[go: up one dir, main page]

JPS6354407A - Production of ethylene/propylene copolymer rubber - Google Patents

Production of ethylene/propylene copolymer rubber

Info

Publication number
JPS6354407A
JPS6354407A JP19732886A JP19732886A JPS6354407A JP S6354407 A JPS6354407 A JP S6354407A JP 19732886 A JP19732886 A JP 19732886A JP 19732886 A JP19732886 A JP 19732886A JP S6354407 A JPS6354407 A JP S6354407A
Authority
JP
Japan
Prior art keywords
ethylene
propylene
component
catalyst
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19732886A
Other languages
Japanese (ja)
Inventor
Satoshi Ueki
聡 植木
Koji Maruyama
丸山 耕司
Hiroshi Ueno
上野 廣
Haruo Mizukami
水上 春男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP19732886A priority Critical patent/JPS6354407A/en
Priority to EP87307530A priority patent/EP0261808A3/en
Priority to BR8704367A priority patent/BR8704367A/en
Publication of JPS6354407A publication Critical patent/JPS6354407A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain the title rubber excellent in properties when particulated in high yields, by copolymerizing ethylene with propylene in the presence of a specified catalyst. CONSTITUTION:A catalyst is obtained by mixing a catalyst component (a) obtained by contacting a metal oxide which is an oxide of a Group II-IV element of the periodic table (e.g., SiO2) with a magnesium compound (ii) of the formula (wherein R<1> is a 1-20C hydrocarbyl and R<2> is R<1> or a halogen), e.g., butylethylmagnesium, and optionally an alcohol (iii) (e.g., ethanol) and contacting the product with a titanium compound (iv) (e.g., TiCl4) with 1-2,000g.mol, per g.atom of the titanium of component (a), of an organoaluminum (b) (e.g., triethylaluminum) and, optionally, an electron-donating compound. Ethylene is copolymerized with propylene at -80-150 deg.C in the presence of the above catalyst to obtain the title rubber of an ethylene content of 15-90mol%.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、エチレン争プロピレン共重合体ゴムの製造法
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing ethylene/propylene copolymer rubber.

従来の技術 従来のバナジウム系触媒に代えて、よシ高活性のチタン
系触媒を用いてエチレンとプロピレンを共重合してエチ
レン・プロピレン共重合体ゴムを製造する方法が知られ
ている。
2. Description of the Related Art A method is known in which ethylene and propylene are copolymerized using a highly active titanium-based catalyst in place of the conventional vanadium-based catalyst to produce ethylene-propylene copolymer rubber.

最近、マグネシウム化合物担持型チタン系触媒を用いた
該共重合体ゴムの製造法がいくつか試みられているが、
それらは、1穆が煩雑である。得られるポリマーの嵩密
度が低く実用上問題がある、等の問題がある。
Recently, several methods for producing copolymer rubber using magnesium compound-supported titanium-based catalysts have been attempted.
They are quite complicated. There are problems such as the polymer obtained has a low bulk density, which poses a practical problem.

一方、シリカ等の金属酸化物にチタン成分を担持した触
媒成分を用いて、エチレンとプロピレンを共重合、特に
気相重合、して特に粒子性状の良いポリマーを得ること
を主目的とした方法が報告されている。
On the other hand, there is a method of copolymerizing ethylene and propylene, especially gas phase polymerization, using a catalyst component in which a titanium component is supported on a metal oxide such as silica, with the main purpose of obtaining a polymer with particularly good particle properties. It has been reported.

例えば、(1)金属酸化物、(2)ハロゲン化マグネシ
ウムと式Me(oR)nx、−nの化合物との反応生成
チタン化合物を接触させてなる固体触媒成分(特開昭5
9−105008号公報)、式MPmTi(OR)nX
o(gD)qc Xはハ0ゲン、gDは電子供与化合物
を示す。〕で示される組成物を金属酸化物で希釈させて
、かつ有機アルミニウム化合物で活性化してなる触媒(
特開昭59−250011号公報)を用いる方法が提案
されている。
For example, a solid catalyst component formed by contacting (1) a metal oxide, (2) a titanium compound produced by a reaction between magnesium halide and a compound of the formula Me(oR)nx, -n
9-105008), formula MPmTi(OR)nX
o(gD)qc X represents halogen, and gD represents an electron donating compound. ] The catalyst (
A method using Japanese Unexamined Patent Publication No. 59-250011) has been proposed.

発明が解決しようとする問題点 これら金属酸化物担持型チタン系触媒を用いた共重合体
の製造法によれば、成る程度粒子性状の改良されたポリ
マーの製造が可能となったが、重合触媒当りのポリマー
生成量が低いという問題がある。
Problems to be Solved by the Invention According to the method for producing copolymers using these metal oxide-supported titanium-based catalysts, it has become possible to produce polymers with improved particle properties to some extent, but the polymerization catalyst There is a problem that the amount of polymer produced per unit is low.

問題点を解決するための手段 発明の目的 本発明は、金属酸化物担持型チタン系触媒を用いた、粒
子性状に優れたエチレン・プロピレン共重合体ゴムを収
率よく製造することを目的とするものであり、本発明者
らは鋭意研究を行った結果、ポリエチレン製造用として
提案されている(A)金属酸化物と(B)一般式R”M
r R”のマグネシウム化合物を接触させるか、又は更
に(C)アルコールと接触させた後、(D)チタン化合
物と接触させて得た触媒成分(特開昭46−2258号
、同51−47990号、同57−90004号、同5
7−85805号、同57−200408号各公報)を
用いて、エチレンとプロピレンを共重合すると、本発明
の目的を達成し得ることを見出して本発明を完成した。
Means for Solving ProblemsPurpose of the InventionThe object of the present invention is to produce an ethylene-propylene copolymer rubber with excellent particle properties in a high yield using a metal oxide-supported titanium-based catalyst. As a result of intensive research, the present inventors found that (A) metal oxide and (B) general formula R''M have been proposed for polyethylene production.
Catalyst component obtained by contacting with a magnesium compound of r R'' or further contacting with (C) alcohol and then contacting with (D) a titanium compound (JP-A No. 46-2258, No. 51-47990) , No. 57-90004, No. 5
The present invention was completed based on the discovery that the object of the present invention can be achieved by copolymerizing ethylene and propylene using the following publications: No. 7-85805 and No. 57-200408.

発明の要旨 すなわち、本発明は、 K  (A)金属酸化物と(B) 一般式R1)#R”
 C但L、R1はヒトカルビル基、2はヒドロカルビル
基又はハロゲン原子を示す。〕のマグネシウム化合物を
接触させるか、又は更に(C’)アルコールを接触させ
た後、(D)チタン化合物と接触させることによって得
られる触媒成分と、(ロ)有機アルミニウム化合物 とからなる重合触媒の存在下、エチレンとプロピレンを
エチレン/フロピレン(モル比)が液相中α01〜1,
0又は気相中α03〜五〇となるようにし共重合させる
ことからなるエチレン含有量15〜90モル%のエチレ
ン・プロピレン共重合体ゴムの製造法を要旨とする。
Summary of the Invention That is, the present invention comprises K (A) metal oxide and (B) general formula R1) #R"
C, where L and R1 represent a human carbyl group, and 2 represents a hydrocarbyl group or a halogen atom. A polymerization catalyst consisting of a catalyst component obtained by contacting with a magnesium compound of ] or further contacting with (C') alcohol, and then contacting with (D) a titanium compound, and (b) an organoaluminum compound. In the presence of ethylene and propylene, ethylene/propylene (molar ratio) is α01~1,
The gist of the present invention is a method for producing an ethylene/propylene copolymer rubber having an ethylene content of 15 to 90 mol %, which comprises copolymerizing the rubber to α0 or α03 to α50 in the gas phase.

