JPS635561B2 - - Google Patents
Info
- Publication number
- JPS635561B2 JPS635561B2 JP54158428A JP15842879A JPS635561B2 JP S635561 B2 JPS635561 B2 JP S635561B2 JP 54158428 A JP54158428 A JP 54158428A JP 15842879 A JP15842879 A JP 15842879A JP S635561 B2 JPS635561 B2 JP S635561B2
- Authority
- JP
- Japan
- Prior art keywords
- intake
- valve
- passage
- engine
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000002485 combustion reaction Methods 0.000 claims description 28
- 238000011144 upstream manufacturing Methods 0.000 claims description 8
- 230000007423 decrease Effects 0.000 claims description 7
- 239000000446 fuel Substances 0.000 description 39
- 239000000203 mixture Substances 0.000 description 12
- 238000002347 injection Methods 0.000 description 11
- 239000007924 injection Substances 0.000 description 11
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 238000000889 atomisation Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Characterised By The Charging Evacuation (AREA)
Description
【発明の詳細な説明】
本発明は、燃焼室に連通し吸気弁にて燃焼室と
の連通が断続される吸気通路を備えるとともに、
前記吸気通路に設けた絞り弁を迂回して一端が前
記吸気通路の絞り弁より上流側にて開口しかつ他
端が前記吸気弁の近傍にて開口するバイパス通路
を備えた内燃機関の改良に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention includes an intake passage that communicates with a combustion chamber and whose communication with the combustion chamber is interrupted by an intake valve, and
This invention relates to an improvement in an internal combustion engine including a bypass passage which bypasses a throttle valve provided in the intake passage and has one end opened upstream of the throttle valve of the intake passage and the other end opened near the intake valve. .
一般に、この種の内燃機関は軽負荷運転時の燃
費改善を意図したもので、バイパス通路からの吸
入空気により燃焼室内の混合気に乱れを生じさせ
て、燃焼時間を短縮することにより熱効率を上げ
ようとするものである。しかしながら軽負荷運転
時にはバイパス通路からの吸入空気量も減少する
ので必ずしも充分な燃費改善は得られず、またこ
の場合の燃費の改善を向上させようとしてバイパ
ス通路からの吸入空気の比率を増大すれば高負荷
領域における吸気通路を通る吸入空気の比率が減
少して燃料の霧化及び気化が悪くなり、あるいは
バイパス通路からの吸入空気の増大による混合気
の希釈化が生じて、この領域での出力が低下する
という問題がある。 In general, this type of internal combustion engine is intended to improve fuel efficiency during light-load operation, and increases thermal efficiency by shortening combustion time by creating turbulence in the air-fuel mixture in the combustion chamber with intake air from the bypass passage. This is what we are trying to do. However, during light load operation, the amount of intake air from the bypass passage also decreases, so a sufficient improvement in fuel efficiency cannot necessarily be obtained.In addition, if the ratio of intake air from the bypass passage is increased in order to improve the fuel efficiency in this case, In a high load region, the proportion of intake air passing through the intake passage decreases, resulting in poor fuel atomization and vaporization, or an increase in intake air from the bypass passage causes dilution of the air-fuel mixture, resulting in lower output in this region. There is a problem that the value decreases.
本発明の目的は、比較的簡単な構造で高負荷領
域での出力の低下を伴うことなく軽負荷領域での
燃費改善を図ることにあり、さらには、自動二輪
車のごとく高速高出力を要求される内燃機関に生
じやすい軽負荷領域での燃費悪化の改善を図るこ
とにある。 The purpose of the present invention is to improve fuel efficiency in light load ranges with a relatively simple structure without reducing output in high load ranges, and furthermore, to improve fuel efficiency in light load areas such as motorcycles, which require high speed and high output. The aim is to improve the deterioration in fuel efficiency in the light load range, which tends to occur in internal combustion engines.
