[go: up one dir, main page]

JPS6356163B2 - - Google Patents

Info

Publication number
JPS6356163B2
JPS6356163B2 JP55039253A JP3925380A JPS6356163B2 JP S6356163 B2 JPS6356163 B2 JP S6356163B2 JP 55039253 A JP55039253 A JP 55039253A JP 3925380 A JP3925380 A JP 3925380A JP S6356163 B2 JPS6356163 B2 JP S6356163B2
Authority
JP
Japan
Prior art keywords
ozone
adsorption
desorption
oxygen
desorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55039253A
Other languages
Japanese (ja)
Other versions
JPS56140002A (en
Inventor
Takanori Ueno
Masaaki Tanaka
Norikazu Tabata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3925380A priority Critical patent/JPS56140002A/en
Publication of JPS56140002A publication Critical patent/JPS56140002A/en
Publication of JPS6356163B2 publication Critical patent/JPS6356163B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【発明の詳細な説明】 本発明は間歇オゾン供給装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an intermittent ozone supply device.

発電所や化学工業等には多量の冷却水が使用さ
れているが、用水中の微生物や藻類によつてスラ
イム障害が発生して管路の閉塞や熱交換率の低下
が起こる。この種の防止対策として高濃度のオゾ
ン水の適用が考慮されている。この高濃度のオゾ
ン水を生成するためには、大容量のオゾン発生機
を用いて生成するよりも、小型で小容量のオゾン
発生機を用いて、生成したオゾンを吸着剤に長期
間にわたつて蓄積し、この蓄積したオゾンを吸着
剤から一度に取り出し、高濃度オゾン水を生成す
るいわゆる間歇オゾン供給方式が設備費及び運転
費用の点から有利である。
A large amount of cooling water is used in power plants, chemical industries, etc., but microorganisms and algae in the water cause slime problems, clogging pipes and reducing heat exchange efficiency. Application of highly concentrated ozonated water is being considered as a preventive measure for this type of problem. In order to generate this highly concentrated ozone water, rather than using a large-capacity ozone generator, it is necessary to use a small and small-capacity ozone generator and use the generated ozone as an adsorbent for a long period of time. The so-called intermittent ozone supply method, in which the accumulated ozone is removed from the adsorbent at once to produce highly concentrated ozone water, is advantageous in terms of equipment costs and operating costs.

従来の代表的な間歇オゾン供給装置の一例を第
1図について説明する。図において、1はオゾン
発生機、2は酸素供給源、3は循環ブロア、4は
吸脱着塔、5は冷却源、6は加熱源、7は水流エ
ゼクタ、8−1〜8−7は切換弁群である。吸脱
着塔4は二重筒になつており、そのうち内筒はオ
ゾン吸着剤が充填されていると共に、外筒は熱媒
体が充填されている。また吸着剤は一般にシリカ
ゲルが用いられ、熱媒体はエチレングリコールや
アルコール類が使用される。なお、上記循環ブロ
ア3、オゾン発生機1、吸脱着塔4の順に一つの
循環系を構成している。
An example of a typical conventional intermittent ozone supply device will be explained with reference to FIG. In the figure, 1 is an ozone generator, 2 is an oxygen supply source, 3 is a circulating blower, 4 is an adsorption/desorption tower, 5 is a cooling source, 6 is a heating source, 7 is a water ejector, and 8-1 to 8-7 are switching It is a valve group. The adsorption/desorption tower 4 has a double cylinder structure, of which the inner cylinder is filled with an ozone adsorbent, and the outer cylinder is filled with a heat medium. Furthermore, silica gel is generally used as the adsorbent, and ethylene glycol or alcohol is used as the heat medium. Note that the circulation blower 3, the ozone generator 1, and the adsorption/desorption tower 4 constitute one circulation system in this order.

次に動作について説明する。この動作にはオゾ
ンの吸着動作及び脱着動作の二動作がある。
Next, the operation will be explained. This operation includes two operations: an ozone adsorption operation and an ozone desorption operation.