(A)  金属酸化物 本発明で用いられる金属酸化物は、元素の周期表第■族
〜第■族の元素の群から選ばれる元素の酸化物であり、
それらを例示すると、731 0g 、   MfOt
   A1503  e   810H6CaO#  
T 10!t  ZnO@ Zro、sSnug、 B
ad、 ThO2等が挙げられる。これらの中でもf%
 OB 、 MfO、人110g、 B101. ’r
iot、 Zr01が望ましく、特に5103が望まし
い。更に、これら金属酸化物を含む複合酸化物、例えば
BiO,−MfO,SiC,−Al、Os、   si
o、−’rtot、  810!−’/、O,。
(A) Metal oxide The metal oxide used in the present invention is an oxide of an element selected from the group of elements from Groups 1 to 2 of the Periodic Table of Elements,
To illustrate them, 731 0g, MfOt
A1503 e 810H6CaO#
T10! t ZnO@Zro, sSnug, B
ad, ThO2, etc. Among these, f%
OB, MfO, person 110g, B101. 'r
iot, Zr01 is preferred, and 5103 is particularly preferred. Furthermore, composite oxides containing these metal oxides, such as BiO, -MfO, SiC, -Al, Os, si
o,-'rtot, 810! -'/, O,.

810g−CrlOl 、 SiOSlol−TiOl
−等も使用し得る。
810g-CrlOl, SiOSlol-TiOl
- etc. may also be used.

上記の金属酸化物及び複合酸化物は、基本的には無水物
であることが望ましいが、通常混在する程度の微量の水
酸化物の混入は許される。又、金属酸化物の性質を著し
く損なわない程度の不純物の混入も許される。許容され
る不純物としては、酸化ナトリウム、酸化カリウム、酸
化リチウム、炭酸ナトリウム、炭酸カリウム、炭酸カル
シウム、炭酸マグネシウム、硫酸ナトリウム、硫酸アル
ミニウム、硫酸バリウム、硝酸カリウム、硝酸マグネシ
ウム、硝酸アルミニウム等の酸化物、炭酸塩、硫酸塩、
硝酸塩等が挙げられる。
The above metal oxides and composite oxides are basically desirably anhydrous, but a trace amount of hydroxide, which is usually mixed, is allowed. In addition, the inclusion of impurities is permitted to the extent that the properties of the metal oxide are not significantly impaired. Acceptable impurities include oxides such as sodium oxide, potassium oxide, lithium oxide, sodium carbonate, potassium carbonate, calcium carbonate, magnesium carbonate, sodium sulfate, aluminum sulfate, barium sulfate, potassium nitrate, magnesium nitrate, and aluminum nitrate; salt, sulfate,
Examples include nitrates.

これら金属酸化物の形状は通常粉末状のものが用いられ
る。粉末の大きさ及び形状等の形体は、得られるオレフ
ィン重合体の形体に影響を及ぼすことが多いので、適宜
調節することが望ましい。金属酸化物は、使用に当って
被毒物質を除去する目的等から、可能な限シ高温で焼成
し、更に大気と直接接触しないように取扱うのが望まし
い。
These metal oxides are usually in the form of powder. The size and shape of the powder often affect the shape of the obtained olefin polymer, so it is desirable to adjust it appropriately. For the purpose of removing poisonous substances before use, it is desirable to sinter metal oxides at the highest possible temperature and handle them in a manner that prevents them from coming into direct contact with the atmosphere.

の) マグネシウム化合物 本発明で用いられるマグネシウム化合物は一般式R’M
fR”で表わされる。式において、R1は炭素数1〜2
0個のヒドロカルビル基(アルキル、シクロアルキル、
アリール、アルアルキル基)を、R2は炭素′fIi1
〜20個のヒドロカルビル基(アルキル、シクロアルキ
ル。
) Magnesium compound The magnesium compound used in the present invention has the general formula R'M
fR". In the formula, R1 has 1 to 2 carbon atoms.
0 hydrocarbyl groups (alkyl, cycloalkyl,
aryl, aralkyl group), R2 is carbon 'fIi1
~20 hydrocarbyl groups (alkyl, cycloalkyl.

アリール、アルアルキル基)又はハロゲン原子を示す。aryl, aralkyl group) or a halogen atom.

それらの化合物を以下に例示する。但し、M?=マグネ
シウム、 Me=メチル、 Et=エチル。
Examples of those compounds are shown below. However, M? = Magnesium, Me = Methyl, Et = Ethyl.

Pr=プロピル、  Eu=ブチル、  Pe=ペンチ
ル。
Pr=propyl, Eu=butyl, Pe=pentyl.

He−ヘキシル、ph=フェニル、BZ=ベンジル。He-hexyl, ph=phenyl, BZ=benzyl.

Ct=塩素、Br=臭素、I=ジヨウ素略記である。Ct=chlorine, Br=bromine, I=diiodine abbreviation.

2がヒドロカルピル基の場合: M+4MIP 。When 2 is a hydrocarpyl group: M+4MIP.

11e を雪Mf、   PrIMf、   i−Pr
lMP 、   W tPrMP、   BulMP 
11e snow Mf, PrIMf, i-Pr
lMP, WtPrMP, BulMP
.

1−BulMP、 36C−BulMP、 tert−
BulMP、 BuRtMf。
1-BulMP, 36C-BulMP, tert-
BulMP, BuRtMf.

PelMf、 i−PelMP、 EtPqMf、 H
elMP、 EtHs)#。
PelMf, i-PelMP, EtPqMf, H
elMP, EtHs) #.

BuHeMP、 (2−EtBu)F、tMP、ジヘプ
チルMP。
BuHeMP, (2-EtBu)F, tMP, diheptyl MP.

ジオクチルMP、ブチルシクロヘキシルMf。Dioctyl MP, butylcyclohexyl Mf.

Ph!MP、 WtPbMf、 BuPhMP、  ジ
トリルM?。
Ph! MP, WtPbMf, BuPhMP, Ditril M? .

ジキシリルMW、 BZ!MIF、 ジフエネチA/M
P。
Dixylyl MW, BZ! MIF, Jihuenech A/M
P.

エチルフェネチルMY 等が挙げられる。Examples include ethyl phenethyl MY.

これらマグネシウム化合物は、他の金属の有機化合物と
の混合物或いは錯化合物であってもよい。他の金属の有
機化合物は、一般式MRn (但し、Mはホウ素、ベリ
リウム、アルミニウム又は亜鉛、Rは炭素数1〜20個
のアルキル、シクロアルキル、アリール又はアルアルキ
ル基、nは金属Mの原子価を示す。)で表わされる。そ
の具体例として、トリエチルアルミニウム、トリブチル
アルミニウム、トリイソブチルアルきニウム、トリフェ
ニルアルミニウム、トリエチルホウ素、トリブチルホウ
素、ジエチルベリリウム、ジイソブチルベリリウム、ジ
エチル亜鉛、ジブチル亜鉛等が挙げられる。
These magnesium compounds may be mixtures or complex compounds with organic compounds of other metals. Organic compounds of other metals have the general formula MRn (where M is boron, beryllium, aluminum or zinc, R is an alkyl, cycloalkyl, aryl or aralkyl group having 1 to 20 carbon atoms, and n is an atom of the metal M). ). Specific examples include triethylaluminum, tributylaluminum, triisobutylalkinium, triphenylaluminum, triethylboron, tributylboron, diethylberyllium, diisobutylberyllium, diethylzinc, dibutylzinc, and the like.

