[go: up one dir, main page]

JPS6355641B2 - - Google Patents

Info

Publication number
JPS6355641B2
JPS6355641B2 JP55181142A JP18114280A JPS6355641B2 JP S6355641 B2 JPS6355641 B2 JP S6355641B2 JP 55181142 A JP55181142 A JP 55181142A JP 18114280 A JP18114280 A JP 18114280A JP S6355641 B2 JPS6355641 B2 JP S6355641B2
Authority
JP
Japan
Prior art keywords
light
measured
lens
displacement
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55181142A
Other languages
Japanese (ja)
Other versions
JPS57104808A (en
Inventor
Toshio Ichikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP18114280A priority Critical patent/JPS57104808A/en
Publication of JPS57104808A publication Critical patent/JPS57104808A/en
Publication of JPS6355641B2 publication Critical patent/JPS6355641B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Description

【発明の詳細な説明】 この発明は光ビームを走査しながら物体に照射
して物体までの距離を測定する原理を用いて物体
の1次元的な表面形状を測定する形状測定装置に
関するものである。
[Detailed Description of the Invention] This invention relates to a shape measuring device that measures the one-dimensional surface shape of an object using the principle of measuring the distance to the object by irradiating the object with a scanning light beam. .

物体の形状を測定する場合、最も簡単な方法は
ある基準面から物体の各点までの距離を物差しで
測定する方法であり、これを精密に行なうのが機
械探針法である。よく知られているようにこの機
械探針法は、物体に探針を直接接触させ、この形
状を測定するものであるから物体の機質に制限が
あり、また測定にかなりの時間を要するうえに連
続的な測定は困難であつた。また、非接触式に変
位を測定する方法としては、光ビームを照射して
物体までの距離を測定する方法であるが、物体が
静止しているときは測定装置を移動させないと凹
凸等の形状の測定は困難であつた。
When measuring the shape of an object, the simplest method is to use a ruler to measure the distance from a certain reference plane to each point on the object, and the mechanical probe method is a precise way to do this. As is well known, this mechanical probe method involves directly contacting the probe with the object and measuring its shape, so there are limitations to the nature of the object, and it takes a considerable amount of time to measure. Continuous measurement was difficult. In addition, a non-contact method for measuring displacement is to irradiate a light beam to measure the distance to the object, but when the object is stationary, it is necessary to move the measuring device to avoid irregularities and other shapes. was difficult to measure.

この発明は上記の欠点を除去するためになされ
たもので、非接触で連続的、かつ高速に物体の1
次元的な凹凸等の形状を測定可能にした形状測定
装置を提供するものである。
This invention was made in order to eliminate the above-mentioned drawbacks, and is a non-contact, continuous, and high-speed method for
The present invention provides a shape measuring device that is capable of measuring shapes such as dimensional unevenness.

以下、本発明装置を説明する前に、1個の光源
を用いた場合の原理構成および物体表面からの反
射光と受光位置との関係について第1図ないし第
3図を参照して説明する。第1図は被測定物体の
変位を測定する装置の構成を示す図である。同図
において21は光源、22は光源21からの光ビ
ームを細い照射光ビーム23に収束するレンズで
ある。24は被測定物体であつてその表面は矢印
A,Bの方向に変位している。25は被測定物体
24からの反射光を収束する集光レンズである。
26は位置検出器であつて受光素子27、演算器
28等から構成されている。9は補正回路であ
る。
Before explaining the apparatus of the present invention, the basic configuration when one light source is used and the relationship between the reflected light from the object surface and the light receiving position will be explained with reference to FIGS. 1 to 3. FIG. 1 is a diagram showing the configuration of an apparatus for measuring the displacement of an object to be measured. In the figure, 21 is a light source, and 22 is a lens that converges the light beam from the light source 21 into a narrow irradiation light beam 23. Reference numeral 24 denotes an object to be measured, the surface of which is displaced in the directions of arrows A and B. 25 is a condensing lens that converges the reflected light from the object to be measured 24.
Reference numeral 26 denotes a position detector, which is composed of a light receiving element 27, an arithmetic unit 28, and the like. 9 is a correction circuit.

