JPS6355763B2 - - Google Patents
Info
- Publication number
- JPS6355763B2 JPS6355763B2 JP56135419A JP13541981A JPS6355763B2 JP S6355763 B2 JPS6355763 B2 JP S6355763B2 JP 56135419 A JP56135419 A JP 56135419A JP 13541981 A JP13541981 A JP 13541981A JP S6355763 B2 JPS6355763 B2 JP S6355763B2
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- moisture
- lithium
- glass
- ion conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
- Non-Adjustable Resistors (AREA)
Description
本発明は信頼性の高いしかも使いやすい抵抗値
を有する電気抵抗式の感湿素子に関するものであ
る。
従来、多くの電気抵抗式の感湿素子が提案さ
れ、一部市販されている。たとえば、最も一般的
なものにダンモア(Dunmore)型電気湿度計で
ある。これは絶縁物支持体表面に感湿材である塩
化リチウムなどの吸収性アルカリ塩類をうすく均
一に塗布したもので、高精度なものである。しか
し、これを高湿下に長期にわたり放置すると、水
分を多量に吸収し溶解し塩化リチウムが流動し分
布が不均一となり、その結果特性も変化してしま
う。このため、支持体に工夫をこらしてポリスチ
ロールガラス繊維、植物のずいと種々の材料を検
討しているが決定的なものがない。また、感湿材
そのものの昇華が生じるため時々補正が必要であ
る。このため、高信頼性感湿素子を得るために、
金属酸化物と半導体ガラス粉末を混合し焼成した
感湿素子も報告されている(特開昭49−18386)。
これは10%RH〜100%RHを広範囲に計測可能で
あるが、その抵抗値は30MΩ〜1MΩと高く実用
上大きな障害となつていた。
本発明は長期間の使用においても優れた信頼性
を維持し、かつ湿度検知器として回路設計する際
にも設計し易い抵抗値を有する感湿素子を提供す
る事を目的とする。
本発明は一対の電極と、前記電極間に設けら
れ、多孔質金属酸化物焼結体および前記焼結体の
結晶粒子表面に被覆されたアルカリイオン導電性
ガラスからなる感湿素体とを具備した感湿素子で
ある。
つまり本発明においては、高湿下でも安定なア
ルカリイオン導電性ガラスを用い通常のセラミツ
ク技術を用いて高温溶融処理行うことによりこれ
を多孔質金属酸化物焼結体に均一に分散させて、
結晶粒子を被覆させるために最適な感湿特性が得
られるものである。この感湿素子の特性は30%
RH〜90%RHの湿度領域で1MΩ以下4KΩ以上
と使いやすい抵抗値でしかも応答性も良く、高湿
下でも劣下はなく長期にわたつて安定に動作し信
頼性の高いものである。
なお本発明におけるアルカリイオン導電性ガラ
スとしては、リチウムイオン導電性ガラス、ナト
リウムイオン導電性ガラス等を用いる事が可能で
あり、実用上はリチウムイオン導電性ガラスとし
て、酸化リチウム−酸化ホウ素−塩化リチウムガ
ラス、酸化リチウム−塩化リチウム−五酸化リン
ガラス、酸化リチウム−フツ化リチウム−酸化ホ
ウ素ガラス、酸化リチウム−酸化ゲルマニウム−
五酸化バナジウムガラス、および酸化リチウム−
五酸化バナジウムガラスの少なくとも1種を、ま
たナトリウムイオン導電性ガラスとして酸化ナト
リウム−酸化アルミニウム−五酸化リンガラスを
用いる事が好ましい。またこれらアルカリイオン
導電性ガラスの含有量は、低湿および高湿におけ
る信頼性(抵抗値の経時変化)を向上させる上で
感湿素体に対し、1〜10重量%とする事が好まし
い。
さらに本発明における多孔質金属酸化物焼結体
としては、高融点金属酸化物で本発明で用いるア
ルカリイオン導電性ガラスが前記金属酸化物の結
晶粒子表面を被覆する程度の低粘性になる程度の
温度で焼成した場合に前記金属酸化物からなる焼
結体が多孔質となるもの、特にその多孔質の気孔
率が15〜30%となる事が好ましい。また上記結晶
粒径は1μm程度とする事が好ましい。
なお上記多孔質金属酸化物焼結体として具体的
には酸化アルミニウム、酸化マグネシウム、酸化
ジルコニウム、酸化チタン、酸化クロム、酸化ス
ズ、酸化マグネシウム−酸化クロムスピネル、酸
化亜鉛−酸化クロムスピネルを用いる事が好まし
い。
以下本発明を具体的実施例により説明する。
実施例 1
25mole%のLi2Oと58mole%のB2O3と17mole
%のLiclからなる配合組成のLi2O−B2O3−Licl
系リチウムイオン導電性ガラスを作製した。
Li2CO3、B2O3、LiCl試薬を上述の組成比になる
ように秤量し、混合した後、白金ルツボに入れ電
気炉を用いて800℃、30分間溶融した。その後、
鉄板上に流し出してガラス板とした。ガラス板は
粗粉砕後、アルミナボールミルで1昼夜アセトン
溶液を用いて湿式粉砕を行つた。この時のガラス
の平均粒径は2μmであつた。こうして得られた
リチウムイオン導電性ガラス粉末と酸化アルミニ
ウムを第1表に示す如く配合し、メノウ乳鉢でか
くはん混合した。混合物に1wt%のPVA溶液を