マグネシウム化合物と他の金属の有機化合物との混合物
或いは錯化合物との割合は、通常マグネシウム1グラム
原子当り、他の金属2グラム原子以下であり、望ましく
は1グラム原子以下である。
The ratio of the mixture or complex compound of the magnesium compound and the organic compound of the other metal is usually 2 gram atoms or less of the other metal, preferably 1 gram atom or less, per 1 gram atom of magnesium.

R2がハロゲン原子の場合: PrMfCt、 PrM
fCt。
When R2 is a halogen atom: PrMfCt, PrM
fCt.

1−PrMPCt、 BuMfC6,i−BuMS’C
4,sec−BuMrCA。
1-PrMPCt, BuMfC6,i-BuMS'C
4, sec-BuMrCA.

tert−Bul#Ct、 PeMrC4,HeMfC
t、 (2−gtHe)MtCl、オクチルMtct、
デシルMtC1、シクロヘキシルMfC1,PhMPC
6,トリルMyct、キシリルM?C1,BzMrC2
,BtMfBr、 BuMPBr、 tert−BuM
fBr 、 HeMfBr 、オクチルMPBr、  
シクロヘキシ/I/ MtBr、 PhMfBr、 E
tMPI、 BuMf工。
tert-Bul#Ct, PeMrC4, HeMfC
t, (2-gtHe)MtCl, octyl Mtct,
Decyl MtC1, cyclohexyl MfC1, PhMPC
6, Tolyl Myct, Xylyl M? C1,BzMrC2
, BtMfBr, BuMPBr, tert-BuM
fBr, HeMfBr, octyl MPBr,
Cyclohexy/I/ MtBr, PhMfBr, E
tMPI, BuMf Eng.

(2−EtHe))#I、 PhMfI等が挙げられる
(2-EtHe)) #I, PhMfI, and the like.

(0アルコール アルコールとしては、メタノール、エタノ−/I/、7
’ロバノール、1−プロパツール、ブタノール、1−ブ
タノール、 tert−ブタノール、ペンタノール、ヘ
キサノール、2−エチルヘキサノール、シクロヘキサノ
ール、フェノール、ベンジルアルコール、フェネチルア
ルコール等が挙げられる。
(0 alcohol Alcohols include methanol, ethanol/I/, 7
Examples include lovanol, 1-propatol, butanol, 1-butanol, tert-butanol, pentanol, hexanol, 2-ethylhexanol, cyclohexanol, phenol, benzyl alcohol, phenethyl alcohol, and the like.

又、これらアルコールの水酸基以外の任意の水素原子が
ハロゲン原子と置換し九)・ロゲン含有アルコールも使
用できる。それら化合物を例示すると、2−クロルエタ
ノール、1−クロル−2−7’ロバノール、4−クロル
−1−ブタノール、5−クロル−1−ペンタノール、6
−クロル−1−ヘキサノール、2−クロルシクロヘキサ
ノール、(m、0.p)−クロルフェノール、(m*o
*p )−クロルベンジルアルコール、2−7”ロムエ
タノール、1−ブロム−2−ブタノール、(”eOep
)−ブロムフェノール、Z、2−ジクロルエタノール、
1.5−ジクロル−2−プロパツール、2.4−シフロ
ムフェノール、Z2,2−トリクロルエタノール、1.
1.1− )ジクロル−2−グロバノール、2.44−
)ジクロルフェノール等が挙げられる。
Furthermore, halogen-containing alcohols in which any hydrogen atom other than the hydroxyl group of these alcohols is substituted with a halogen atom can also be used. Examples of these compounds include 2-chloroethanol, 1-chloro-2-7' lovanol, 4-chloro-1-butanol, 5-chloro-1-pentanol, 6
-Chlor-1-hexanol, 2-chlorocyclohexanol, (m,0.p)-chlorophenol, (m*o
*p)-chlorobenzyl alcohol, 2-7" romethanol, 1-bromo-2-butanol, ("eOep
)-bromophenol, Z, 2-dichloroethanol,
1.5-dichloro-2-propatol, 2.4-sifuromphenol, Z2,2-trichloroethanol, 1.
1.1-) dichloro-2-globanol, 2.44-
) dichlorophenol, etc.

(ハ)チタン化合物 チタン化合物は、二価、三価及び四価のチタンの化合物
であり、それらを例示すると、四塩化チタン、四臭化チ
タン、トリクロルエトキシチタン、トリクロルブトキシ
チタン、ジクロルシェドキクチタン、ジクロルブトキシ
チタン、ジクロルジフェノキシチタン、クロルトリエト
キシチタン、クロルトリブトキシチタン、テトラブトキ
シチタン、三塩化チタン等を挙げることができる。これ
らの中でも、四塩化チタン、トリクロルエトキシチタン
、ジクロルジブトキシチタン、ジクロルジフェノキシチ
タン等の四価のチタンハロゲン化物が望ましく、特に四
塩化チタンが望ましい。
(c) Titanium compounds Titanium compounds are divalent, trivalent, and tetravalent titanium compounds, and examples thereof include titanium tetrachloride, titanium tetrabromide, trichloroethoxytitanium, trichlorobutoxytitanium, and dichlorshed titanium. Titanium, dichlorobutoxytitanium, dichlordiphenoxytitanium, chlortriethoxytitanium, chlortributoxytitanium, tetrabutoxytitanium, titanium trichloride and the like can be mentioned. Among these, tetravalent titanium halides such as titanium tetrachloride, trichlorethoxytitanium, dichlorodibutoxytitanium, and dichlordiphenoxytitanium are preferred, and titanium tetrachloride is particularly preferred.

触媒成分の調製法 本発明で用いられる触媒成分は、金属酸化物(以下、A
成分という。)とマグネシウム化合物(以下、B成分と
いう。)を接触させた後、チタン化合物(以下、C成分
という。)と接触させるか、又はA成分とB成分を接触
させた後、アルコール(以下、C成分という。)と接触
させ、次いでC成分と接触させることによって得られる
Preparation method of catalyst component The catalyst component used in the present invention is a metal oxide (hereinafter referred to as A
It is called an ingredient. ) and a magnesium compound (hereinafter referred to as component B) and then a titanium compound (hereinafter referred to as component C), or after bringing component A and component B into contact, alcohol (hereinafter referred to as C ) and then with component C.