第1図には、本発明に係る内燃機関の一例であ
る自動二輪車用エンジンが示されている。当該エ
ンジン10は、燃料噴射方式の多気筒4サイクル
エンジンで、その吸気ポート11には一端をサー
ジタンク21に気密的に接続した連結管12が気
密的に接続されていて、吸気ポート11と連結管
12内とによつて、エンジン10の吸気弁13に
より開閉される吸気通路P1が形成されている。
また、連結管12内の吸気通路P1にはスロツト
ルバルブ14が配設されており、かつ連結管12
にはスロツトルバルブ14の下流側吸気通路P1
に臨む燃料噴射ノズル31が設けられている。こ
の燃料噴射ノズル31は、燃料タンク32に接続
したフユーエルポンプ33に接続されている。一
方、サージタンク21はエアフローメータ22お
よびエアクリーナ23を介して大気に連通されて
いる。これにより、エンジン10が駆動すると、
空気はエアクリーナ23からサージタンク21を
経て各吸気通路P1に流れ、燃料噴射ノズル31
から吸気通路P1に間欠的に噴射される燃料と混
合し、混合気となつてエンジン10の燃焼室Rへ
流入する。なお、第1図における符号34はフユ
ーエルフイルタ、符号35は燃料噴射ノズル31
から噴射される燃料吐出圧を一定に制御するプレ
ツシヤレギユレータを示している。 FIG. 1 shows a motorcycle engine that is an example of an internal combustion engine according to the present invention. The engine 10 is a fuel injection type multi-cylinder four-stroke engine, and the intake port 11 is airtightly connected to a connecting pipe 12 whose one end is airtightly connected to a surge tank 21. The inside of the pipe 12 forms an intake passage P 1 that is opened and closed by an intake valve 13 of the engine 10 .
Further, a throttle valve 14 is disposed in the intake passage P1 in the connecting pipe 12, and a throttle valve 14 is provided in the intake passage P1 in the connecting pipe 12.
is the intake passage P1 on the downstream side of the throttle valve 14.
A fuel injection nozzle 31 facing toward the front is provided. This fuel injection nozzle 31 is connected to a fuel pump 33 connected to a fuel tank 32. On the other hand, the surge tank 21 is communicated with the atmosphere via an air flow meter 22 and an air cleaner 23. As a result, when the engine 10 is driven,
Air flows from the air cleaner 23 through the surge tank 21 to each intake passage P1 , and then to the fuel injection nozzle 31.
The mixture is mixed with fuel that is intermittently injected into the intake passage P1 , and flows into the combustion chamber R of the engine 10 as an air-fuel mixture. In addition, the reference numeral 34 in FIG. 1 is a fuel filter, and the reference numeral 35 is a fuel injection nozzle 31.
This figure shows a pressure regulator that controls the discharge pressure of fuel injected from the engine to a constant level.
而して、当該エンジン10においては、一端を
サージタンク21に気密的に接続した第2の連結
管15が、流量制御バルブ40を介して、吸気弁
13付近において吸気ポート11に閉口する通孔
16に気密的に接続されていて、第2連結管1
5、流量制御バルブ40および通孔16により、
吸気通路P1に設けたスロツトルバルブ14を迂
回するバイパス通路P2が形成されている。この
流量制御バルブ40は、第2図〜第4図に示すよ
うに、第2連結管15および通孔16に気密的に
接続されるバルブハウジング41と、バルブハウ
ジング41の中央大径内孔41aに介装したスプ
ール42と、中央大径内孔41aに介装したコイ
ルスプリング43とにより構成されている。ま
た、スプール42の上流側端42aは、中央大径
内孔41aの上流側段部に当接して上流側小径内
孔41bを開閉する大径部に形成されており、ス
プール42の略中央から下流側端42bにかけて
下流側へ漸次拡開する楔形凹所42cが形成され
ている。このスプール42は、第2図に示すよう
に、コイルスプリング43によつて上流側へ弾撥
的に付勢されてその上流側端42aが大径内孔4
1aの上流側段部に当接し、この状態にて下流側
端42bがバルブハウジング41の下流側小径内
孔41c内にわずかに臨んでいる。また、エンジ
ン10の駆動により吸気弁13付近の吸気通路
P1内に吸気負圧が発生すると、スプール42は
第4図に示すように、吸気負圧に応じて下流側小
径内孔41c内を下流側に摺動する。すなわち、
当該流量制御バルブ40においては、楔形凹所4
2cおよび下流側小径内孔41cにより形成され
る弁口の面積と吸気負圧とが第5図に示す関係を
備えている。 Thus, in the engine 10, the second connecting pipe 15, whose one end is airtightly connected to the surge tank 21, is connected to a through hole that closes to the intake port 11 near the intake valve 13 via the flow rate control valve 40. 16, and the second connecting pipe 1
5. By the flow control valve 40 and the through hole 16,
A bypass passage P2 is formed to bypass the throttle valve 14 provided in the intake passage P1. As shown in FIGS. 2 to 4, the flow rate control valve 40 includes a valve housing 41 that is airtightly connected to the second connecting pipe 15 and the through hole 16, and a central large-diameter inner hole 41a of the valve housing 41. The coil spring 43 is constructed by a spool 42 interposed in the central large-diameter inner hole 41a and a coil spring 43 interposed in the central large-diameter inner hole 41a. The upstream end 42a of the spool 42 is formed into a large diameter portion that contacts the upstream stepped portion of the central large diameter inner hole 41a to open and close the upstream small diameter inner hole 41b. A wedge-shaped recess 42c is formed that gradually expands toward the downstream side toward the downstream end 42b. As shown in FIG. 2, this spool 42 is elastically urged upstream by a coil spring 43, and its upstream end 42a is connected to the large diameter inner hole 42.