加え、金型プレスを用いて直径10mm、厚さ1mmの
円板を成型し、これを1300℃で1時間の焼成を行
つた。
The present invention relates to an electrical resistance type moisture sensing element having a resistance value that is highly reliable and easy to use. Conventionally, many electrical resistance type moisture sensing elements have been proposed, and some are commercially available. For example, the most common one is the Dunmore type electric hygrometer. This is a high-precision product in which an absorbent alkali salt such as lithium chloride, which is a moisture-sensitive material, is thinly and uniformly applied to the surface of an insulating support. However, if this material is left in high humidity for a long period of time, it absorbs a large amount of water and dissolves, causing the lithium chloride to flow and become unevenly distributed, resulting in changes in its properties. For this reason, various materials such as polystyrene glass fiber and vegetable pulp have been considered for the support, but nothing definitive has been found. In addition, since sublimation of the moisture-sensitive material itself occurs, correction is sometimes necessary. Therefore, in order to obtain a highly reliable moisture sensitive element,
A moisture-sensitive element made by mixing and firing a metal oxide and a semiconductor glass powder has also been reported (Japanese Patent Application Laid-Open No. 18386-1983).
Although this is capable of measuring a wide range of 10%RH to 100%RH, its resistance value is as high as 30MΩ to 1MΩ, which has been a major obstacle in practical use. An object of the present invention is to provide a humidity sensing element that maintains excellent reliability even during long-term use and has a resistance value that is easy to design when designing a circuit as a humidity detector. The present invention includes a pair of electrodes, and a moisture sensitive element provided between the electrodes and made of a porous metal oxide sintered body and an alkali ion conductive glass coated on the surface of the crystal grains of the sintered body. This is a moisture-sensitive element. In other words, in the present invention, alkali ion conductive glass, which is stable even under high humidity, is uniformly dispersed in a porous metal oxide sintered body by performing a high temperature melting process using ordinary ceramic technology.