A成分とB成分の接触 A成分とB成分の接触は、不活性媒体の存在下又は不存
在下に混合攪拌する方法、機械的に共粉砕する方法等に
よりなされる。不活性媒体としては、ペンタン、ヘキサ
ン、ヘゲタン、オクタン、テカン、シクロヘキサン、ベ
ンゼン、トルエン、キシレン等の炭化水素、t2−ジク
ロルエタン、1.2−ジクロルプロパン、四塩化炭素、
塩化ブチル、塩化イソアミル、ブロムベンゼン、クロル
トルエン等のノーロゲン化炭化水素等が使用し得る。
Contact between Components A and B Components A and B may be brought into contact by mixing and stirring in the presence or absence of an inert medium, by mechanical co-pulverization, or the like. Inert media include hydrocarbons such as pentane, hexane, hegetane, octane, tecane, cyclohexane, benzene, toluene, xylene, t2-dichloroethane, 1,2-dichloropropane, carbon tetrachloride,
Norogenated hydrocarbons such as butyl chloride, isoamyl chloride, bromobenzene, chlorotoluene, etc. can be used.

A成分とB成分の接触は、通常−20℃〜+150℃で
(lL1〜100時間、望ましくは室温〜110℃でI
IL5〜10時間行なわれ時間液触が発熱を伴う場合は
、最初に低温で各成分を徐々に混合させ、全量の混合が
終了した段階で昇温し、接触を継続させる方法も採用し
得る。
The contact between component A and component B is usually carried out at -20°C to +150°C (for 1 to 100 hours, preferably at room temperature to 110°C).
If the time-liquid contact is carried out for 5 to 10 hours and generates heat, a method may be adopted in which the components are first mixed gradually at a low temperature, and then the temperature is raised after the entire amount has been mixed, and the contact is continued.

A成分とB成分の接触割合は、A/B=1f/Q、1〜
100ミリモル、tilましくは12/1〜10ミリモ
ルである。
The contact ratio between A component and B component is A/B=1f/Q, 1~
100 mmol, preferably 12/1 to 10 mmol.

A成分とB成分の接触によシ得られた固体状生成物(以
下、生成物1という。)は、次にC成分と、又はC成分
更にC成分と接触されるが、必要に応じてそれらの接触
に先立って適当な洗浄剤、例えば前記の不活性媒体で洗
浄してもよい。
The solid product obtained by contacting component A and component B (hereinafter referred to as product 1) is then contacted with component C, or further with component C, if necessary. Their contact may be preceded by washing with suitable cleaning agents, such as the inert media mentioned above.

生成物1とC成分との接触は、両者を不活性媒体の存在
下、又は不存在下に、機械的に共粉砕する方法、混合攪
拌する方法等によりなされる。これらの中でも、特に不
活性媒体の存在下、両者を混合攪拌する方法が望ましい
。不活性媒体としては、前記の化合物を用いることがで
きる。
The product 1 and component C are brought into contact by mechanically co-pulverizing them, mixing and stirring them in the presence or absence of an inert medium, or the like. Among these, a method in which both are mixed and stirred in the presence of an inert medium is particularly desirable. As inert medium it is possible to use the compounds mentioned above.

生成物IとC成分の接触は、通常−20℃〜+150℃
で11〜100時間、望ましくは室温〜110℃でrl
、5〜10時間行なわれる。接触が発熱を伴う場合は、
最初に低温で両者を徐々に混合させ、全量の混合が終了
した段階で昇温し、接触を継続させる方法も採用し得る
Contact between product I and C component is usually between -20°C and +150°C.
for 11 to 100 hours, preferably at room temperature to 110°C.
, for 5 to 10 hours. If contact is accompanied by fever,
It is also possible to adopt a method in which the two are gradually mixed at a low temperature first, and then the temperature is raised once the entire amount has been mixed, and the contact is continued.

C成分の使用量は、B成分1モルに対して105〜50
モル、望ましくは(11〜20モルである。
The amount of component C used is 105 to 50 per mole of component B.
mol, preferably (11 to 20 mol).

上記のようにして得られた固体状生成物(以下、生成物
■という。)は、次いでC成分と接触されるが、C成分
との接触の前に必要に応じて前記の不活性媒体で洗浄し
てもよい。
The solid product obtained as described above (hereinafter referred to as product ①) is then contacted with component C, but before contacting with component C, if necessary, the above-mentioned inert medium is added. May be washed.

C成分との接触 生成物I又は生成物■との接触は、両者を不活性媒体の
存在下、又は不存在下に、機械的に共粉砕する方法、混
合攪拌する方法等によりなされる。これらの内でも、特
に不活性媒体の存在下、両者を混合攪拌する方法が望ま
しい。不活性媒体としては、前記の化合物を用いること
ができる。
Contact with component C Contact with product I or product (2) is carried out by mechanically co-pulverizing them in the presence or absence of an inert medium, by mixing and stirring them, or the like. Among these, a method in which both are mixed and stirred in the presence of an inert medium is particularly desirable. As inert medium it is possible to use the compounds mentioned above.

生成物l又は生成物■とD成分との接触割合は、生成物
l又は生成物国中のマグネシウム1グラム原子当り、D
成分が0.01グラムモル以上、望ましくはα1〜10
グラムモルである。
The contact ratio of product 1 or product 2 with component D is per gram atom of magnesium in product 1 or product
The component is 0.01 gmol or more, preferably α1 to 10
Gram moles.

両者の接触は、不活性媒体の存在下で混合攪拌する場合
、0〜200℃で15〜20時間、望ましくは60〜1
50℃で1〜5時間行なわれる。
When the two are mixed and stirred in the presence of an inert medium, the contact between the two is carried out at 0 to 200°C for 15 to 20 hours, preferably for 60 to 1
It is carried out at 50° C. for 1 to 5 hours.

生成物I又は生成物■とD成分との接触は、2回以上行
うことができる。その接触方法は、上記と同じでよい。
The contact between Product I or Product (2) and Component D can be carried out two or more times. The contact method may be the same as described above.

前段の接触物は、必要に応じて該媒体で洗浄し、新たに
D成分(と不活性媒体)を加え、接触させることもでき
る。
If necessary, the contact material in the first stage may be washed with the medium, and component D (and an inert medium) may be newly added thereto and brought into contact.

上記のようにして得られた接触反応物は、必要に応じて
、ヘキサ/、ヘプタン、オクタン、シクロヘキサン、ベ
ンゼン、トルエン、中シレン等の炭化水素で洗浄し、更
に必要に応じて本発明で用いられる触媒成分とする。
The contact reaction product obtained as described above is washed with a hydrocarbon such as hexa/, heptane, octane, cyclohexane, benzene, toluene, or silane, if necessary, and further used in the present invention if necessary. catalytic component.

重合触媒 本発明で用いられる重合触媒は、上記のようにして得ら
れた触媒成分と有機アルミニウム化合物の組合せからな
る。
Polymerization Catalyst The polymerization catalyst used in the present invention consists of a combination of the catalyst component obtained as described above and an organoaluminum compound.