初めに吸着動作について説明する。酸素供給源
2より循環系内に常時一定圧力に酸素を供給す
る。この時の圧力は通常1.5Kg/cm2に維持されて
いる。切換弁8−3,8−4は開いている。循環
ブロア3により循環系内に酸素を流通させると、
オゾン発生機1の放電空隙中を通過する間に無声
放電により酸素の一部がオゾンに変換されてオゾ
ン化酸素となる。このオゾン化酸素は吸脱着塔4
へ搬送される。オゾン吸脱着塔4内の吸着剤は、
オゾンを選択的に吸着し、残りの酸素は切換弁8
−3を介して循環ブロア3に返送される。オゾン
として消費された酸素は酸素供給源2より補充さ
れる。この時、オゾン吸着剤の温度は冷却源5に
より−30℃以下に冷却されている。これは吸着剤
のオゾン吸着量が温度により大きく変化すること
による。即ち温度を低下させると、オゾンの吸着
量は増加し、逆に温度が上昇するとオゾンの吸着
量は減少するからである。したがつてオゾンを脱
着する時は吸着剤の温度を上昇させる。
First, the suction operation will be explained. Oxygen is constantly supplied to the circulation system from an oxygen supply source 2 at a constant pressure. The pressure at this time is normally maintained at 1.5 Kg/cm 2 . The switching valves 8-3 and 8-4 are open. When oxygen is distributed in the circulation system by the circulation blower 3,
While passing through the discharge gap of the ozone generator 1, a portion of oxygen is converted into ozone by silent discharge and becomes ozonized oxygen. This ozonized oxygen is transferred to the adsorption/desorption tower 4.
transported to. The adsorbent in the ozone adsorption/desorption tower 4 is
Ozone is selectively adsorbed and the remaining oxygen is removed by the switching valve 8.
-3 to the circulating blower 3. Oxygen consumed as ozone is replenished from the oxygen supply source 2. At this time, the temperature of the ozone adsorbent is cooled to −30° C. or lower by the cooling source 5. This is because the amount of ozone adsorbed by the adsorbent varies greatly depending on the temperature. That is, when the temperature is lowered, the amount of ozone adsorbed increases, and conversely, when the temperature is increased, the amount of ozone adsorbed is decreased. Therefore, when desorbing ozone, the temperature of the adsorbent is increased.

オゾン吸脱着塔4の吸着剤がオゾン飽和吸着量
近くまで吸着すると脱着動作へ移行する。脱着動
作ではオゾン発生機1、循環ブロア3、冷却源6
が稼動を停止し、切換弁8−1,8−2,8−
3,8−4が閉じる。その後、加熱源6、水流エ
ゼクタ7が稼動を始めて切換弁8−5,8−6,
8−7が開く。この時吸着剤に吸着されていたオ
ゾンが脱着し易いように加熱源6より熱が加えら
れ吸着剤の温度を上昇させる。そして水流エゼク
タ4でオゾン吸脱着塔4内のオゾンを減圧吸引
し、水流エゼクタ7内で水中に分散し溶解してオ
ゾン水として使用箇所に送られる。この時、減圧
吸引することによる吸脱着塔4内の到達圧力は略
−70cmHgとなる。このように脱着期間が終了す
ると、再び初期の吸着動作へと移行して連続的に
運転が繰り返される。
When the adsorbent in the ozone adsorption/desorption tower 4 adsorbs ozone to a level close to the saturated adsorption amount, a transition is made to the desorption operation. During desorption operation, ozone generator 1, circulation blower 3, and cooling source 6 are used.
stops operating, and the switching valves 8-1, 8-2, 8-
3, 8-4 closes. After that, the heating source 6 and water ejector 7 start operating, and the switching valves 8-5, 8-6,
8-7 opens. At this time, heat is applied from the heating source 6 to raise the temperature of the adsorbent so that the ozone adsorbed on the adsorbent is easily desorbed. Then, the ozone in the ozone adsorption/desorption tower 4 is sucked under reduced pressure by the water jet ejector 4, and the ozone is dispersed and dissolved in water in the water jet ejector 7, and is sent to the point of use as ozone water. At this time, the ultimate pressure within the adsorption/desorption tower 4 due to vacuum suction is approximately -70 cmHg. When the desorption period ends in this manner, the initial adsorption operation is resumed and the operation is continuously repeated.

しかし、上記した従来装置の欠点は、オゾンの
脱着が時間に対して平均に脱着できないことであ
る。パルプの漂白や化学プラントにおいては、オ
ゾンの濃度が高いほど反応速度が速く、より効果
的に酸化反応が行われる。また殺菌や生物処理に
於てもより高濃度のオゾンを注入することにより
効果は甚大となる。
However, a drawback of the conventional apparatus described above is that ozone cannot be desorbed evenly over time. In pulp bleaching and chemical plants, the higher the ozone concentration, the faster the reaction rate and the more effectively the oxidation reaction takes place. Also, in sterilization and biological treatment, the effects of injecting higher concentrations of ozone can be greatly increased.