Optimal moisture sensitivity characteristics can be obtained for coating crystal particles. The characteristics of this moisture sensitive element are 30%
It has an easy-to-use resistance value of 1MΩ or less and 4KΩ or more in the humidity range of RH to 90% RH, and has good responsiveness, and has no deterioration even under high humidity and operates stably over a long period of time and is highly reliable. In addition, as the alkali ion conductive glass in the present invention, lithium ion conductive glass, sodium ion conductive glass, etc. can be used.In practice, lithium ion conductive glass, lithium oxide-boron oxide-lithium chloride, etc. can be used. Glass, lithium oxide - lithium chloride - phosphorus pentoxide glass, lithium oxide - lithium fluoride - boron oxide glass, lithium oxide - germanium oxide -
Vanadium pentoxide glass and lithium oxide
It is preferable to use at least one type of vanadium pentoxide glass and sodium oxide-aluminum oxide-phosphorus pentoxide glass as the sodium ion conductive glass. Further, the content of the alkali ion conductive glass is preferably 1 to 10% by weight based on the moisture sensitive element in order to improve reliability (change in resistance value over time) at low humidity and high humidity. Furthermore, the porous metal oxide sintered body in the present invention is a high melting point metal oxide having a low viscosity such that the alkali ion conductive glass used in the present invention coats the crystal particle surface of the metal oxide. It is preferable that the sintered body made of the metal oxide becomes porous when fired at a temperature, and in particular, the porosity of the porous body is 15 to 30%. Further, the crystal grain size is preferably about 1 μm. Specifically, aluminum oxide, magnesium oxide, zirconium oxide, titanium oxide, chromium oxide, tin oxide, magnesium oxide-chromium oxide spinel, zinc oxide-chromium oxide spinel can be used as the porous metal oxide sintered body. preferable. The present invention will be explained below using specific examples. Example 1 25 mole% Li 2 O, 58 mole% B 2 O 3 and 17 mole
% Licl of Li 2 O−B 2 O 3 −Licl
We have fabricated a lithium-ion conductive glass.
Li 2 CO 3 , B 2 O 3 , and LiCl reagents were weighed and mixed so as to have the above-mentioned composition ratio, and then placed in a platinum crucible and melted at 800° C. for 30 minutes using an electric furnace. after that,
It was poured onto an iron plate and made into a glass plate. After coarsely pulverizing the glass plate, it was subjected to wet pulverization using an acetone solution for one day and night in an alumina ball mill. The average particle size of the glass at this time was 2 μm. The lithium ion conductive glass powder thus obtained and aluminum oxide were blended as shown in Table 1 and mixed by stirring in an agate mortar. A 1 wt % PVA solution was added to the mixture, and a disk with a diameter of 10 mm and a thickness of 1 mm was formed using a mold press, and this was fired at 1300° C. for 1 hour.
【表】
こうして得られた試料(感湿素体)を、その厚
さが0.25mmになるまで、SiC研摩材を用いて研摩
し、その後第1図に示すように、円板状試料1の