しかして、以上のような装置において光源21
から出力された光ビームはレンズ22で収束され
て細い照射光ビーム23となつて被測定物体24
の表面に照射される。このとき、第2図に示すよ
うに被測定物体24の表面変位x、つまりx軸上
の各点例えば中心0から−a、+aだけ変化した
とき、その被測定物体24からの反射光23′は
集光レンズ25を通つて受光素子27面にはy軸
上の中心0′から−b、+bの点に投射される。被
測定物体24と集光レンズ25との距離及び角度
によつて、集光レンズ25による像の結像位置が
異なるので、結像位置の軌跡と受光素子面を一致
する様に受光素子面の位置を決定する。仮に、結
像位置の軌跡と受光素子面が一致しないと、受光
面上に被測定物体上の光点が結像しないことにな
り、また受光面での光スポツトは大きくなり誤差
の原因となる。この誤差上記以外の誤差について
は後述する本発明装置の第4図に示す除算回路1
1,112により被測定物体24の反射率の違い
による受光素子面上での光の強度の違いによる誤
差を補正し、また、第4図に示すリニア補正回路
121,122により被測定物体24のx軸方向の
動きと受光面上の光スポツトの動きのノンリニア
リテイを補正する。
However, in the above device, the light source 21
The light beam outputted from the lens 22 is converged into a narrow irradiation light beam 23 and directed to the object to be measured 24.
irradiated onto the surface of At this time, as shown in FIG. 2, when the surface displacement x of the object to be measured 24, that is, each point on the x-axis changes by -a, +a from the center 0, the reflected light 23' from the object to be measured 24 is projected onto the light receiving element 27 through the condenser lens 25 at points -b and +b from the center 0' on the y-axis. Since the position of the image formed by the condenser lens 25 differs depending on the distance and angle between the object to be measured 24 and the condenser lens 25, the light-receiving element surface is adjusted so that the locus of the image-forming position and the light-receiving element surface coincide. Determine the position. If the locus of the imaging position and the light receiving element surface do not match, the light spot on the object to be measured will not be imaged on the light receiving surface, and the light spot on the light receiving surface will become large, causing an error. . Regarding errors other than those mentioned above, please refer to the division circuit 1 shown in FIG.
1 1 and 11 2 to correct errors caused by differences in light intensity on the light receiving element surface due to differences in reflectance of the object to be measured 24, and linear correction circuits 12 1 and 12 2 shown in FIG. Nonlinearity in the movement of the measurement object 24 in the x-axis direction and the movement of the light spot on the light receiving surface is corrected.

従つて、本発明装置では上記原理構成を踏まえ
つつ2つの光源を用いて被測定物体の1次元的な
形状を測定することにあり、以下、その一実施例
について第4図および第5図を参照して説明す
る。第4図において、111の周波数で変調さ
れた光を出力する第1の光源、122の周波数
で変調された光を出力する第2の光源、2はこれ
ら第1、第2の光源11,12からの光をスキヤン
するための回転ミラーなどで成るスキヤナ、31
2はこのスキヤナ2と第1、第2の光源11,1
の光軸上に設置され光源11,12からの光ビー
ムを細い照射ビームとするレンズである。4は被
測定物体であつてそのy方向被測定面はx軸方向
に変位している。51,52は被測定物体4とスキ
ヤナ2との間の光軸上に設置された照射レンズで
ある。6は受光素子(詳細な構成は第5図に示
す)であつて、この受光素子6の受光面積は回転
ミラー2による被測定物体4への振れ幅および集
光レンズ7の倍率等によつて決定される。7は受
光素子6と被測定物体4との間の光軸上に設置さ
れ被測定物体4からの反射光を集束する集光レン
ズである。
Therefore, the device of the present invention measures the one-dimensional shape of the object to be measured using two light sources based on the above-mentioned principle configuration. Refer to and explain. In Figure 4, 1 1 is a first light source that outputs light modulated at a frequency of 1 , 1 2 is a second light source that outputs light that is modulated at a frequency of 2 , and 2 is a first and second light source that outputs light modulated at a frequency of 2. Scanner 3 1 , consisting of a rotating mirror, etc. for scanning the light from the light sources 1 1 , 1 2 of 2 ;
3 2 is this scanner 2 and the first and second light sources 1 1 , 1
This lens is installed on the optical axis of the light sources 1 1 and 1 2 and converts the light beams from the light sources 1 1 and 1 2 into a narrow irradiation beam. Reference numeral 4 denotes an object to be measured whose surface to be measured in the y direction is displaced in the x-axis direction. 5 1 and 5 2 are irradiation lenses installed on the optical axis between the object to be measured 4 and the scanner 2. 6 is a light-receiving element (detailed configuration is shown in FIG. 5), and the light-receiving area of this light-receiving element 6 is determined by the deflection width of the rotating mirror 2 toward the object to be measured 4, the magnification of the condensing lens 7, etc. It is determined. A condenser lens 7 is installed on the optical axis between the light receiving element 6 and the object to be measured 4 and focuses the reflected light from the object to be measured 4.