第2図は吸脱着塔からの脱着された水中オゾン
濃度の時間的変化を示している。ここで解るよう
に脱着の初期では高濃度のオゾンが脱着され、時
間の経過と共に漸次減少している。すなわち、オ
ゾンの脱着濃度は平均的でないため、オゾン水に
濃度の高低が生じ、一定濃度以上一定時間必要な
使用条件の場合には処理時間が短かいのでオゾン
を効率的に使用できない。
Figure 2 shows the temporal change in the ozone concentration in water desorbed from the adsorption/desorption tower. As can be seen here, a high concentration of ozone is desorbed at the beginning of desorption, and gradually decreases over time. That is, since the desorption concentration of ozone is not average, ozone water has high and low concentrations, and in the case of usage conditions that require a certain concentration or more for a certain period of time, ozone cannot be used efficiently because the treatment time is short.

本発明は上記した従来のものの欠点を除去する
ためになされたもので、オゾンを脱着供給する管
路に流量調整用バルブを配置することにより、脱
着時間に対し平均的に脱着を行えるようにした間
歇オゾン供給装置を提供することを目的としてい
る。
The present invention has been made in order to eliminate the drawbacks of the conventional methods described above, and by arranging a flow rate regulating valve in the pipeline that desorbs and supplies ozone, desorption can be performed evenly over the desorption time. The purpose is to provide an intermittent ozone supply device.

以下本発明の一実施例を第3図について説明す
る。なお第1図と同一部分には同一符号を付して
その説明は省略する。図において、9は吸脱着塔
4と水流エゼクタ7との管路中に配置した流量調
整用バルブである。次にこの装置の動作について
説明すると、吸脱着塔4内の吸着剤がオゾンを飽
和吸着量近くまで吸着すると、脱着動作に切換わ
り、切換弁8−1,8−2,8−3,8−4が閉
じ、切換弁8−5,8−6は開いて加熱源6が稼
動を始める。そして切換弁8−7が開いて水流エ
ゼクタ7が稼動を開始して吸脱着塔4内のオゾン
を減圧吸引し、水中へ溶解し高濃度のオゾン水と
して使用箇所へ送給されるのである。このオゾン
水は流量調整用バルブ9によつてオゾン濃度が常
時一定値となるようにオゾン脱着量を調整する。
An embodiment of the present invention will be described below with reference to FIG. Note that the same parts as in FIG. 1 are given the same reference numerals and their explanations will be omitted. In the figure, reference numeral 9 denotes a flow rate adjustment valve disposed in the pipeline between the adsorption/desorption tower 4 and the water ejector 7. Next, the operation of this device will be explained. When the adsorbent in the adsorption/desorption tower 4 adsorbs ozone to near the saturated adsorption amount, it switches to desorption operation, and the switching valves 8-1, 8-2, 8-3, 8 -4 is closed, the switching valves 8-5 and 8-6 are opened, and the heat source 6 starts operating. Then, the switching valve 8-7 opens and the water ejector 7 starts operating, sucking the ozone in the adsorption/desorption tower 4 under reduced pressure, dissolving it in water, and sending it to the point of use as highly concentrated ozone water. The amount of ozone desorbed from this ozone water is adjusted by a flow rate adjustment valve 9 so that the ozone concentration always remains at a constant value.

第4図には流量調整用バルブを電動式バルブ1
0とし、このバルブ10はオゾン水のオゾン濃度
を検出する検出器12とバルブの開閉を制御する
制御装置11とによつて構成しており、オゾン濃
度が常時一定値となるようにフイードバツク制御
が作用している。この方式によれば、第5図に示
すようにオゾン濃度をほゞ平均的に安定させるこ
とができる。これによればたとえば用水中の微生
物や藻類処理において、高濃度で一定濃度以上必
要な場合には、オゾンの利用効率が高まり経済的
となる。また、負荷が変動した場合でも流量調整
用の電動式バルブをフイードバツク制御すること
によりオゾンの脱着量すなわち水中オゾン濃度を
自由に設定することができる。
Figure 4 shows the flow rate adjustment valve as electric valve 1.
0, and this valve 10 is composed of a detector 12 that detects the ozone concentration of ozonated water and a control device 11 that controls opening and closing of the valve, and feedback control is performed so that the ozone concentration is always kept at a constant value. It's working. According to this method, as shown in FIG. 5, the ozone concentration can be stabilized at an approximately average level. According to this, for example, in the treatment of microorganisms and algae in water, when a high concentration above a certain level is required, the utilization efficiency of ozone increases and becomes economical. Further, even when the load fluctuates, the amount of ozone desorption, that is, the ozone concentration in water, can be freely set by controlling the electrically operated valve for flow rate adjustment in a feedback manner.