用い得る有機アル(+クム化合物としては、一般式Rn
AtX3−n(但し、Rはアルキル基又はアリール基、
Xはハロゲン原子、アルコキシ基又は水素原子を示し、
nは1≦n≦3の範囲の任意の数である。)で示される
ものであり、例えばトリアルキルアルずニウム、ジアル
キルアルミニウムモノハライド、モノアルキルアルミニ
ウムシバライド、アルキルアルミニウムセスキハライド
、ジアルキルアルばニウムモノアルコキシド及びシアル
中ルアルミニウムモノハイドライドなどの炭素数1ない
し18個、好ましくは炭素数2ないし6個のアルキルア
ルミニウム化合物又はその混合物もしくは錯化合物が特
に好ましい。具体的には、トリメチルアルミニウム、ト
リエチルアルミニウム、トリプロピルアルミニウム、ト
リイソブチルアルミニウム、トリへ中ジルアルミニウム
などのトリアルキルアルミニウム、ジメチルアルミニウ
ムクロリド、ジエチルアルミニウムクロリド、ジエチル
アルばニウムプロミド、ジエチルアルぐニウムアイオダ
イド、ジイソブチルアルミニウムクロリドなどのジアル
キルアルミニウムモノハライド、メチルアルミニウムジ
クロリド、エチルアルはニウムジクロリド、メチルアル
ミニウムジクロリド、エチルアルくニウムジクロリド、
エチルアルミニウムジアイオダイド、イソブチルアルミ
ニウムジクロリドなどのモノアルキルアルミニウムシバ
ライド、エチルアルミニウムセスキクロリドなどのアル
キルアルミニウムセスキハライド、ジメチルアルミニウ
ムメトキシド、ジエチルアルミニウムエトキシド、ジエ
チルアルミニウムフェノキシド、ジエチルアルミニウム
エトキシド、ジイソブチルアルばニウムエトキシド、ジ
イソブチルアルミニウムフェノキシドなどのジアルキル
アルミニウムモノアルコキシド、ジメチルアルミニウム
ハイドライド、ジエチルアルきニウムハイドライド、ジ
エチルアルきニウムハイドライド、ジアルキルアルミニ
ウムハイドライドなどのジアルキルアルミニウムハイド
ライドが挙げられる。これらの中でも、トリプルキルア
ルばニウムが、特にトリエチルアルミニウム、トリイソ
ブチルアルミニウムが望ましい。又、これらトリプルキ
ルアルばニウムは、その他の有機アルオニウム化合物、
例えば、工業的に入手し易いジエチルアルミニウムクロ
リド、エチルアルミニウムジクロリド、エチルアルミニ
ウムセスキクロリド、ジエチルアルミニウムエトキシド
、ジエチルアルミニウムハイドライド又はこれらの混合
物若しくは錯化合物等と併用することができる。
As the organic alk(+cum) compound that can be used, the general formula Rn
AtX3-n (where R is an alkyl group or an aryl group,
X represents a halogen atom, an alkoxy group or a hydrogen atom,
n is an arbitrary number in the range of 1≦n≦3. ), for example, trialkylaluminium, dialkylaluminum monohalide, monoalkylaluminum civalide, alkylaluminum sesquihalide, dialkylaluminium monoalkoxide, and sialium aluminum monohydride having 1 or more carbon atoms. Particularly preferred are alkyl aluminum compounds having 18 carbon atoms, preferably 2 to 6 carbon atoms, or mixtures or complexes thereof. Specifically, trialkylaluminum such as trimethylaluminum, triethylaluminum, tripropylaluminum, triisobutylaluminum, trihedylaluminum, dimethylaluminum chloride, diethylaluminium chloride, diethylaluminium bromide, diethylaluminium iodide, Dialkylaluminum monohalides such as diisobutylaluminum chloride, methylaluminum dichloride, ethylaluminum dichloride, methylaluminum dichloride, ethylaluminum dichloride,
Monoalkylaluminum cibarides such as ethylaluminum diiodide and isobutylaluminum dichloride; alkylaluminum sesquihalides such as ethylaluminum sesquichloride; dimethylaluminum methoxide; diethylaluminum ethoxide; diethylaluminum phenoxide; Examples include dialkyl aluminum monoalkoxides such as aluminum ethoxide and diisobutyl aluminum phenoxide, and dialkyl aluminum hydrides such as dimethyl aluminum hydride, diethylaluminium hydride, diethylalkinium hydride, and dialkyl aluminum hydride. Among these, triple-kylalbanium is preferred, particularly triethylaluminum and triisobutylaluminum. In addition, these triple-kyl albaniums can be used with other organic aluonium compounds,
For example, it can be used in combination with industrially easily available diethylaluminum chloride, ethylaluminum dichloride, ethylaluminum sesquichloride, diethylaluminum ethoxide, diethylaluminium hydride, or a mixture or complex compound thereof.

又、酸素原子や窒素原子を介して2個以上のアルミニウ
ムが結合した有機アルミニウム化合物も使用可能である
。そのような化合物としては、例えば(C意H1)意A
LOAt(Cs Hs ’)g eCCnH参)xAt
OAt(C4Hs)x*   (CzHs)xAtNA
t(CsHs)tI CsHs 等を例示できる。
Furthermore, an organic aluminum compound in which two or more pieces of aluminum are bonded via an oxygen atom or a nitrogen atom can also be used. Examples of such compounds include (C i H1) i A
LOAt(Cs Hs')g eCCnH) x At
OAt(C4Hs)x*(CzHs)xAtNA
Examples include t(CsHs)tI CsHs.

更に、有機金属化合物は、単独で用いてもよいが、電子
供与性化合物と組み合せてもよい。
Further, the organometallic compound may be used alone or in combination with an electron-donating compound.

電子供与性化合物としては、カルボン酸類、カルボン酸
無水物、カルボン酸エステル類、カルボン酸ハロゲン化
物、アルコール類、エーテル類、ケトン類、アミン類、
アミド類、ニトリル類、アルデヒド類、アルコレート類
、有機基と炭素もしくは酸素を介して結合した燐、ヒ素
およびアンチモン化合物、ホスホアミド類、チオエーテ
ル類、チオエステル類、炭酸エステル等が挙げられる。
Examples of electron-donating compounds include carboxylic acids, carboxylic anhydrides, carboxylic esters, carboxylic acid halides, alcohols, ethers, ketones, amines,
Examples include amides, nitriles, aldehydes, alcoholates, phosphorus, arsenic and antimony compounds bonded to organic groups via carbon or oxygen, phosphoamides, thioethers, thioesters, carbonic esters and the like.

これらの他に有機珪素化合物からなる電子供与性化合物
や、窒素、イオウ、酸素、リン等のへテロ原子を含む電
子供与性化合物も使用可能である。
In addition to these, electron-donating compounds made of organic silicon compounds and electron-donating compounds containing heteroatoms such as nitrogen, sulfur, oxygen, and phosphorus can also be used.

これら電子供与性化合物は、二種以上用いてもよい。又
、これら電子供与性化合物は、有機アルミニウム化合物
を触媒成分と組合せて用いる際に用いてもよく、予め有
機アルミニウム化合物と接触させた上で用いてもよい。
Two or more types of these electron-donating compounds may be used. Further, these electron-donating compounds may be used when an organoaluminum compound is used in combination with a catalyst component, or may be used after being brought into contact with an organoaluminum compound in advance.

触媒成分に対する有機アルミニウム化合物の使用量は、
該触媒成分中のチタン1グラム原子当り、通常1〜20
00グラムモル、特に20〜500グラムモルが望まし
い。
The amount of organoaluminum compound used relative to the catalyst component is
Usually 1 to 20 per gram atom of titanium in the catalyst component.
00 gmol, especially 20 to 500 gmol.

又、有機アルミニウム化合物と電子供与性化合物の比率
は、電子供与性化合物1モルに対して有機アルミニウム
化合物がアルミニウムとして11.1〜40、好ましく
は1〜25グラム原子の範囲で選ばれる。
The ratio of the organoaluminum compound to the electron-donating compound is selected within the range of 11.1 to 40, preferably 1 to 25, gram atoms of the organoaluminum compound as aluminum per mole of the electron donating compound.