上記受光素子6は受光面上の光点の像位置によ
つて各端子から得られる光電流i1,i2の比が変化
するもので、拡散型PINダイオードなど用いられ
る。
The light receiving element 6 is such that the ratio of photocurrents i 1 and i 2 obtained from each terminal changes depending on the image position of the light spot on the light receiving surface, and a diffused PIN diode or the like is used.

また、81,82は光電流i1,i2から周波数1
分のみを通過させるフイルタ、83,84は光電流
i1,i2から周波数2成分のみを通過させるフイル
タである。91はフイルタ81,82を通過した光
電流i1とi2の差(i1―i2)をとる減算回路、101
はフイルタ81,82を通過した光電流i1とi2の和
(i1+i2)をとる加算回路、92はフイルタ83,8
を通過した光電流i1とi2の差(i1―i2)をとる減
算回路、102はフイルタ83,84を通過した光
電流i1+i2の和(i1+i2)をとる加算回路である。
111,112はそれぞれ(i1―i2)を(i1+i2)で
除する除算回路、121,122はリニア補正回
路、13は変位演算器である。
In addition, 8 1 and 8 2 are filters that allow only one frequency component to pass from the photocurrents i 1 and i 2 , and 8 3 and 8 4 are filters that allow only one frequency component to pass from the photocurrents i 1 and i 2 .
This is a filter that allows only two frequency components from i 1 and i 2 to pass through. 9 1 is a subtraction circuit that calculates the difference (i 1 - i 2 ) between photocurrents i 1 and i 2 that have passed through filters 8 1 and 8 2 ; 10 1
is an addition circuit that calculates the sum (i 1 + i 2 ) of photocurrents i 1 and i 2 that have passed through filters 8 1 and 8 2 , and 9 2 is an addition circuit that calculates the sum (i 1 + i 2 ) of photocurrents i 1 and i 2 that have passed through filters 8 1 and 8 2 ,
102 is the sum of the photocurrents i1 + i2 that have passed through filters 83 and 84 ( i1 + i2 ) . ).
11 1 and 11 2 are division circuits that divide (i 1 −i 2 ) by (i 1 +i 2 ), 12 1 and 12 2 are linear correction circuits, and 13 is a displacement calculator.

上記受光素子6として用いられた拡散型PINダ
イオードの構成図を第5図に示す。第5図におい
て61はn型半導体基板、62はp型半導体領
域、63は前記n型半導体基板61に取り付けた
電極、64,65は前記p型半導体領域62に取
り付けた電極である。また、66は電源、67,
68は負荷抵抗器である。このような構成におい
て反射光の照射位置に応じて負荷抵抗器67を流
れる光電流i1と負荷抵抗器68を流れる光電流i2
とが異なつてくる。したがつて、この光電流i1
i2を上記フイルタ81,84、減算回路91,92
加算回路101,102、除算回路111,112
演算処理することにより、受光素子6の中心Oか
らの照射位置y1,y2は y1=K1・(i1―i2)/(i1+i2)… (1) y2=K2・(i1―i2)/(i1+i2)… (2) として求められる。ただし、K1,K2は定数であ
る。
A configuration diagram of the diffused PIN diode used as the light receiving element 6 is shown in FIG. In FIG. 5, 61 is an n-type semiconductor substrate, 62 is a p-type semiconductor region, 63 is an electrode attached to the n-type semiconductor substrate 61, and 64 and 65 are electrodes attached to the p-type semiconductor region 62. Also, 66 is a power supply, 67,
68 is a load resistor. In such a configuration, a photocurrent i 1 flowing through the load resistor 67 and a photocurrent i 2 flowing through the load resistor 68 depend on the irradiation position of the reflected light.
The results are different. Therefore, this photocurrent i 1 ,
i 2 through the filters 8 1 , 8 4 , subtraction circuits 9 1 , 9 2 ,
By performing arithmetic processing in the adder circuits 10 1 , 10 2 and the divider circuits 11 1 , 11 2 , the irradiation positions y 1 , y 2 from the center O of the light receiving element 6 are calculated as follows: y 1 =K 1・(i 1 −i 2 )/(i 1 + i 2 )… (1) y 2 = K 2・(i 1 − i 2 )/(i 1 + i 2 )… (2) However, K 1 and K 2 are constants.