In this state, the downstream end 42b slightly faces the downstream small diameter inner hole 41c of the valve housing 41. In addition, due to the drive of the engine 10, the intake passage near the intake valve 13
When an intake negative pressure is generated in P1 , the spool 42 slides downstream within the downstream small-diameter inner hole 41c in response to the intake negative pressure, as shown in FIG. That is,
In the flow control valve 40, the wedge-shaped recess 4
2c and the downstream small-diameter inner hole 41c, the area of the valve port and the intake negative pressure have the relationship shown in FIG.
このように構成したエンジン10においては、
吸気通路P1を通つてエンジン10の燃焼室Rへ
流入する混合気は、バイパス通路P2を通つて吸
気通路P1の吸気弁13近傍に流入する空気によ
り撹乱されて、混合気が一層均一混合されるとと
もに燃焼室R内にてスワールが生じ、燃焼室R内
での混合気の燃焼が促進される。 In the engine 10 configured in this way,
The air-fuel mixture flowing into the combustion chamber R of the engine 10 through the intake passage P 1 is disturbed by the air flowing into the vicinity of the intake valve 13 in the intake passage P 1 through the bypass passage P 2 , making the air-fuel mixture more uniform. As the mixture is mixed, a swirl is generated within the combustion chamber R, and combustion of the air-fuel mixture within the combustion chamber R is promoted.
ところで、当該エンジン10においては、バイ
パス通路P2に第5図に示す特性を備えた流量制
御バルブ40を介装しているため、軽負荷領域に
おける吸気負圧Aに対応するバイパス通路P2か
らの流入空気量特性Bは、第6図に示す通りにな
る。すなわち、本方式による流入空気量特性Bは
流量制御バルブ40を介装しない固定絞りを用い
た場合のバイパス通路P2からの流入空気量特性
Cに比し、吸気行程の前部および後部の領域にお
いてより多くの流入量が得られるとともに中間の
領域における流入量が減少し、特に吸気行程の後
部の領域(クランク角度Q1〜Q2)において最大
の流入量を得ることができる。これは、流量制御
バルブ40は、第5図に示す如く、吸気負圧の増
大に応じてその弁口面積が一旦増大し、軽負荷領
域における吸気負圧の最大値よりも小さい吸気負
圧において最大弁口面積となり、更に吸気負圧が
増大すれば弁口面積は大幅に減少するように、そ
の特性が定められており、一方吸気負圧の増減の
傾斜は吸気慣性により吸気行程の前部の領域の方
が後部の領域よりも大となつているためである。
このように、流量制御バルブ40を介装すること
により、バイパス通路P2からの流入空気量が増
大するタイミングを吸気行程の後部の領域に移動
させることが可能となり、吸気行程の終了直前に
燃焼室R内に生じるスワールを増大させて続く圧
縮行程の間におけるスワールの減衰を最小に抑え
ることができる。従つて、当該エンジン10にお
いては、軽負荷領域においては、点火および燃焼
行程まで燃焼室R内のスワールがあまり減衰する
ことなく維持されて、軽負荷領域における燃費が
改善される。また軽負荷領域を越える領域(低ブ
ースト領域)においては、吸気負圧が全体として
増大するので流量制御バルブ40の弁口面積が大
となるのは吸気弁開の直後及び吸気弁閉の直前の
極めてわずかの領域のみとなり、吸入空気は大部
分が吸気通路P1を通るようになる。従つて吸気
通路P1に設けた燃料噴射ノズル31からの燃料
は充分に霧化され気化されるので、当該領域での
出力低下が生じない。 By the way, in the engine 10, since the flow control valve 40 having the characteristics shown in FIG. 5 is installed in the bypass passage P2 , the flow rate from the bypass passage P2 corresponding to the intake negative pressure A in the light load region is The inflow air amount characteristic B is as shown in FIG. That is, the inflow air amount characteristic B according to this method is different from the inflow air amount characteristic C from the bypass passage P2 in the case of using a fixed throttle without intervening the flow rate control valve 40, in the front and rear regions of the intake stroke. A larger amount of inflow is obtained in the middle region, and the amount of inflow is reduced in the intermediate region, and the maximum amount of inflow can be obtained especially in the region at the rear of the intake stroke (crank angle Q 1 to Q 2 ). This is because, as shown in FIG. 5, the flow control valve 40 once increases its valve opening area as the intake negative pressure