又、本発明で用いられる触媒成分は、有機アルミニウム
化合物、更に必要に工チじて電子供与性化合物の存在下
、エチレン及び/又はプロピレンを予備重合して、触媒
成分1f当りエチレン及び/又はプロピレンのポリマー
をcL1〜1002、望ましくは1〜so?取り入れた
触媒成分を用いることができる。予備重合の方法は、通
常のチーグラー會ナツタ型触媒によるオレフィンの重合
法が採用できる。
The catalyst component used in the present invention is prepared by prepolymerizing ethylene and/or propylene in the presence of an organoaluminum compound and, if necessary, an electron-donating compound, to obtain ethylene and/or propylene per 1f of catalyst component. Polymer of cL1~1002, preferably 1~so? Incorporated catalyst components can be used. As the prepolymerization method, an ordinary olefin polymerization method using a Ziegler-Natsuta type catalyst can be adopted.

エチレンとプロピレンの共重合 エチレンとプロピレンの共重合は、エチレンとプロピレ
ンを、通常のチーグラー・ナツタ型触媒を用いたオレフ
ィンの共重合法に従った共重合法が採れるが、プロピレ
ンを媒体とするバルク重合法及び気相重合法が特をで望
ましい。
Copolymerization of ethylene and propylene Copolymerization of ethylene and propylene can be carried out by copolymerizing ethylene and propylene according to the usual olefin copolymerization method using a Ziegler-Natsuta type catalyst, but bulk copolymerization using propylene as a medium can be used. Polymerization methods and gas phase polymerization methods are particularly preferred.

共重合温度は、通常−80℃〜+150℃、望ましくは
0〜80℃の範囲である。共重合は60気圧迄の加圧下
で行ってもよい。本発明の方法で得られるエチレン・プ
ロピレン共重体ゴムは、エチレン含有量が15〜90モ
ルXであるが、このような範囲とするには共重合する際
のエチレンとプロピレンの使用割合を、エチレン/フロ
ピレン(モル比)で、フロピレンヲ媒体とするバルク重
合の場合、液相中においてα01〜1.0、気相重合の
場合Q、03〜五〇に調節することにより達成される。
The copolymerization temperature is usually in the range of -80°C to +150°C, preferably 0 to 80°C. Copolymerization may be carried out under pressure up to 60 atmospheres. The ethylene/propylene copolymer rubber obtained by the method of the present invention has an ethylene content of 15 to 90 moles. /Flopylene (mole ratio), in the case of bulk polymerization using Flopylene as the medium, by adjusting α01 to 1.0 in the liquid phase, and by adjusting the Q to 03 to 50 in the case of gas phase polymerization.

共重合反応は、連続又はバッチ式で行うことができ、一
般で行ってもよく、又二段以上で行ってもよい。
The copolymerization reaction can be carried out continuously or batchwise, and may be carried out in general or in two or more stages.

発明の効果 本発明の方法により、粒子性状のよいエチレン・プロピ
レン共重合体ゴムが高収率で製造することができる。従
って、脱触媒工程を省略することができる。
Effects of the Invention According to the method of the present invention, ethylene-propylene copolymer rubber with good particle properties can be produced in high yield. Therefore, the decatalyst step can be omitted.

実施例 次に、本発明を実施例により具体的に説明する。なお、
実施例に示したパーセント(%)は、特に断らない限り
重曖基準である。
EXAMPLES Next, the present invention will be specifically explained using examples. In addition,
The percentages (%) shown in the examples are vague criteria unless otherwise specified.

ポリマー中のエチレン合計は赤外スペクトル分析により
測定した。メルトインデックス(M工)はASTM  
D  1238に従って、嵩密度はASTM  D  
1B95−69メソツドA)て従ってそれぞれ測定した
。融解熱はパーキンエルマー社MD3cIlcを用いて
測定した。又、真密度はASTM  D  1505に
従って測定した。
Total ethylene in the polymer was determined by infrared spectroscopy. Melt index (M) is ASTM
According to D 1238, the bulk density is ASTM D
1B95-69 method A). Heat of fusion was measured using PerkinElmer MD3cIlc. In addition, true density was measured according to ASTM D 1505.

実施例1 滴下ロート及び攪拌機を取付けた200−のフラスコを
窒素ガスで置換した。このフラスコに酸化ケイ1(DA
VISON社製、商品名G−952.比表面積302m
オ/ t e細孔容積t 54 nl/ 9 、平均細
孔半径200)(以下、5102という。)を窒素気流
中において200℃で2時間、更に700℃で5時間焼
成したものを52及びn−メチルエチルマグネンウム(
以下、BEMという。)の20%n−ヘプタン溶液(テ
キサスアルキルズ社製、商品名MA()入LABEM 
)20d(BEMとして2&8ミリモル)を加えて1時
間攪拌した。
Example 1 A 200-meter flask equipped with a dropping funnel and a stirrer was purged with nitrogen gas. This flask contains silicon oxide 1 (DA).
Manufactured by VISON, product name G-952. Specific surface area 302m
(5102) (hereinafter referred to as 5102) with a pore volume t 54 nl/9 and an average pore radius 200) was calcined in a nitrogen stream at 200°C for 2 hours and then at 700°C for 5 hours. -Methyl ethyl magnenium (
Hereinafter referred to as BEM. ) in 20% n-heptane solution (manufactured by Texas Alkyls, trade name: LABEM with MA())
)20d (2 & 8 mmol as BEM) was added and stirred for 1 hour.

四塩化チタンとの接触 上記の懸濁液を0℃に冷却した後、これに四塩化チタン
20−とトルエン50−の混合液を、滴下ロートから5
0分掛けて滴下した。滴下終了後、1時間掛けて90℃
に昇温し、90℃で2時間攪拌を続けた。反応終了後、
デカンテーションによシ上澄液を除去し、生成した固体
を60−のニーヘキサンにより室はで5回洗浄した。減
圧下、室温にて1時間乾燥を行ない、チタン含有量9.
8%の触媒成分6)を&0?得た。
Contact with titanium tetrachloride After the above suspension was cooled to 0°C, a mixture of 20 cm of titanium tetrachloride and 50 cm of toluene was added to it from the dropping funnel.
It was dripped over 0 minutes. After dropping, heat to 90℃ for 1 hour.
The temperature was raised to 90° C. and stirring was continued for 2 hours. After the reaction is complete,
The supernatant liquid was removed by decantation, and the resulting solid was washed five times with 60-nihexane. Drying was carried out under reduced pressure at room temperature for 1 hour, and the titanium content was 9.
8% catalyst component 6) &0? Obtained.