上、下に一対の金属極2,3を印刷、焼付けを行
い、リード線4,5を引き出し感湿素子を作製し
た。第2図に感湿特性を示す。1wt%以上のイオ
ン導電性ガラスの添加により、30%RHの抵抗値
は1MΩ以下となり、使いやすい。これらの素子
を40℃90%RH、極限の高湿下に3ケ月間放置し
た所、0.1wt%添加のものでは、素子抵抗値が増
大し、30%RHの値で抵抗値が増大し−15%RH
の変動がみられた。1〜10wt%添加のものでは
±10%RH以内の変動でおさまつていた。この素
子を次に通常の湿度雰囲気に放置すると1週間後
には特性は初期値にもどり、常温、常湿用として
十分実用に耐える。一方15wt%、20wt%添加素
子では90%RHの抵抗値が減少し、各々、±15%
RH、+20RHと大幅な変動がみられた。このよう
に、イオン導電性ガラスの添加量と高湿下での特
性変動には関連がありイオン導電性ガラスが1〜
10wt%添加したものでは40℃90%RHの高湿状態
下でも±10%RH以内におさまり常温常湿用の感
湿素子としては良好なものであることがわかつ
た。
実施例 2
本発明の感湿素子は、多孔質金属酸化物焼結体
の結晶粒子表面での水分の吸脱着現象を利用して
いるため、その気孔率が応答特性などの特性にお
よぼす影響は大きいものと予想される。
そこで、気孔率と感湿特性の関係を検討した。
実施例1において、添加量が5wt%のものを選
び、この添加された試料を1200℃、1250℃、1300
℃、1350℃、1380℃と焼成温度を変えることによ
り気孔率を変化させた。厚さを0.5mmまで研摩し
た後の各試料の気孔率は水銀ポロシメータ測定に
よれば1200℃焼成で38%、1250℃で30%、1300℃
で22%、1350℃で15%、1400℃で5%であつた。
これら得られた試料の結晶粒径は1μmと均一で
あつた。1300℃焼成のものについて第3図に気孔
径分布を示す。気孔径は0.01μmから0.1μmに分
布し、平均は0.08μmであつた。1250℃焼成のも
のは平均気孔径は0.5μm、1350℃焼成のものは平
均気孔径が0.05μmであり、感湿素子として好ま
しい範囲は0.05〜0.5μmであつた。これら試料よ
り第1図に示すと同様な感湿素子を作り、特性を
測定した。その結果を第4図に示す。5%気孔率
のもの(B−1)は感湿特性変化桁(logR30%
logR90%)が1桁以下と湿度に対する感度が
わるくしかも抵抗値が高い。一方15%のもの(B
−2)と22%のもの(B−3)と30%のもの(B
−4)及び38%のもの(B−5)では2桁の変化
桁をもち十分な感度がある。これらの素子につい
てさらに実用的な検討を加えるため、応答速度を
測定した。
次に上記素子を90%RHの高湿下に置き特性が
安定した後、30%RHの低湿へ湿度を下げた時、
15%、22%、30%気孔率の素子の抵抗値は上昇
し、5分以内に安定した正常値にもどつた。一方
38%のものは安定した正常値に達するのに20分を
必要とした。常温常湿センサとしてエアコンの湿
度制御等の応用を考えた場合、38%気孔率のもの
は応答性に問題があり、15%〜30%気孔率のもの
が良いことがわかつた。
実施例 3
各種アルカリイオン導電性ガラスについて、実
施例1と同様な方法で感湿素子を作製した。第2
表に添加物リチウムおよびナトリウムイオン導電
性ガラスの組成、ならびにガラス化温度を示す。
これらガラス試料の5wt%を、酸化チタンに加
え、混合、円板試料成型後、1300℃で1時間の焼
成を行つた。0.5mmの厚さに研摩後気孔率を測定
した所、これらは、すべて15〜30%の範囲にあつ
た。これらの素子の感湿特性を第5図に示す。半
導体である酸化チタンの場合では実施例2の絶縁
体である酸化アルミナに比較して、抵抗値は低
く、30%RHから90%RHの湿度領域で、抵抗値
は200KΩから4KΩと使いやすい値になつてい
る。実施例1と同様に40℃90%RHで3ケ月の高
湿放置試験では±10%RH以内の変動であつた。[Table] The sample thus obtained (moisture-sensitive element) was polished using a SiC abrasive material until its thickness became 0.25 mm, and then, as shown in Fig. 1, a disc-shaped sample 1 was A pair of metal electrodes 2 and 3 were printed and baked on the top and bottom, and lead wires 4 and 5 were drawn out to produce a moisture-sensitive element. Figure 2 shows the moisture sensitivity characteristics. By adding more than 1wt% of ion conductive glass, the resistance value at 30%RH is less than 1MΩ, making it easy to use. When these elements were left at 40°C, 90% RH, and extremely high humidity for 3 months, the element resistance value increased for the one with 0.1 wt% addition, and the resistance value increased at 30% RH. 15%RH
A change was observed. For those containing 1 to 10 wt%, the fluctuations were within ±10% RH. When this element is then left in a normal humidity atmosphere, its characteristics return to their initial values after one week, and are sufficiently durable for practical use at room temperature and humidity. On the other hand, with 15wt% and 20wt% additive elements, the resistance value at 90%RH decreases, each by ±15%.
A significant change was observed in RH and +20RH. In this way, there is a relationship between the amount of ion conductive glass added and the variation in characteristics under high humidity.