また、上記リニア補正回路111,112は、上
記y1,y2が被測定物体4の図示xy2次元座標(集
光レンズ7を原点とする)のx軸方向の変化に直
線的に比例しないのを補正するためのもので、折
線近似回路、指数関数回路などが用いられる。し
たがつて、これらリニア補正回路111,112
リニア補正されて出力されたy1,y2は被測定物体
4のx軸方向の変化に対応するものとなる。この
ようにして求められたy1,y2より、被測定物体4
の変位xaは、集光レンズ7を原点として2次元座
標で考えると xa=Δyh・xc/y1+y2…(3) で表わされる。上記(3)式のxaは集光レンズからの
x軸方向の距離変動であり、これはたとえば被測
定物体4の表面が図示の如く凹凸であれば、上記
xaはその凹凸に対応した距離となる。したがつ
て、変位演算器13で上記(3)式を演算して、その
出力信号をX―Yレコーダなどで表示させれば被
測定物体4の表面形状に対応した形状が描かれ
る。
Further, the linear correction circuits 11 1 and 11 2 are arranged so that the y 1 and y 2 are linearly proportional to the change in the x-axis direction of the illustrated xy two-dimensional coordinates of the object to be measured 4 (with the condensing lens 7 as the origin). This is to compensate for the fact that the signal does not match, and uses a polygonal approximation circuit, an exponential function circuit, etc. Therefore, y 1 and y 2 linearly corrected and outputted by these linear correction circuits 11 1 and 11 2 correspond to changes in the object to be measured 4 in the x-axis direction. From y 1 and y 2 obtained in this way, the measured object 4
When considered in two-dimensional coordinates with the condensing lens 7 as the origin, the displacement x a is expressed as xa=Δyh·xc/y 1 +y 2 (3). x a in the above equation (3) is the distance variation in the x-axis direction from the condensing lens.
x a is the distance corresponding to the unevenness. Therefore, if the displacement calculator 13 calculates the above equation (3) and the output signal is displayed on an XY recorder or the like, a shape corresponding to the surface shape of the object to be measured 4 will be drawn.

ところで、上記(3)式は次のようにして求められ
る。すなわち、受光素子6上におけるy1(第1の
光源11からの光ビームの光点)、y2(第2の光源
2からの光ビームの光点)は y1=yh/xa・xc… (4) y2=−yh+Δyh/xa・xc… (5) (4)・(5)式より y2=−(―xa/xc)y1+Δyh/xa・xc… (6) これよりxaは xa=−Δyh・xc/y2―y1=Δyh・xc/y1―y2 となる。
By the way, the above equation (3) can be obtained as follows. That is, y 1 (light point of the light beam from the first light source 1 1 ) and y 2 (light point of the light beam from the second light source 1 2 ) on the light receiving element 6 are y 1 =y h /x a・x c … (4) y 2 =−y h +Δy h /x a・x c … (5) From equations (4) and (5), y 2 =−(−xa/xc) y 1 +Δyh/xa・xc… (6) From this, xa becomes xa=−Δyh・xc/y 2 −y 1 =Δyh・xc/y 1 −y 2 .