エチレンとプロピレンの共重合 攪拌機を取付け、窒素置換した1、56のオートクレー
ブに、液体プロピレン800−1Ml成分(a) s 
rqが入ったガラスアンプル及びトリエチルアルミニウ
ム(TEAL)toミリモルを入れた。次に、内容物を
40℃に加熱すると共に、水素100d及びエチレンを
液相中のエチレン/フロピレン=125(モル比)トな
るように加えて2 & 5に9/a+”に加圧した。攪
拌機を回転させてガラスアンプルを割り共重合を開始し
た。重合空液相中のエチレン/プロピレン比をエチレン
を供給してα23に維持した。1時間後、降圧して得ら
れたポリマーを取り出し、乾燥した。重合活性は2A8
klil/P・触媒成分(a)−時間であった。得られ
たポリマーは、真球状であわ、嵩密度CL52 f/l
x” 、M工0.75f/1G分、真密度α875 ’
l/x” 、エチレン含有量71モル%、融解熱1.8
 cal / j’であつた。
Into a 1,56 autoclave equipped with an ethylene and propylene copolymerization stirrer and purged with nitrogen, 800-1 ml of liquid propylene component (a) s
A glass ampoule containing rq and tommol of triethyl aluminum (TEAL) were added. Next, the contents were heated to 40° C., and 100 d of hydrogen and ethylene were added so that ethylene/furopylene in the liquid phase was 125 (molar ratio), and the mixture was pressurized to 2 & 5 to 9/a+”. The stirrer was rotated and the glass ampoule was broken to start copolymerization.The ethylene/propylene ratio in the polymerization empty/liquid phase was maintained at α23 by supplying ethylene.After 1 hour, the pressure was lowered and the resulting polymer was taken out. It was dried.Polymerization activity was 2A8.
klil/P・Catalyst component (a)-time. The obtained polymer has a true spherical shape and a bulk density of CL52 f/l.
x", M work 0.75f/1G, true density α875'
l/x”, ethylene content 71 mol%, heat of fusion 1.8
It was cal/j'.

、B )lffl Mに代えて下記に示すマグネシウム
化合物を用いた以外は、実施例1と同様にして触媒成分
(b)〜(d)を調製した。
, B) Catalyst components (b) to (d) were prepared in the same manner as in Example 1, except that the magnesium compound shown below was used in place of lfflM.

(%) 2  b  ジローヘキシルMP   IC14d  
 n−BuMPC2&1 上記で得られた触媒成分を用い、かつ共重合条件を第1
表の通υにした以外は、実施例1と同様にしてエチレン
とプロピレンの共重合を行ない、それらの結果を第1表
に示した。
(%) 2b Zirohexyl MP IC14d
n-BuMPC2&1 Using the catalyst component obtained above and adjusting the copolymerization conditions to the first
Copolymerization of ethylene and propylene was carried out in the same manner as in Example 1, except that the values in the table were changed, and the results are shown in Table 1.

実施例5 810意とBEMの接触を実施例1と同様にして行った
。得られた懸濁液の上登液をデカンテーションにより除
去し、50−のn−へブタンにより5回洗浄を行った。
Example 5 Contact between 810mm and BEM was carried out in the same manner as in Example 1. The upper liquid of the resulting suspension was removed by decantation, and washed five times with 50-n-hebutane.

洗浄後、n−ヘゲタン20−を加え、これにエタノール
10dとn−ヘプタン10−の混合液を滴下ロートから
0℃において50分掛けて滴下した。滴下終了後、1時
間掛けて80℃に昇温し、80℃で1時間攪拌を行った
。反応終了後、50−のトルエンにて5回洗浄を行った
After washing, 20 ml of n-hegetane was added, and a mixed solution of 10 d of ethanol and 10 ml of n-heptane was added dropwise from the dropping funnel at 0° C. over 50 minutes. After the dropwise addition was completed, the temperature was raised to 80°C over 1 hour, and stirring was performed at 80°C for 1 hour. After the reaction was completed, washing was performed five times with 50-g of toluene.

次いで、反応温度を120℃にした以外は、実施例1と
同様にして四塩化チタンとの接触を行ない、チタン含有
量1.8%の触媒成分(e)を調製した。
Next, contact with titanium tetrachloride was carried out in the same manner as in Example 1, except that the reaction temperature was 120° C., to prepare a catalyst component (e) having a titanium content of 1.8%.

エチレンとプロピレンの共重合 上記で得られた触媒成分(e)を用い、かつ共重合条件
を第1表の通シにした以外は、実施例1と同様にしてエ
チレンとプロピレンの共重合を行ない、その結果を第1
表に示した。
Copolymerization of ethylene and propylene Copolymerization of ethylene and propylene was carried out in the same manner as in Example 1, except that the catalyst component (e) obtained above was used and the copolymerization conditions were as shown in Table 1. , the result is the first
Shown in the table.

エタノールに代えて、下記に示すアルコールを用いた以
外は、実施例5と同様にして触媒成分(f)及び触媒成
分(?)を調製した。
Catalyst component (f) and catalyst component (?) were prepared in the same manner as in Example 5, except that the alcohol shown below was used instead of ethanol.

(%) 6    f    ’n−ブタノール       
z17      r      2,2.2−トリク
ロルエタノール    五〇エチレンとプロピレンの共
重合 上記で得られた触媒成分を用い、かつ共重合条件を第1
表の通シにした以外は、実施例1と同様にしてエチレン
とプロピレンの共重合を行ない、それらを第1表に示し
た。なお、実施例6においては、共重合時に用いる有機
アルミニウム化合物としてTEALの代わりにトリイソ
ブチルアルミニウムを用いた。
(%) 6f'n-butanol
z17 r 2,2,2-trichloroethanol 50 Copolymerization of ethylene and propylene Using the catalyst component obtained above and changing the copolymerization conditions to the first
Copolymerization of ethylene and propylene was carried out in the same manner as in Example 1, except that the table was changed, and the results are shown in Table 1. In Example 6, triisobutylaluminum was used instead of TEAL as the organoaluminum compound used during copolymerization.

実施例8 触媒成分の調製 実施例4と同様にして、Sin、とn−BuMfCA 
 を接触させ、その懸濁液を得た。この懸濁液を実施例
5と同様にエタノ−A〆、次いで四塩化チタンと接触さ
せ、触媒成分(ト))を調製した。
Example 8 Preparation of catalyst components In the same manner as in Example 4, Sin and n-BuMfCA
were brought into contact with each other to obtain a suspension. This suspension was brought into contact with ethanol-A and then with titanium tetrachloride in the same manner as in Example 5 to prepare a catalyst component (g).

エチレンとプロピレンの共重合 上記で得られた触媒成分を用い、かつ共重合条件を第1
表の通りにした以外は、実施例1と同様にしてエチレン
とグロビン/の共重合を行ない、その結果を第1表に示
した。
Copolymerization of ethylene and propylene Using the catalyst component obtained above and adjusting the copolymerization conditions to
Copolymerization of ethylene and globin/globin was carried out in the same manner as in Example 1, except for the following changes, and the results are shown in Table 1.

エタノールに代えて、下記に示すアルコールを用いた以
外は、実施例8と同様にして触媒成分(1)及び触媒成
分θ)を調製した。
Catalyst component (1) and catalyst component θ) were prepared in the same manner as in Example 8, except that the alcohol shown below was used instead of ethanol.

(%) ?     tn−ブタノール       1.11
0jp−クロルフェノール        □エチレン
とプロピレンの共重合 上記で得られた触媒成分を用い、かつ共重合条件を第1
表の通シにした以外は、実施例1と同様にしてエチレン
とプロピレンの共重合t−行ない、それらの結果を第1
表に示した。
(%)? tn-butanol 1.11
0jp-Chlorphenol □ Copolymerization of ethylene and propylene Using the catalyst component obtained above and adjusting the copolymerization conditions to the first
Copolymerization of ethylene and propylene was carried out in the same manner as in Example 1, except that the table was changed, and the results were reported in the first
Shown in the table.