It was found that when 10 wt% was added, the humidity remained within ±10% RH even under high humidity conditions of 40°C and 90% RH, making it a good moisture-sensitive element for use at room temperature and humidity. Example 2 The moisture-sensitive element of the present invention utilizes the phenomenon of adsorption and desorption of moisture on the surface of crystal grains of a porous metal oxide sintered body, so the effect of its porosity on characteristics such as response characteristics is small. expected to be large. Therefore, we investigated the relationship between porosity and moisture sensitivity characteristics.
In Example 1, a sample with an additive amount of 5wt% was selected, and the added sample was heated at 1200℃, 1250℃, and 1300℃.
The porosity was changed by changing the firing temperature: ℃, 1350℃, and 1380℃. After polishing to a thickness of 0.5 mm, the porosity of each sample was 38% when fired at 1200°C, 30% when fired at 1250°C, and 30% at 1300°C, as measured by a mercury porosimeter.
It was 22% at 1,350℃, 15% at 1,400℃, and 5% at 1,400℃.
The crystal grain sizes of these obtained samples were uniform at 1 μm. Figure 3 shows the pore size distribution of the material fired at 1300°C. The pore diameter was distributed from 0.01 μm to 0.1 μm, and the average was 0.08 μm. Those fired at 1250°C had an average pore diameter of 0.5 μm, and those fired at 1350°C had an average pore diameter of 0.05 μm, and the preferable range for a moisture-sensitive element was 0.05 to 0.5 μm. Moisture sensitive elements similar to those shown in FIG. 1 were made from these samples and their characteristics were measured. The results are shown in FIG. The one with 5% porosity (B-1) has an order of magnitude change in moisture sensitivity (logR30%).
logR90%) is less than one digit, which means that the sensitivity to humidity is poor, and the resistance value is high. On the other hand, 15% (B
-2), 22% (B-3) and 30% (B
-4) and 38% (B-5) have two orders of magnitude change and have sufficient sensitivity. In order to conduct further practical studies on these elements, we measured their response speeds. Next, after the above element was placed under high humidity of 90% RH and the characteristics stabilized, when the humidity was lowered to low humidity of 30% RH,
The resistance values of the elements with 15%, 22%, and 30% porosity increased and returned to stable normal values within 5 minutes. on the other hand
38% required 20 minutes to reach stable normal values. When considering applications such as humidity control in air conditioners as a normal temperature and humidity sensor, it was found that a sensor with a porosity of 38% has a problem with response, and a sensor with a porosity of 15% to 30% is better. Example 3 Moisture-sensitive elements were produced using various alkali ion conductive glasses in the same manner as in Example 1. Second
The table shows the composition of the additive lithium and sodium ion conductive glass, as well as the vitrification temperature.
5wt% of these glass samples were added to titanium oxide, mixed, and formed into a disk sample, followed by firing at 1300°C for 1 hour. When the porosity was measured after polishing to a thickness of 0.5 mm, all of them were in the range of 15 to 30%. The moisture sensitivity characteristics of these elements are shown in FIG. In the case of titanium oxide, which is a semiconductor, the resistance value is lower than that of alumina oxide, which is an insulator in Example 2, and the resistance value is from 200KΩ to 4KΩ, which is an easy-to-use value in the humidity range of 30%RH to 90%RH. It's getting old. Similarly to Example 1, in the high humidity storage test at 40° C. and 90% RH for 3 months, the fluctuation was within ±10% RH.
【表】
実施例 4
25mole%のLi2Oと58mole%のB2O3と17mole
%のLiClからなる配合組成のLi2O−B2O3−LiCl
系リチウムイオン伝導性ガラスを各種金属酸化物
に5wt%添加し実施例1と同様な方法で感湿素子
を作製した。第3表に検討した金属酸化物と焼成
温度、ならびに得られた感湿素子の気孔率結晶粒
子径を示す。[Table] Example 4 25mole% Li 2 O, 58mole% B 2 O 3 and 17mole
% LiCl of Li 2 O−B 2 O 3 −LiCl
A moisture-sensitive element was prepared in the same manner as in Example 1 by adding 5 wt% of the lithium ion conductive glass to various metal oxides. Table 3 shows the metal oxides and firing temperatures studied, as well as the porosity and crystal grain size of the obtained moisture-sensitive elements.