上記のような構成であるから、第1、第2の光
源11,12から周波数12で変調された光をス
キヤナ2に照射すると、それらの光は被測定物体
4上を走査し、その反射ビームが集光レンズ7を
通つて受光素子6に照射される。この受光素子6
からは、上記反射ビームの光点の位置に応じた光
電流i1,i2が出力される。この光電流i1,i2はフイ
ルタ81〜84によつて、それぞれ51,52の周波
数で分離される。したがつて、フイルタ81,82
からは第1の光源11からの光による光電流i1,i2
が出力され、フイルタ83,84からは第2の光源
2からの光による光電流i1,i2が出力される。そ
して第1の光源11からの光による光電流i1,i2
よび第2の光源12からの光による光電流i1,i2
それぞれ減算回路91,92でi1―i2の減算がなさ
れるとともに、加算回路101,102でi1+i2
加算がなされ、さらに除算回路111,112
(i1―i2)/(i1+i2)の除算がなされたのち、リ
ニア補正回路121,122でリニア補正される。
このリニア補正回路121,122でリニア補正さ
れた上記(1)、(2)式のy1,y2は変位演算器13に入
力され、ここで上記(3)式が演算されて出力され
る。この変位演算器13からの出力xaは前述した
ように、被測定物4の表面形状の凹凸に対した距
離、すなわち、この実施例では集光レンズ7の中
心を原点としているため、この原点からのx座標
の変位を示している。したがつて、この変位演算
器13の出力をたとえばX―Yレコーダなどに入
力させれば、被測定物体4の表面形状に対応した
形状を摘かせることができる。
With the above configuration, when the scanner 2 is irradiated with light modulated at frequencies 1 and 2 from the first and second light sources 1 1 and 1 2 , those lights scan the object to be measured 4 . , the reflected beam passes through the condenser lens 7 and is irradiated onto the light receiving element 6 . This light receiving element 6
outputs photocurrents i 1 and i 2 corresponding to the position of the light spot of the reflected beam. The photocurrents i 1 and i 2 are separated by filters 8 1 to 8 4 at frequencies of 5 1 and 5 2 , respectively. Therefore, filters 8 1 , 8 2
are the photocurrents i 1 , i 2 due to the light from the first light source 1 1
are output, and photocurrents i 1 and i 2 due to the light from the second light source 1 2 are output from the filters 8 3 and 8 4 . Then, the photocurrents i 1 , i 2 due to the light from the first light source 1 1 and the photocurrents i 1 , i 2 due to the light from the second light source 1 2 are converted to i 1 −i by the subtraction circuits 9 1 , 9 2 , respectively. 2 is subtracted, addition circuits 10 1 and 10 2 add i 1 + i 2 , and division circuits 11 1 and 11 2 divide (i 1 − i 2 )/(i 1 + i 2 ). After that, linear correction is performed in linear correction circuits 12 1 and 12 2 .
The y 1 and y 2 of the above equations (1) and (2) that have been linearly corrected by the linear correction circuits 12 1 and 12 2 are input to the displacement calculator 13, where the above equation (3) is calculated and output. be done. As mentioned above, the output x a from the displacement calculator 13 is the distance to the unevenness of the surface shape of the object to be measured 4, that is, in this embodiment, the center of the condenser lens 7 is the origin. It shows the displacement of the x coordinate from . Therefore, by inputting the output of the displacement calculator 13 into, for example, an XY recorder, a shape corresponding to the surface shape of the object to be measured 4 can be picked up.

以上説明したようにこの発明によれば、被測定
物体の移動の有無に拘らず静止した状態で物体の
凹凸等の1次元的な形状を非接触で高精度にかつ
高速で測定することができる形状測定装置を提供
できる。
As explained above, according to the present invention, one-dimensional shapes such as unevenness of an object can be measured non-contact, with high precision, and at high speed while the object is stationary, regardless of whether the object is moving or not. A shape measuring device can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1個の光源を用いた場合の本発明装置
の原理構成図、第2図および第3図は第1図の装
置を用いた場合の被測定物体の変位と受光位置と
の関係を示す図、第4図は本発明装置の一実施例
を示す構成図、第5図は同実施例において使用す
る受光素子の具体例を示す構成図である。 11…第1の光源、12…第2の光源、2…スキ
ヤナ、4…被測定物体、6…受光素子、81…84
…フイルタ、91,92…減算回路、101,102
…加算回路、111,112…除算回路、12…リ
ニア補正回路、13…変位演算器。
Figure 1 is a diagram of the principle configuration of the device of the present invention when one light source is used, and Figures 2 and 3 are the relationship between the displacement of the object to be measured and the light receiving position when the device shown in Figure 1 is used. FIG. 4 is a block diagram showing an embodiment of the apparatus of the present invention, and FIG. 5 is a block diagram showing a specific example of a light receiving element used in the same embodiment. 1 1 ...first light source, 1 2 ...second light source, 2...scanner, 4...object to be measured, 6...light receiving element, 8 1 ...8 4
...Filter, 9 1 , 9 2 ...Subtraction circuit, 10 1 , 10 2
... Addition circuit, 11 1 , 11 2 ... Division circuit, 12 ... Linear correction circuit, 13 ... Displacement calculator.

Claims (1)