increases, and when the intake negative pressure is smaller than the maximum value of the intake negative pressure in the light load region. Its characteristics are determined so that the valve opening area reaches its maximum area, and as the intake negative pressure further increases, the valve opening area decreases significantly.On the other hand, the slope of increase/decrease in intake negative pressure is caused by intake inertia at the front of the intake stroke. This is because the region is larger than the region at the rear.
In this way, by interposing the flow rate control valve 40, it is possible to shift the timing at which the amount of inflowing air from the bypass passage P2 increases to the rear region of the intake stroke, and the combustion occurs immediately before the end of the intake stroke. The swirl generated within chamber R can be increased to minimize swirl attenuation during the subsequent compression stroke. Therefore, in the engine 10, in the light load range, the swirl in the combustion chamber R is maintained without much attenuation until the ignition and combustion strokes, and fuel efficiency in the light load range is improved. Furthermore, in a region exceeding the light load region (low boost region), the intake negative pressure increases as a whole, so the valve opening area of the flow control valve 40 becomes large immediately after the intake valve opens and immediately before the intake valve closes. Only a very small area exists, and most of the intake air passes through the intake passage P1 . Therefore, the fuel from the fuel injection nozzle 31 provided in the intake passage P1 is sufficiently atomized and vaporized, so that no reduction in output occurs in this region.
なお、以上の結果は当該エンジン10のごとき
燃料噴射方式のエンジンに限らず、エンジン10
の燃料噴射ノズル31に換えてキヤブレターを備
えたキヤブレター方式のエンジンについても得ら
れ、本発明はキヤブレター方式のエンジンに適用
されることは勿論である。この場合には、軽負荷
領域を越える領域において流量制御バルブ40が
閉じるので、バイパス通路P2からの流入空気に
よる混合気の希釈化現象がなく、従つてこのよう
な領域での希釈化による出力低下が生じない。し
かしながら、キヤブレター方式のエンジンにおい
ては、吸気通路P1とバイパス通路P2からの総吸
入量Qtに対するバイパス通路P2からの吸入量Qb
を多くすると、吸気通路P1内における空燃が過
濃状態になり吸気管壁への付着流れ等により安定
した運転が困難になり、かつ第7図および第8図
に示すようにQb/Qtが所定値(約0.6)近くにな
ると、燃費率が急激に悪化するとともに排ガス中
のHCが急激に増大し、ついには失火する。これ
に対して、燃料噴射方式のエンジンにおいては、
このような現象は生じることが少ないためQb/
Qtを一層大きく採ることができる。従つて、本
発明を当該エンジンのごとく燃料噴射方式のエン
ジンに実施した場合には、Qb/Qtを大きく設定
することができることと流量制御バルブ40の機
能とが相乗されて、軽負荷領域での燃費が一層向
上する利点がある。 Note that the above results are not limited to fuel injection type engines such as the engine 10, but also apply to the engine 10.
The present invention can also be obtained for a carburetor type engine which is equipped with a carburetor instead of the fuel injection nozzle 31, and the present invention can of course be applied to a carburetor type engine. In this case, since the flow rate control valve 40 is closed in an area exceeding the light load area, there is no dilution of the air-fuel mixture due to air flowing in from the bypass passage P2 , and therefore the output due to dilution in such an area is reduced. No deterioration occurs. However, in a carburetor type engine, the intake amount Qb from the bypass passage P 2 is the total intake amount Qt from the intake passage P 1 and the bypass passage P 2 .
