面での圧力
Pと周速度vとの積が重要なフアクターとなる
が、先に述べたシール材を用いた場合、圧力Pを
数Kg/cm2とすると、回転速度は毎分数千ないし1
万回転までが限度とされている。 Conventionally, in S-FFF using a centrifugal force field, water or an organic solvent has been used as a developing solution, but the flow rate of these solutions is not very high. Furthermore, since the rotating column is a hollow column with a completely open interior, there is little pressure loss inside the column. Therefore, the hydraulic pressure only needs to be several kg/cm 2 . On the other hand, regarding wear, the product of the pressure P on the seal surface and the circumferential speed v is an important factor, but when using the seal material mentioned above, if the pressure P is several kg/ cm2 , the rotation The speed is several thousand to one per minute.
The limit is up to 10,000 rotations.
上述の如く、遠心力場を用いるS−FFFでは、
特に回転カラムや回転ジヨイントが最大の技術的
課題を持つが、数Kg/cm2のシール圧があれば充分
であつたことから、従来は、Oリング方式の回転
ジヨイントや面シール方式の回転ジヨイントが使
用されてきた。 As mentioned above, in S-FFF using a centrifugal force field,
In particular, rotating columns and rotating joints pose the greatest technical challenges, but since a sealing pressure of several kg/ cm2 was sufficient, conventionally O-ring type rotating joints and face seal type rotating joints were used. has been used.
第3図はOリング方式の回転ジヨイントの例を
示す図、第4図は面シール方式の回転ジヨイント
の例を示す図であり、21はOリング、22はフ
ロー入力部、23と40は試料注入部、24はチ
ヤネル、25はベアリング、26は回転軸、27
はスペーサ、31は固定シール、32は回転シー
ル、33は固定シールアセンブリ、34はシール
キヤツプ、35は圧着バネ、36はトルクチユー
ブ、37は接続デイスク、38はオイルベアリン
グ、39はシールボデイを示す。 Fig. 3 is a diagram showing an example of an O-ring type rotary joint, and Fig. 4 is a diagram showing an example of a face seal type rotary joint, where 21 is an O-ring, 22 is a flow input part, and 23 and 40 are sample parts. Injection part, 24 is a channel, 25 is a bearing, 26 is a rotating shaft, 27
31 is a spacer, 31 is a fixed seal, 32 is a rotary seal, 33 is a fixed seal assembly, 34 is a seal cap, 35 is a pressure spring, 36 is a torque tube, 37 is a connection disk, 38 is an oil bearing, and 39 is a seal body. .
第3図に示すOリング方式の回転ジヨイントの
例では、Oリング21によつて上段部と下段部と
が接合され、回転軸26を回転させると試料注入
部23から注入された試料は、遠心力場のもとで
分離されて上段部上部から検出器へ導かれる。こ
の回転ジヨイントの場合には、シール材の摩耗を
高くとることができず、また、シール材の摩耗も
比較的大きく、回転速度もせいぜい毎分数千回転
程度である。 In the example of the O-ring type rotary joint shown in FIG. 3, the upper part and the lower part are joined by the O-ring 21, and when the rotating shaft 26 is rotated, the sample injected from the sample injection part 23 is centrifuged. It is separated under a force field and guided from the top of the upper stage to the detector. In the case of this rotating joint, the wear of the seal material cannot be kept high, and the wear of the seal material is also relatively large, and the rotational speed is at most several thousand revolutions per minute.
また、第4図に示す面シール方式の回転ジヨイ
ントの例では、接続デイスク37を介して外部か
ら回転力によりトルクチユーブ36を回転させる
と、試料注入部40から注入された試料は遠心力
場のもとで分離されて、上段部上部から検出器へ
導かれる。この回転ジヨイントの場合には、面と
面とで圧着されるので、圧着面積がとれ、Oリン
グ方式の回転シールよりもシール圧や回転速度を
高くとることができる。 In addition, in the example of the surface-seal type rotary joint shown in FIG. 4, when the torque tube 36 is rotated by an external rotational force via the connection disk 37, the sample injected from the sample injection part 40 is exposed to the centrifugal force field. It is separated at the bottom and guided to the detector from the top of the upper stage. In the case of this rotary joint, since the surfaces are crimped, a large crimping area can be obtained, and the sealing pressure and rotational speed can be higher than that of an O-ring type rotary seal.