【特許請求の範囲】[Claims] 1 異なる周波数で変調された指向性のよい光ビ
ームを出力する第1、第2の光源11,12と、こ
れら第1、第2の光源からの光をスキヤンするス
キヤナ2と、このスキヤナでスキヤンされた前記
第1、第2の光源の像を被測定物体上に投射しそ
れぞれ異なる点に光点を形成する照射レンズ51
2と、この照射レンズの光軸とは異なる方向に
配置され前記被測定物体の各光点からの反射光を
集光する集光レンズ7と、少なくとも前記被測定
物体に形成する2つの光点を結ぶ方向に受光面を
有し、前記集光レンズを通つて入射する前記被測
定物体の変位に応じて異なる位置で受光し前記光
点の像の位置出力を得る位置検出器6と、この位
置検出器からの位置出力を前記各々の周波数毎に
分離し、この分離された位置出力により被測定物
体の変位を演算する演算手段81〜84,〜,13
とを備えたことを特徴とする形状測定装置。
1 First and second light sources 1 1 and 1 2 that output highly directional light beams modulated at different frequencies, a scanner 2 that scans the light from these first and second light sources, and this scanner an irradiation lens 5 1 that projects the images of the first and second light sources scanned by onto the object to be measured and forms light spots at different points, respectively;
5 2 , a condensing lens 7 arranged in a direction different from the optical axis of the irradiation lens and condensing reflected light from each light point of the object to be measured, and at least two lights formed on the object to be measured. a position detector 6 having a light-receiving surface in a direction connecting the points, receiving light at different positions depending on the displacement of the object to be measured that enters through the condenser lens, and obtaining a position output of an image of the light point; Calculating means 8 1 to 8 4 , to 13 which separates the position output from the position detector for each frequency and calculates the displacement of the object to be measured using the separated position outputs.
A shape measuring device characterized by comprising:
JP18114280A 1980-12-20 1980-12-20 Shape measuring apparatus Granted JPS57104808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18114280A JPS57104808A (en) 1980-12-20 1980-12-20 Shape measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18114280A JPS57104808A (en) 1980-12-20 1980-12-20 Shape measuring apparatus

Publications (2)

Publication Number Publication Date
JPS57104808A JPS57104808A (en) 1982-06-30
JPS6355641B2 true JPS6355641B2 (en) 1988-11-04

Family

ID=16095617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18114280A Granted JPS57104808A (en) 1980-12-20 1980-12-20 Shape measuring apparatus

Country Status (1)

Country Link
JP (1) JPS57104808A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8401649A (en) * 1984-05-23 1985-12-16 Optische Ind De Oude Delft Nv MEASURING SYSTEM FOR THE PRESSURE MEASUREMENT, USING A TRIANGULAR PRINCIPLE, OF THE DISTANCE BETWEEN A PARTICULAR POINT OF THE OBJECTIVE AND A REFERENCE LEVEL.
JPS6184580A (en) * 1984-10-02 1986-04-30 Yukio Muto Measuring instrument for quantity of displacement
JPH051904A (en) * 1990-11-27 1993-01-08 Nkk Corp Optical profilometer
JPH0560532A (en) * 1990-11-27 1993-03-09 Nkk Corp Optical profilometer
JP5366476B2 (en) * 2008-08-21 2013-12-11 大日本スクリーン製造株式会社 Visual equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315161A (en) * 1976-07-27 1978-02-10 Nec Corp Moving method for object to specified position by using laser beam

Also Published As

Publication number Publication date
JPS57104808A (en) 1982-06-30

Similar Documents

Publication Publication Date Title
US6428171B1 (en) Height measuring apparatus
US4677302A (en) Optical system for inspecting printed circuit boards wherein a ramp filter is disposed between reflected beam and photodetector
JP2943499B2 (en) Height measuring method and device
KR101273094B1 (en) The measurement method of PCB bump height by using three dimensional shape detector using optical triangulation method
JP3113731B2 (en) Component mounting inspection method, inspection device thereof, and substrate inspected by the inspection device
US5090811A (en) Optical radius gauge
JP2000121324A (en) Thickness measuring device
EP0316624A2 (en) Improved imaging and inspection apparatus and method
JPS6355641B2 (en)
JPS5847209A (en) Device for measuring surface configuration
JP4382315B2 (en) Wafer bump appearance inspection method and wafer bump appearance inspection apparatus
JPH0156682B2 (en)
JP2987540B2 (en) 3D scanner
JPS6316892A (en) Distance measuring instrument for laser beam machine
JPH0560529A (en) Height measuring device
JPH08304068A (en) Method and equipment for measuring distance
JPS61112905A (en) Optical measuring apparatus
US5631738A (en) Laser ranging system having reduced sensitivity to surface defects
JP2006010544A (en) Apparatus and method for inspecting foreign matter
JP2004528580A (en) Sample positioning system and method for optical surface inspection using video images
JPH0240506A (en) Distance measuring apparatus
JPH02124412A (en) position measuring device
KR970004476B1 (en) Automatic Wafer Alignment Measurement System for Wafer Alignment System
JPH0719824A (en) Shape measuring apparatus
JP2969903B2 (en) Pattern reader