【表】
第3表において、1300℃焼成ではZnOを除いて
すべての試料で、気孔率が15%から13%の範囲
で、しかも結晶粒径が1μmと小さく均一であつ
た。粒成長が生じ、平均結晶粒子が12μmと大な
り、気孔率も6%と低い。多孔質なZnO試料を得
るには、焼成温度を1000℃まで下げねばならなか
つた(D−8)。
第6図に、各素子の感湿特性を示す。金属酸化
物としてMgO、ZrO2、Cr2O3、SnO2、
MgCr2O4、ZnCr2O4を用いた場合、変化桁は2
桁以上あり、初期特性として十分なものであつ
た。さらにこれらの素子は、40℃90%RHの高湿
試験で、3ケ月間の変動は±10%RH以内で常温
常湿用として実用に十分供し得るものであつた。
一方、ZnOの場合、1300℃焼成(D−7)では、
変化桁は1桁以内で、抵抗も高い。これは気孔率
が6%と低いためである。1000℃焼成(D−8)
では気孔率が21%のものが得られ、しかも変化桁
は2桁以上あるがしかし、40℃90%RHで3ケ月
間の高湿試験では、抵抗が上昇し−17%RHの変
化が生じ、その後の大気放置でも初期値に復帰し
なかつた。これは、次のような原因が推定され
る。すなわち、1000℃では、イオン伝導性ガラス
の粘性が高く、骨格である多孔質ZnO粒子表面を
十分に被覆できなく、残されたZnO表面そのもの
の劣化によるものと思われる。イオン導電性ガラ
スの粘性が十分に低い1300℃では、ZnOは焼結、
粒成長を生じち密なものとなり、多孔質な感湿素
子は得られない。
実施例でみられたように、感湿素体としてアル
カリイオン導電性ガラスを用いれば、変動幅はあ
るものの、極限状態である高湿下(40℃90%)で
も長期にわたつて使用可能で、放置条件が、中、
低湿にもどれば、素子特性は初期値にもどる。こ
れは感湿素体として重要な役割りをはたすリチウ
ムおよびナトリウムイオンがその性質をそこなわ
ずに、固体内に流出しないように保持されている
ためと思われる。リチウムおよびナトリウムイオ
ン導電性ガラスが高温処理による溶融によつてそ
の骨格である多孔質金属酸化物焼結体の粒子を均
一に被覆し、特性の安定をもたらしている。この
場合の添加量は1〜10wt%が良い。さらに気孔
率が15〜30%の場合に、その応答速度が5分以内
でしかも感度が良く実用に十分供し得るものであ
る。また、これらの素子は30%RH〜90%RHと
実用湿度範囲で、その抵抗値は1MΩ〜4MΩと低
く大変使いやすい値である。
なお上記実施例では第1図の如き構造の感湿素
子を用いたが、その構造は適宜変更する事が可能
であり、又多孔質金属酸化物焼結体として希土類
酸化物等を用いる事もできる。[Table] In Table 3, when fired at 1300°C, the porosity of all samples except ZnO was in the range of 15% to 13%, and the crystal grain size was small and uniform at 1 μm. Grain growth occurs, with an average crystal grain size of 12 μm and a low porosity of 6%. To obtain porous ZnO samples, the calcination temperature had to be lowered to 1000°C (D-8). FIG. 6 shows the moisture sensitivity characteristics of each element. MgO, ZrO 2 , Cr 2 O 3 , SnO 2 as metal oxides,
When using MgCr 2 O 4 and ZnCr 2 O 4 , the order of change is 2
It was more than an order of magnitude higher, and was sufficient as an initial characteristic. Furthermore, in a high-humidity test at 40°C and 90% RH, these elements showed fluctuations within ±10% RH over a period of 3 months, and were sufficiently usable for practical use at room temperature and humidity.