しかしながら、上述した従来の回転ジヨイント
は、いずれもスプリングを使つて回転軸を固定側
に押し付けて密着させ、シール圧を確保するよう
にしているため、シール圧の調整が難しい。ま
た、回転軸受にボールベアリング2組を用いたス
ピンドル方式を採用すると、ボールベアリングを
支持するケーシングがどうしても大きくなるた
め、全体の形状が大きくなり、従つて重く且つ高
価になる。回転ジヨイントがこのように大きく且
つ重くなると遠心カラムから一定の距離を隔てて
これを固定する支持機構も大きくなる。
However, in all of the above-mentioned conventional rotary joints, a spring is used to press the rotary shaft against the stationary side so that the rotary shaft is in close contact with the stationary side to ensure sealing pressure, and therefore it is difficult to adjust the sealing pressure. Furthermore, if a spindle system using two sets of ball bearings is adopted as a rotary bearing, the casing that supports the ball bearings will inevitably become larger, resulting in a larger overall shape, which will be heavier and more expensive. As the rotation joint becomes larger and heavier, the support mechanism for fixing it at a certain distance from the centrifugal column also becomes larger.
本発明は、上記の問題点を解決するものであつ
て、磁石による吸引力を利用してシール圧を得、
小型、軽量化を可能にした流体移送用高速回転ジ
ヨイントを提供することを目的とする。 The present invention solves the above-mentioned problems, and uses the attraction force of a magnet to obtain sealing pressure.
The purpose of the present invention is to provide a high-speed rotation joint for fluid transfer that is compact and lightweight.
そのために本発明の流体移送用高速回転ジヨイ
ントは、面シールを介して高速回転する回転部と
固定部との間で流体移送を行う流体移送用高速回
転ジヨイントにおいて、固定部に永久磁石を設け
ると共に軸受部の摺動機構を設け、回転部の前記
永久磁石に対向する位置に強磁性体を設けて、摺
動機構により永久磁石と強磁性体との間の空隙を
調整可能にして永久磁石と強磁性体との吸引力に
より回転部と固定部との間をシール圧を得るよう
にしたことを特徴とするものである。
For this purpose, the high-speed rotation joint for fluid transfer of the present invention is a high-speed rotation joint for fluid transfer that transfers fluid between a rotating part that rotates at high speed and a fixed part via a face seal, and a permanent magnet is provided in the fixed part. A sliding mechanism is provided for the bearing part, and a ferromagnetic body is provided at a position facing the permanent magnet of the rotating part, so that the gap between the permanent magnet and the ferromagnetic body can be adjusted by the sliding mechanism. It is characterized in that a sealing pressure is obtained between the rotating part and the fixed part by the attraction force with the ferromagnetic material.
本発明の流体移送用高速回転ジヨイントでは、
固定部に設けた永久磁石とこの永久磁石に対向す
る位置に設けた強磁性体との間で吸引力が作用
し、これがシール圧となる。従つて、軸受部の摺
動機構を使つて永久磁石と強磁性体との間の空隙
を調整することによつて任意のシール圧を確保す
ることができ、ジヨイント部の中心軸を軸受とす
ることによつて流路の振れも小さくすることがで
きる。
In the high-speed rotation joint for fluid transfer of the present invention,
Attractive force acts between the permanent magnet provided on the fixed part and the ferromagnetic material provided at a position facing the permanent magnet, and this becomes sealing pressure. Therefore, by adjusting the air gap between the permanent magnet and the ferromagnetic material using the sliding mechanism of the bearing part, any desired sealing pressure can be secured, and the central axis of the joint part is used as the bearing. As a result, the fluctuation of the flow path can also be reduced.
以下、実施例を図面を参照しつつ説明する。 Examples will be described below with reference to the drawings.
第1図は本発明の流体移送用高速回転ジヨイン
トの1実施例を示す図、第2図は第1図に示す流
体移送用高速回転ジヨイントの部分断面図であ
り、1はケーシング、2はホルダー、3は回転軸
受、4は永久磁石、5は強磁性体、6は回転部、
7は固定部材、8は調整部材、9はボールベアリ
ング、10は溝、11は回転止めネジ、12はク
ロマト管、13は調整穴、14はジヨイント溝を
示す。 FIG. 1 is a diagram showing one embodiment of the high-speed rotation joint for fluid transfer of the present invention, and FIG. 2 is a partial sectional view of the high-speed rotation joint for fluid transfer shown in FIG. 1, in which 1 is a casing, and 2 is a holder. , 3 is a rotating bearing, 4 is a permanent magnet, 5 is a ferromagnetic material, 6 is a rotating part,
7 is a fixing member, 8 is an adjustment member, 9 is a ball bearing, 10 is a groove, 11 is a rotation stopper screw, 12 is a chromato tube, 13 is an adjustment hole, and 14 is a joint groove.