以上のように本発明によれば、オゾンを脱着供
給する管路に流量調整用バルブを配置したので、
オゾン水の濃度を常時平均的に保つことができ
る。また負荷に応じてオゾンの濃度を自由に設定
できるため、効果的なオゾン利用が可能で他分野
への用途を拡大することができるなどの効果があ
る。
As described above, according to the present invention, since the flow rate adjustment valve is arranged in the pipeline for desorbing and supplying ozone,
It is possible to maintain an average concentration of ozonated water at all times. In addition, since the ozone concentration can be freely set according to the load, ozone can be used effectively and applications can be expanded to other fields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のオゾン供給装置の構成図、第2
図は第1図のオゾン脱着量の時間的変化を示した
特性図、第3図は本発明によるオゾン供給装置の
構成図、第4図は他の実施例を示す構成図、第5
図は第4図のオゾン脱着量の時間的変化を示した
特性図である。 1……オゾン発生機、2……酸素供給源、3…
…循環ブロア、4……吸脱着塔、7……水流エゼ
クタ、8−1〜8−9……切換弁、9……流量調
整用バルブ、10……電動式バルブ、11……制
御装置、12……検出器。なお、図中、同一符号
は同一又は相当部分を示す。
Figure 1 is a configuration diagram of a conventional ozone supply device, Figure 2
1 is a characteristic diagram showing the temporal change in the amount of ozone desorbed, FIG. 3 is a block diagram of the ozone supply device according to the present invention, FIG. 4 is a block diagram showing another embodiment, and FIG.
The figure is a characteristic diagram showing temporal changes in the amount of ozone desorbed in FIG. 4. 1...Ozone generator, 2...Oxygen supply source, 3...
...Circulating blower, 4...Adsorption/desorption tower, 7...Water ejector, 8-1 to 8-9...Switching valve, 9...Flow rate adjustment valve, 10...Electric valve, 11...Control device, 12...Detector. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 原料酸素からオゾン化酸素を生成するオゾン
発生機と、上記オゾン化酸素からオゾンを吸着貯
溜し、かつこのオゾンを脱着し得る吸脱着塔と、
この吸脱着塔によりオゾンが吸着された後の酸素
を上記オゾン発生機に戻す系と、オゾン吸着時に
上記吸脱着塔を冷却する手段と、オゾン脱着時に
上記吸脱着塔を吸着時よりも昇温させ、かつ減圧
吸引することによりオゾンを脱着供給する手段と
を有する間歇オゾン供給装置において、上記脱着
供給する管路にオゾン脱着量を制御するための流
量調整用バルブを配置したことを特徴とする間歇
オゾン供給装置。 2 流量調整用バルブとして、脱着された水中オ
ゾン量を検出するオゾン検出器によつてオゾン脱
着量を制御する自動流量調整用バルブを用いたこ
とを特徴とする特許請求の範囲第1項記載の間歇
オゾン供給装置。
[Scope of Claims] 1. An ozone generator that generates ozonized oxygen from raw material oxygen, and an adsorption/desorption tower that can adsorb and store ozone from the ozonized oxygen and desorb this ozone;
a system for returning oxygen after ozone has been adsorbed by the adsorption/desorption tower to the ozone generator; a means for cooling the adsorption/desorption tower during ozone adsorption; and a system for raising the temperature of the adsorption/desorption tower during ozone desorption from that during adsorption. and a means for desorbing and supplying ozone by suctioning the ozone under reduced pressure, characterized in that a flow rate adjustment valve for controlling the amount of ozone desorption is disposed in the desorption and supply conduit. Intermittent ozone supply device. 2. The valve according to claim 1, characterized in that the flow rate adjustment valve is an automatic flow rate adjustment valve that controls the amount of ozone desorbed by an ozone detector that detects the amount of ozone desorbed in water. Intermittent ozone supply device.
JP3925380A 1980-03-27 1980-03-27 Intermittently feeding apparatus of ozone Granted JPS56140002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3925380A JPS56140002A (en) 1980-03-27 1980-03-27 Intermittently feeding apparatus of ozone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3925380A JPS56140002A (en) 1980-03-27 1980-03-27 Intermittently feeding apparatus of ozone