On the other hand, in the case of ZnO, when fired at 1300℃ (D-7),
The change digit is within 1 digit and the resistance is high. This is because the porosity is as low as 6%. 1000℃ firing (D-8)
However, in a high humidity test at 40℃ and 90%RH for 3 months, the resistance increased and a change of -17%RH occurred. , even after leaving it in the atmosphere, it did not return to its initial value. This is presumed to be caused by the following reasons. That is, at 1000°C, the viscosity of the ion-conducting glass is high and the surface of the porous ZnO particles, which is the skeleton, cannot be sufficiently covered, and the remaining ZnO surface itself seems to deteriorate. At 1300℃, where the viscosity of ion conductive glass is sufficiently low, ZnO sinters,
Grain growth occurs and the material becomes dense, making it impossible to obtain a porous moisture-sensitive element. As seen in the examples, if alkali ion conductive glass is used as the moisture sensitive element, it can be used for a long period of time even under extreme conditions of high humidity (40°C, 90%), although there is a fluctuation range. , the leaving condition is medium,
When the humidity returns to low, the device characteristics return to their initial values. This is thought to be because the lithium and sodium ions, which play an important role as a moisture-sensitive element, are retained in the solid so as not to leak out without damaging their properties. Lithium and sodium ion conductive glass uniformly coats the particles of the porous metal oxide sintered body, which is the skeleton, by melting through high-temperature treatment, resulting in stable properties. In this case, the amount added is preferably 1 to 10 wt%. Further, when the porosity is 15 to 30%, the response speed is within 5 minutes and the sensitivity is good enough for practical use. In addition, these elements have a practical humidity range of 30%RH to 90%RH, and their resistance values are as low as 1MΩ to 4MΩ, making them very easy to use. In the above embodiment, a moisture sensing element having a structure as shown in Fig. 1 was used, but the structure can be changed as appropriate, and rare earth oxides etc. can also be used as the porous metal oxide sintered body. can.
第1図は本発明の実施例に用いる感湿素子の断
面図、第2図、第3図、第4図、第5図、および
第6図は本発明に係る実施例の感湿素子で得られ
る特性を示す曲線図。
1……円板焼成体、2,3……電極、4,5…
…リード線。
FIG. 1 is a sectional view of a humidity sensing element used in an embodiment of the present invention, and FIGS. A curve diagram showing the obtained characteristics. 1... Disc fired body, 2, 3... Electrode, 4, 5...
…Lead.
Claims (1)
れ、多孔質金属酸化物焼結体および前記焼結体の
結晶粒子表面に被覆されたアルカリイオン導電性
ガラスからなる感湿素体とを具備した事を特徴と
する感湿素子。 2 特許請求の範囲第1項においてアルカリイオ
ン導電性ガラスが1〜10重量%含有されている事
を特徴とした感湿素子。 3 特許請求の範囲第1項又は第2項において感
湿素体の気孔率が15〜30%である事を特徴とする
感湿素子。 4 特許請求の範囲第1項、第2項又は第3項に
おいて、アルカリイオン導電性ガラスとしてリチ
ウムイオン導電性ガラス、ナトリウムイオン導電
性ガラスの少なくとも1種を用いた事を特徴とす
る感湿素子。 5 特許請求の範囲第4項においてリチウムイオ
ン導電性ガラスとして酸化リチウム−酸化ホウ素
−塩化リチウムガラス、酸化リチウム−塩化リチ
ウム−五酸化リンガラス、酸化リチウム−フツ化
リチウム−酸化ホウ素ガラス、酸化リチウム−酸
化ゲルマニウム−五酸化バナジウムガラス、およ
び酸化リチウム−五酸化バナジウムガラスの少な
くとも1種を、ナトリウムイオン導電性ガラスと
して酸化ナトリウム−酸化アルミニウム−五酸化
リンガラスを用いた事を特徴とする感湿素子。 6 特許請求の範囲第1項において、多項質金属
酸化物焼結体として酸化アルミニウム、酸化マグ
ネシウム、酸化ジルコニウム、酸化チタン、酸化
クロム、酸化スズ、酸化マグネシウム−酸化クロ
ムスピネル、酸化亜鉛−酸化クロムスピネルを用