第1図において、ケーシング1は、例えば
SUS304やSUS316を使つたものであり、その下
部の回転部側にサマリウムコバルトを使つた強力
小型の永久磁石4が取り付けられる。そして、上
部に固定部材7によつて調整部材8を固定し、こ
れに当接するようにボールベアリング9を介して
ホルダー2、さらには回転軸受3を嵌め込む。回
転軸受3と回転部6とはその内周部と外周部との
径を合わせ、両者を嵌め込むような構造とするこ
とによつて、ジヨイント部の中心軸を軸受とし、
面接触によりシールするものである。この面接触
のシール圧は、磁石の吸引力を利用するものであ
り、そのために永久磁石4と対向する位置の回転
部6にフイン付の例えばニツケルを使つた強磁性
体5が取り付けられる。ホルダー2としては、ケ
ーシング1と同様のSUS304やSUS316が使用さ
れ、シール部材としては、テフロンやグラフアイ
ト入りポリイミド樹脂が使用される。なお、一方
は回転軸中心部で、他方はジヨイント溝14を通
して固定部と回転部との間のクロマト管12が連
結される。 In FIG. 1, the casing 1 is, for example,
It uses SUS304 or SUS316, and a small, strong permanent magnet 4 made of samarium cobalt is attached to the lower rotating part side. Then, the adjustment member 8 is fixed to the upper part by the fixing member 7, and the holder 2 and further the rotary bearing 3 are fitted through the ball bearing 9 so as to be in contact with the adjustment member 8. The rotating bearing 3 and the rotating part 6 have a structure in which the diameters of the inner and outer circumferential parts are matched and the two are fitted, so that the central axis of the joint part is the bearing,
It seals by surface contact. This surface contact sealing pressure utilizes the attractive force of a magnet, and for this purpose, a ferromagnetic material 5 made of, for example, nickel, with fins is attached to the rotating part 6 at a position facing the permanent magnet 4. As the holder 2, the same SUS304 or SUS316 as the casing 1 is used, and as the sealing member, polyimide resin containing Teflon or graphite is used. Note that the chromatography tube 12 between the fixed part and the rotating part is connected through the joint groove 14 on one side and the joint groove 14 on the other side, at the center of the rotating shaft.
調整部材8は、図示の如く固定部材7及びケー
シング1にそれぞれ螺合し、固定部材7との螺合
を緩めた状態で、調整穴13を利用して調整部材
8を回転させることによつて相対的なケーシング
1との位置を上下動させることができ、この状態
で固定部材7との螺合を締め固定部材7をケーシ
ング1に当接させることによつて調整部材8をケ
ーシング1に対して固定させる。この状態で調整
部材8は、ホルダー2のストツパーの役目を果た
すことになる。従つて、調整部材8とケーシング
1との相対的な位置を変えることによつて永久磁
石4と強磁性体5との間の空隙を変えることがで
き、空隙の調節によつて回転軸受3と回転部6と
の間の面接触によるシール圧を変えることができ
る。なお、ホルダー2の溝10と回転止めネジ1
1は、ケーシング1に対して上下動を許容すると
共にホルダー2の回転を止めるようにするもので
ある。調整部材8の上部からの断面図を示したの
が第2図aであり、シール面の回転部6上面の断
面図を示したのが第2図bである。 The adjusting member 8 is screwed onto the fixing member 7 and the casing 1 as shown in the figure, and by rotating the adjusting member 8 using the adjusting hole 13 with the fixing member 7 unscrewed. The position relative to the casing 1 can be moved up and down, and in this state, the adjusting member 8 can be adjusted relative to the casing 1 by tightening the screws with the fixing member 7 and bringing the fixing member 7 into contact with the casing 1. and fix it. In this state, the adjustment member 8 serves as a stopper for the holder 2. Therefore, by changing the relative position between the adjustment member 8 and the casing 1, the gap between the permanent magnet 4 and the ferromagnetic material 5 can be changed, and by adjusting the gap, the rotation bearing 3 and the The sealing pressure due to the surface contact with the rotating part 6 can be changed. Note that the groove 10 of the holder 2 and the rotation stopper screw 1
1 allows vertical movement of the casing 1 and stops the rotation of the holder 2. FIG. 2a shows a cross-sectional view of the adjusting member 8 from above, and FIG. 2b shows a cross-sectional view of the upper surface of the rotating part 6 on the sealing surface.