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP62287971A Division JPS63147803A (en) 1987-11-12 1987-11-12 Apparatus for feeding ozone intermittently

Publications (2)

Publication Number Publication Date
JPS56140002A JPS56140002A (en) 1981-11-02
JPS6356163B2 true JPS6356163B2 (en) 1988-11-07

Family

ID=12547970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3925380A Granted JPS56140002A (en) 1980-03-27 1980-03-27 Intermittently feeding apparatus of ozone

Country Status (1)

Country Link
JP (1) JPS56140002A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09142808A (en) * 1995-11-14 1997-06-03 Ishikawajima Harima Heavy Ind Co Ltd Ozone generator control method
JP2004277284A (en) * 2004-04-28 2004-10-07 Mitsubishi Electric Corp Method and apparatus for storing ozone
JP2009215164A (en) * 2009-06-17 2009-09-24 Mitsubishi Electric Corp Ozone supply method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3980091B2 (en) * 1996-03-01 2007-09-19 三菱電機株式会社 Ozone storage equipment
JP4101314B2 (en) * 1996-03-01 2008-06-18 三菱電機株式会社 Power conversion storage method and apparatus
JPH1143309A (en) * 1997-07-24 1999-02-16 Mitsubishi Electric Corp Apparatus for producing ozone

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317593A (en) * 1976-07-31 1978-02-17 Sumitomo Precision Prod Co Method of controlling oxygen recycle system ozonizers
JPS5323894A (en) * 1976-08-18 1978-03-04 Sumitomo Precision Prod Co Method of controlling oxygen recycle system ozonizer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317593A (en) * 1976-07-31 1978-02-17 Sumitomo Precision Prod Co Method of controlling oxygen recycle system ozonizers
JPS5323894A (en) * 1976-08-18 1978-03-04 Sumitomo Precision Prod Co Method of controlling oxygen recycle system ozonizer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09142808A (en) * 1995-11-14 1997-06-03 Ishikawajima Harima Heavy Ind Co Ltd Ozone generator control method
JP2004277284A (en) * 2004-04-28 2004-10-07 Mitsubishi Electric Corp Method and apparatus for storing ozone
JP4545481B2 (en) * 2004-04-28 2010-09-15 三菱電機株式会社 Ozone supply device
JP2009215164A (en) * 2009-06-17 2009-09-24 Mitsubishi Electric Corp Ozone supply method

Also Published As

Publication number Publication date
JPS56140002A (en) 1981-11-02

Similar Documents

Publication Publication Date Title
JPS6048444B2 (en) Intermittent ozone supply device
US4767528A (en) Drinking water purifying apparatus
JPS6356163B2 (en)
JPS592559B2 (en) Microorganism removal device
JP4087927B2 (en) Ozone supply device
JP3549949B2 (en) Low oxygen incubator
JPH1143307A (en) Apparatus for producing ozone
JPH02284B2 (en)
JPH1143309A (en) Apparatus for producing ozone
CN104772035B (en) Volatile organic compound processing device
JPS58213602A (en) Apparatus for intermittent feeding of ozone
JP4545481B2 (en) Ozone supply device
JPH1143308A (en) Apparatus for producing ozone
JPS618196A (en) Apparatus for intermittently supplying ozone
JP5292240B2 (en) Ozone supply method and ozone supply apparatus
JPS6034483B2 (en) Intermittent ozone supply method
JP5020151B2 (en) Ozone production apparatus and ozone production method
JP4373992B2 (en) Ozone supply device
JPS59193192A (en) Device for supplying ozone intermittently
JP4101316B2 (en) Intermittent ozone supply device
JP3532334B2 (en) Intermittent ozone supply method
JPS6313927B2 (en)
JP4003097B2 (en) Ozone adsorption / desorption device
JP5095466B2 (en) Ozone supply method and ozone supply apparatus
CN219824038U (en) Aerobic composting device for removing dampness and deodorizing