いた事を特徴とする感湿素子。[Scope of Claims] 1. A sensor comprising a pair of electrodes, a porous metal oxide sintered body, and an alkali ion conductive glass coated on the surface of the crystal grains of the sintered body, which is provided between the pair of electrodes. A moisture sensing element characterized by comprising a moisture body. 2. A moisture-sensitive element according to claim 1, characterized in that the alkali ion conductive glass is contained in an amount of 1 to 10% by weight. 3. A moisture-sensitive element according to claim 1 or 2, characterized in that the moisture-sensitive element has a porosity of 15 to 30%. 4. A moisture-sensitive element according to claim 1, 2, or 3, characterized in that at least one of lithium ion conductive glass and sodium ion conductive glass is used as the alkali ion conductive glass. 5 In claim 4, the lithium ion conductive glass is lithium oxide-boron oxide-lithium chloride glass, lithium oxide-lithium chloride-phosphorus pentoxide glass, lithium oxide-lithium fluoride-boron oxide glass, lithium oxide- 1. A moisture-sensitive element characterized in that at least one of germanium oxide-vanadium pentoxide glass and lithium oxide-vanadium pentoxide glass is used, and sodium oxide-aluminum oxide-phosphorus pentoxide glass is used as the sodium ion conductive glass. 6 In claim 1, aluminum oxide, magnesium oxide, zirconium oxide, titanium oxide, chromium oxide, tin oxide, magnesium oxide-chromium oxide spinel, zinc oxide-chromium oxide spinel are used as polytopic metal oxide sintered bodies. A moisture-sensitive element characterized by using.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56135419A JPS5837901A (en) | 1981-08-31 | 1981-08-31 | Moisture sensitive element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56135419A JPS5837901A (en) | 1981-08-31 | 1981-08-31 | Moisture sensitive element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5837901A JPS5837901A (en) | 1983-03-05 |
JPS6355763B2 true JPS6355763B2 (en) | 1988-11-04 |
Family
ID=15151288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56135419A Granted JPS5837901A (en) | 1981-08-31 | 1981-08-31 | Moisture sensitive element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5837901A (en) |
-
1981
- 1981-08-31 JP JP56135419A patent/JPS5837901A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5837901A (en) | 1983-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6355763B2 (en) | ||
KR910001859B1 (en) | Humidity-sensing component composition | |
US4509035A (en) | Humidity-sensitive element and process for producing the same | |
JPH0378761B2 (en) | ||
JPS61242927A (en) | Production of moisture responsive sintered material of glass powder | |
KR840000260B1 (en) | Temperature-responsive element | |
JPS5840801A (en) | Humidity sensor element | |
JPS6344703A (en) | Moisture-sensitive device compound | |
JPS6355766B2 (en) | ||
JPS61280555A (en) | Humidity-sensitive element | |
KR920009164B1 (en) | Manufacturing method of the moisture resistance resistor | |
JPS6390101A (en) | Humidity sensor and manufacture of the same | |
JPS5835901A (en) | Moisture sensitive element | |
JPH05264494A (en) | Moisture-sensitive element | |
JPH0251141B2 (en) | ||
JPS6317203B2 (en) | ||
JPH06224003A (en) | Humidity sensitive element | |
JPS6317205B2 (en) | ||
JPS5999702A (en) | Moisture sensitive element | |
JPS5813003B2 (en) | Kanshitsusoshi | |
JPS58201311A (en) | Moisture measuring element | |
JPS58201310A (en) | Moisture measuring element | |
JPS6161241B2 (en) | ||
JPS6314483B2 (en) | ||
JPS60121701A (en) | Moisture sensitive element |