また、回転部6が高速回転することによつて軸
受面が発熱するが、この熱は回転部6から強磁性
体5のフインを通して放熱される。このように強
磁性体5は、永久磁石4からの吸引力を受けて軸
受面のシール圧を確保すると共に、高速回転によ
り高い放熱効果を得ることができる。 Further, as the rotating part 6 rotates at high speed, the bearing surface generates heat, and this heat is radiated from the rotating part 6 through the fins of the ferromagnetic material 5. In this way, the ferromagnetic material 5 receives the attractive force from the permanent magnet 4 to ensure the sealing pressure on the bearing surface, and can obtain a high heat dissipation effect due to high speed rotation.
以上に説明した如く、本発明の流体移送用高速
回転ジヨイントは、回転軸受と流系ジヨイントを
回転軸受3と回転部6で一体に作り上げた点を特
徴とするものであり、そのため流路の振れを極め
て小さくすることができる。また、回転ジヨイン
トの眼目は、周速度の小さい回転中心近傍にシー
ル当たり面を設けることであり、このようにする
と、シール部材の摩耗は回転速度×圧力に依存す
ることから、高速回転を行つても比較的高い圧力
が加えられる。このような観点からも本発明の流
体移送用高速回転ジヨイントは回転軸受を極めて
小型にでき好適である。さらには、小型で強力な
永久磁石と非接触で回転する強磁性体との僅かな
ギヤツプを介して作用する引力によりシール圧を
確保するため、シール兼軸受に均等に引力が作用
し、その調整も簡単に行うことができる。 As explained above, the high-speed rotation joint for fluid transfer of the present invention is characterized in that the rotation bearing and the flow system joint are integrally formed by the rotation bearing 3 and the rotation part 6, and therefore, the fluctuation of the flow path is reduced. can be made extremely small. In addition, the key point of a rotating joint is to provide a seal contact surface near the center of rotation where the circumferential speed is low.In this way, the wear of the seal member depends on the rotation speed x pressure, so it is possible to rotate at high speed. A relatively high pressure is also applied. Also from this point of view, the high-speed rotation joint for fluid transfer of the present invention is suitable because the rotation bearing can be made extremely compact. Furthermore, in order to ensure sealing pressure by the attractive force that acts through a slight gap between a small, powerful permanent magnet and a ferromagnetic body that rotates without contact, the attractive force acts evenly on the seal and bearing, and its adjustment can also be easily done.
以上の説明から明らかなように、本発明によれ
ば、ボールベアリングの代わりにジヨイント部の
中心軸を軸受とするので、加工精度が容易に得ら
れ且つ耐摩耗性の優れたものを提供でき、小型、
軽量化を図ることができる。また、強力小型の永
久磁石が強磁性体を引き付ける力を軸受、流路ジ
ヨイント部分のシール圧に用いるので、力が常に
中心から均等に分配されると共に、非接触である
ため無駄な摺動部によるロスをなくすことができ
る。さらには、永久磁石と強磁性体との間のギヤ
ツプを微調節することによりシール圧を容易に加
減できる。
As is clear from the above description, according to the present invention, since the central axis of the joint portion is used as a bearing instead of a ball bearing, machining accuracy can be easily obtained and a product with excellent wear resistance can be provided. small size,
Weight reduction can be achieved. In addition, since the powerful small permanent magnet uses the force that attracts ferromagnetic materials to seal pressure at the bearing and flow path joints, the force is always evenly distributed from the center, and since there is no contact, there is no need for unnecessary sliding parts. It is possible to eliminate losses due to Furthermore, the sealing pressure can be easily adjusted by finely adjusting the gap between the permanent magnet and the ferromagnetic material.
第1図は本発明の流体移送用高速回転ジヨイン
トの1実施例を示す図、第2図は第1図に示す流
体移送用高速回転ジヨイントの部分断面図、第3
図はOリング方式の回転ジヨイントの例を示す
図、第4図は面シール方式の回転ジヨイントの例
を示す図である。
1……ケーシング、2……ホルダー、3……回
転軸受、4……永久磁石、5……強磁性体、6…
…回転部、7……固定部材、8……調整部材、9
……ボールベアリング、10……溝、11……回
転止めネジ、12……クロマト管、13……調整
穴、14……ジヨイント溝。
FIG. 1 is a diagram showing one embodiment of the high-speed rotation joint for fluid transfer of the present invention, FIG. 2 is a partial sectional view of the high-speed rotation joint for fluid transfer shown in FIG. 1, and FIG.
The figure shows an example of an O-ring type rotating joint, and FIG. 4 shows an example of a face seal type rotating joint. DESCRIPTION OF SYMBOLS 1...Casing, 2...Holder, 3...Rotating bearing, 4...Permanent magnet, 5...Ferromagnetic material, 6...