If Qb/Qt is increased, the air/fuel in the intake passage P1 becomes over-rich, and stable operation becomes difficult due to flow adhesion to the intake pipe wall, and as shown in Figures 7 and 8, Qb/Qt When the value approaches a predetermined value (approximately 0.6), the fuel efficiency deteriorates rapidly and the amount of HC in the exhaust gas increases rapidly, eventually leading to a misfire. On the other hand, in fuel injection type engines,
Since such a phenomenon rarely occurs, Qb/
Qt can be taken even larger. Therefore, when the present invention is applied to a fuel injection type engine like the engine in question, the ability to set Qb/Qt to a large value and the function of the flow rate control valve 40 are combined, and the ability to operate in a light load region is improved. This has the advantage of further improving fuel efficiency.
以上の説明から明らかなように、本発明は、燃
焼室に連通し吸気弁にて燃焼室との連通が断続さ
れる吸気通路を備えるとともに、前記吸気通路に
設けた絞り弁を迂回して一端が前記吸気通路の絞
り弁より上流側にて開口しかつ他端が前記吸気弁
の近傍にて開口するバイパス通路を備えた内燃機
関において、前記バイパス通路に、前記吸気弁近
傍の前記吸気通路内に生ずる吸気負圧の増大に応
じて弁口面積が一旦増大し最大弁口面積となつた
後は大幅に減少しかつ軽負荷領域における吸気負
圧の最大値よりも小さい吸気負圧において前記最
大弁口面積となる流量制御バルブを介装したこと
を特徴とする内燃機関にその要旨がある。従つ
て、本発明によれば、内燃機関の軽負荷領域にお
いては、混合気を均一混合させかつ燃焼室内にス
ワールを生じさせるに十分な空気を吸気行程の終
了直前に付与することができるとともに、軽負荷
領域以上の領域における燃料の霧化および気化を
向上させ、あるいは混合気の希釈化を防止しえ
て、全開出力の低下を生じさせることなく軽負荷
領域での燃費の改善を図ることができる。 As is clear from the above description, the present invention includes an intake passage which communicates with the combustion chamber and whose communication with the combustion chamber is interrupted by an intake valve, and which bypasses a throttle valve provided in the intake passage and ends at one end. In an internal combustion engine, the bypass passage has a bypass passage that opens upstream from a throttle valve of the intake passage and whose other end opens near the intake valve. In response to the increase in intake negative pressure that occurs in The gist lies in an internal combustion engine characterized by having a flow control valve interposed therebetween having a valve opening area. Therefore, according to the present invention, in a light load region of an internal combustion engine, sufficient air can be provided just before the end of the intake stroke to uniformly mix the air-fuel mixture and create a swirl in the combustion chamber. It is possible to improve fuel atomization and vaporization in the light load range and above, or prevent dilution of the air-fuel mixture, thereby improving fuel efficiency in the light load range without causing a decrease in full-throttle output. .
第1図は本発明に係る内燃機関の一例を示す自
動二輪車用エンジンの部分縦断面図、第2図は流
量制御バルブの縦断面図、第3図は第2図の―
線切断面図、第4図は流量制御バルブの作動状
態を示す縦断面図、第5図は流量制御バルブの特
性を示すグラフ、第6図は吸気管内圧力、クラン
ク角度およびバイパス通路から流入する空気量の
関係を示すグラフ、第7図は燃焼室への総吸入量
Qtに対するバイパス通路からの吸入量Qbと燃費
の関係を示すグラフ、第8図はQb/QtとHC量
の関係を示すグラフである。
符号の説明 10…エンジン、13…吸気バル
ブ、14…スロツトルバルブ、21…サージタン
ク、31…燃料噴射ノズル、40…流量制御バル
ブ、41…バルブハウジング、42…スプール、
43…コイルスプリング、P1…吸気通路、P2…
バイパス通路。
FIG. 1 is a partial vertical cross-sectional view of a motorcycle engine showing an example of an internal combustion engine according to the present invention, FIG. 2 is a vertical cross-sectional view of a flow control valve, and FIG.
Figure 4 is a vertical cross-sectional view showing the operating state of the flow control valve, Figure 5 is a graph showing the characteristics of the flow control valve, and Figure 6 is the intake pipe internal pressure, crank angle, and inflow from the bypass passage. A graph showing the relationship between the amount of air, Figure 7 shows the total intake amount into the combustion chamber.