... Rotating part, 7 ... Fixed member, 8 ... Adjustment member, 9
... Ball bearing, 10 ... Groove, 11 ... Rotation stop screw, 12 ... Chromato tube, 13 ... Adjustment hole, 14 ... Joint groove.
Claims (1)
部との間で流体移送を行う流体移送用高速回転ジ
ヨイントにおいて、固定部に永久磁石を設けると
共に軸受部の摺動機構を設け、回転部の前記永久
磁石に対向する位置に強磁性体を設けて、摺動機
構により永久磁石と強磁性体との間の空隙を調整
可能にして永久磁石と強磁性体との吸引力により
回転部と固定部との間のシール圧を得るようにし
たことを特徴とする流体移送用高速回転ジヨイン
ト。 2 強磁性体は、外周に冷却フインを有すること
を特徴とする特許請求の範囲第1項記載の流体移
送用高速回転ジヨイント。 3 ジヨイント部の中心軸を軸受としたことを特
徴とする特許請求の範囲第1項又は第2項記載の
流体移送用高速回転ジヨイント。[Claims] 1. A high-speed rotation joint for fluid transfer that transfers fluid between a rotating part that rotates at high speed and a fixed part via a surface seal, in which a permanent magnet is provided in the fixed part and a sliding mechanism of the bearing part is provided. A ferromagnetic body is provided at a position facing the permanent magnet of the rotating part, and the gap between the permanent magnet and the ferromagnetic body can be adjusted by a sliding mechanism, thereby attracting the permanent magnet and the ferromagnetic body. A high-speed rotation joint for fluid transfer, characterized in that a sealing pressure between a rotating part and a fixed part is obtained by force. 2. The high-speed rotation joint for fluid transfer according to claim 1, wherein the ferromagnetic material has cooling fins on its outer periphery. 3. A high-speed rotating joint for fluid transfer according to claim 1 or 2, characterized in that the central axis of the joint portion is a bearing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61077911A JPS62234559A (en) | 1986-04-04 | 1986-04-04 | High-speed rotating joint for fluid transfer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61077911A JPS62234559A (en) | 1986-04-04 | 1986-04-04 | High-speed rotating joint for fluid transfer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62234559A JPS62234559A (en) | 1987-10-14 |
JPS6356825B2 true JPS6356825B2 (en) | 1988-11-09 |
Family
ID=13647257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61077911A Granted JPS62234559A (en) | 1986-04-04 | 1986-04-04 | High-speed rotating joint for fluid transfer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62234559A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009127738A (en) * | 2007-11-22 | 2009-06-11 | Nippon Pillar Packing Co Ltd | Rotary joint |
-
1986
- 1986-04-04 JP JP61077911A patent/JPS62234559A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009127738A (en) * | 2007-11-22 | 2009-06-11 | Nippon Pillar Packing Co Ltd | Rotary joint |
Also Published As
Publication number | Publication date |
---|---|
JPS62234559A (en) | 1987-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5284391A (en) | Apparatus for adjustment of a hydrodynamic spindle bearing assembly | |
JPH04219529A (en) | Electric active fluid torque transmitter with ferromagnetic fluid seal | |
US6315452B1 (en) | Zero static-friction actuator pivot bearing for production disk drives | |
CA1140673A (en) | Rotary head assembly | |
JPH0783266A (en) | Electro-rheological fluid damper for slide mechanism | |
US5328270A (en) | Hydrodynamic pump | |
JPS6356825B2 (en) | ||
JP2006509159A5 (en) | ||
US4502699A (en) | Rotating seal for continuous flow centrifuge | |
US6004036A (en) | Fluid dynamic bearing cartridge design incorporating a rotating shaft | |
US4013274A (en) | Apparatus for guiding and seating a stirrer shaft for laboratory or industrial glass apparatus | |
JP2005192387A (en) | Bearing-integrated spindle motor | |
CN212250903U (en) | A braking device based on magnetorheological effect | |
JPS6320580B2 (en) | ||
JPH0250792B2 (en) | ||
KR960035602A (en) | Actuator retainer on hard disk drive | |
CN208084395U (en) | Hair clipper transmission mechanism | |
GB2066380A (en) | Magnet assembly for support of a rotor | |
JPH0245541Y2 (en) | ||
JPS6320581B2 (en) | ||
JP2005504238A (en) | Flow control device | |
SU1364811A1 (en) | Magnetic liquid seal | |
SU935657A1 (en) | Magnetic liquid bearing | |
JPS6317503B2 (en) | ||
SU414771A3 (en) | DRIVE CENTRIFUGES |