FIG. 8 is a graph showing the relationship between the intake amount Qb from the bypass passage and fuel efficiency with respect to Qt, and FIG. 8 is a graph showing the relationship between Qb/Qt and the HC amount. Explanation of symbols 10...engine, 13...intake valve, 14...throttle valve, 21...surge tank, 31...fuel injection nozzle, 40...flow control valve, 41...valve housing, 42...spool,
43...Coil spring, P1 ...Intake passage, P2 ...
bypass passage.
Claims (1)
断続される吸気通路を備えるとともに、前記吸気
通路に設けた絞り弁を迂回して一端が前記吸気通
路の絞り弁より上流側にて開口しかつ他端が前記
吸気弁の近傍にて開口するバイパス通路を備えた
内燃機関において、前記バイパス通路に、前記吸
気弁近傍の前記吸気通路内に生ずる吸気負圧の増
大に応じて一旦弁口面積が増大し最大弁口面積と
なつた後は大幅に減少しかつ軽負荷領域における
吸気負圧の最大値よりも小さい吸気負圧において
前記最大弁口面積となる流量制御バルブを介装し
たことを特徴とする内燃機関。1. An intake passage that communicates with the combustion chamber and is disconnected from the combustion chamber by an intake valve, and bypasses a throttle valve provided in the intake passage so that one end of the intake passage is located upstream of the throttle valve of the intake passage. In an internal combustion engine having a bypass passage which is open and whose other end opens near the intake valve, the bypass passage is temporarily closed in response to an increase in intake negative pressure generated in the intake passage near the intake valve. A flow control valve is installed in which the mouth area increases and reaches the maximum valve opening area, and then decreases significantly and reaches the maximum valve opening area at an intake negative pressure that is smaller than the maximum value of intake negative pressure in a light load region. An internal combustion engine characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15842879A JPS5681221A (en) | 1979-12-06 | 1979-12-06 | Internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15842879A JPS5681221A (en) | 1979-12-06 | 1979-12-06 | Internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5681221A JPS5681221A (en) | 1981-07-03 |
JPS635561B2 true JPS635561B2 (en) | 1988-02-04 |
Family
ID=15671535
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15842879A Granted JPS5681221A (en) | 1979-12-06 | 1979-12-06 | Internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5681221A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0645661Y2 (en) * | 1988-04-13 | 1994-11-24 | 愛三工業株式会社 | Air valve for internal combustion engine |
JP2696352B2 (en) * | 1988-08-26 | 1998-01-14 | ヤマハ発動機株式会社 | Engine intake air horn mounting structure |
-
1979
- 1979-12-06 JP JP15842879A patent/JPS5681221A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5681221A (en) | 1981-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4998518A (en) | Swirl control system for lean-burn engines | |
US4196701A (en) | Internal combustion engine intake system having auxiliary passage bypassing main throttle to produce swirl in intake port | |
US3844260A (en) | Exhaust gas recirculating valve | |
US5063886A (en) | Two-stroke engine | |
JPH086585B2 (en) | 2-cycle internal combustion engine | |
US5094210A (en) | Intake and fuel/air mixing system for multi-cylinder, externally ignited internal combustion engines | |
US4484549A (en) | 4-Cycle internal combustion engine | |
US3994268A (en) | Internal combustion engine | |
US4483292A (en) | Internal combustion engine | |
JPH0626390A (en) | Control device for 2-cycle engine | |
JPS635561B2 (en) | ||
JPH0343464B2 (en) | ||
US4010723A (en) | Exhaust gas cleaning apparatus for an internal combustion engine for a vehicle | |
JPS5947126B2 (en) | 2 cycle engine | |
JPS6056247B2 (en) | fuel injected engine | |
JP3183405B2 (en) | Air supply system for two-cycle diesel engine | |
JPH021967B2 (en) | ||
CA1208088A (en) | Internal combustion engine | |
JP2702666B2 (en) | 2 cycle engine | |
JPH0465232B2 (en) | ||
JPS6021460Y2 (en) | blow-by gas inhaler | |
JP2612683B2 (en) | Engine intake control device | |
JPH06173821A (en) | Fuel injection device for engine | |
JPS58152122A (en) | Suction device for internal-combustion engine | |
JPH0519010B2 (en) |