5iO1K代えて、窒素気流中200℃で2時間、70
0℃で5時間焼成したA!40s を用いた以外は、実
施例1又は実施例9と同様にしてチタン含有量&7%の
触媒成分に)及び触媒成分(4)を調製した。
5iO1K replaced, 70℃ for 2 hours at 200℃ in a nitrogen stream
A baked at 0℃ for 5 hours! A catalyst component with a titanium content of &7%) and a catalyst component (4) were prepared in the same manner as in Example 1 or Example 9, except that 40s was used.

エチレンとプロピレンの共M合 上記で得られた触媒成分を用い、かつ共重合条件を第1
表の通りKした以外は、実施例1と同様にしてエチレン
とプロピレンの共重合を行ない、それらの結果を第1表
に示した。
Co-M copolymerization of ethylene and propylene Using the catalyst component obtained above and adjusting the copolymerization conditions to the first
Copolymerization of ethylene and propylene was carried out in the same manner as in Example 1, except that K was used as shown in the table, and the results are shown in Table 1.

実施例13 攪拌機を取付けた200−のフラスコを十分窒素で置換
し、ヘプタン50−を入れた。これに、実施例9で得た
触媒成分(i) (L 5 を及びTKALα5ミリモ
ルを加え、更にエチレンを供給して常温、常圧でエチレ
ンの重合を開始した。
Example 13 A 200-cm flask equipped with a stirrer was sufficiently purged with nitrogen, and 50-cm of heptane was charged. To this, catalyst component (i) (L 5 ) obtained in Example 9 and 5 mmol of TKALα were added, and ethylene was further supplied to start polymerization of ethylene at room temperature and pressure.

1.5時間後にエチレンの供給を止め、液相部を除去し
た。同相部を50−のn−へキサンで5回洗浄した後、
室温で乾燥した。触媒成分(1)12当り五5fのエチ
レンが重合し、取り入れられていた。
After 1.5 hours, the supply of ethylene was stopped and the liquid phase was removed. After washing the in-phase part five times with 50-n-hexane,
Dry at room temperature. 55 f of ethylene was polymerized and incorporated per 12 of catalyst component (1).

エチレンとプロピレンの共重合 上記の予備重合した触媒成分を用い、かつ共重合条件を
第1表の通りにした以外は、実施例1と同様にしてエチ
レンとプロピレンの共重合を行ない、その結果を第1表
に示した。
Copolymerization of ethylene and propylene Copolymerization of ethylene and propylene was carried out in the same manner as in Example 1, except that the above prepolymerized catalyst components were used and the copolymerization conditions were as shown in Table 1. It is shown in Table 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を示すフローチャート図である。 FIG. 1 is a flowchart diagram illustrating the method of the present invention.

Claims (1)

【特許請求の範囲】 (イ)(A)金属酸化物と(B)一般式R^1MgR^
2〔但し、R^1はヒドカルビル基、R^2はヒドロカ
ルビル基又はハロゲン原子を示す。〕のマグネシウム化
合物を接触させるか、又は更に(C)アルコールを接触
させた後、(D)チタン化合物と接触させることによつ
て得られる触媒成分と、(ロ)有機アルミニウム化合物 とからなる重合触媒の存在下、エチレンとプロピレンを
共重合させることからなるエチレン含有量15〜90モ
ル%のエチレン・プロピレン共重合体ゴムの製造法。
[Claims] (a) (A) metal oxide and (B) general formula R^1MgR^
2 [However, R^1 represents a hydrocarbyl group, and R^2 represents a hydrocarbyl group or a halogen atom. ] A polymerization catalyst consisting of a catalyst component obtained by contacting with a magnesium compound or further contacting with (C) alcohol and then contacting with (D) a titanium compound, and (b) an organoaluminium compound. A method for producing an ethylene/propylene copolymer rubber having an ethylene content of 15 to 90 mol%, which comprises copolymerizing ethylene and propylene in the presence of.
JP19732886A 1986-08-25 1986-08-25 Production of ethylene/propylene copolymer rubber Pending JPS6354407A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP19732886A JPS6354407A (en) 1986-08-25 1986-08-25 Production of ethylene/propylene copolymer rubber
EP87307530A EP0261808A3 (en) 1986-08-25 1987-08-25 Method for production of ethylene - propylene copolymer rubber
BR8704367A BR8704367A (en) 1986-08-25 1987-08-25 PROCESS FOR THE PRODUCTION OF AN ETHYLENE-PROPYLENE COPOLYMER RUBBER AND ETHYLENE-PROPYLENE COPOLYMER RUBBER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19732886A JPS6354407A (en) 1986-08-25 1986-08-25 Production of ethylene/propylene copolymer rubber

Publications (1)

Publication Number Publication Date
JPS6354407A true JPS6354407A (en) 1988-03-08

Family

ID=16372637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19732886A Pending JPS6354407A (en) 1986-08-25 1986-08-25 Production of ethylene/propylene copolymer rubber

Country Status (1)

Country Link
JP (1) JPS6354407A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6361010A (en) * 1986-09-01 1988-03-17 Mitsui Petrochem Ind Ltd Polymerization of olefin
WO2005054350A1 (en) 2003-12-03 2005-06-16 Tonen Chemical Corporation Microporous composite film, process for producing the same, and use
JP2008512506A (en) * 2004-09-07 2008-04-24 ノボレン テクノロジー ホールディングス シー・ブイ Ziegler-Natta catalyst, process for producing the same, and use in polymerization of alkenes using the same
JPWO2022024476A1 (en) * 2020-07-27 2022-02-03

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6361010A (en) * 1986-09-01 1988-03-17 Mitsui Petrochem Ind Ltd Polymerization of olefin
JP2530624B2 (en) * 1986-09-01 1996-09-04 三井石油化学工業株式会社 Olefin Polymerization Method
WO2005054350A1 (en) 2003-12-03 2005-06-16 Tonen Chemical Corporation Microporous composite film, process for producing the same, and use
JP2008512506A (en) * 2004-09-07 2008-04-24 ノボレン テクノロジー ホールディングス シー・ブイ Ziegler-Natta catalyst, process for producing the same, and use in polymerization of alkenes using the same
JPWO2022024476A1 (en) * 2020-07-27 2022-02-03
WO2022024476A1 (en) * 2020-07-27 2022-02-03 日本製紙株式会社 Modified polyolefin resin and use of same

Similar Documents

Publication Publication Date Title
EP0055589B1 (en) Catalyst for polymerization of olefins and polymerization process using the catalyst
JPS627706A (en) Production of catalyst component for olefin polymerization
JPH0655783B2 (en) Olefin polymerization catalyst component
US4364851A (en) Process for producing olefin polymers
JPS5910683B2 (en) Polymerization method of olefins
JPS6354407A (en) Production of ethylene/propylene copolymer rubber
US4381252A (en) Catalyst for producing polyolefins
EP0058549B1 (en) Catalyst for polymerization of olefins
JPS62295909A (en) Production of ethylene/propylene copolymer rubber
JPS61130311A (en) Production of catalyst component for olefin polymerization
JPS63162703A (en) Manufacture of catalyst component for polymerizing olefin
JPH062774B2 (en) Olefin Polymerization Method
JP2617988B2 (en) Process for producing ethylene polymer and catalyst for producing ethylene polymer
JP2613618B2 (en) Process for producing ethylene polymer and catalyst for producing ethylene polymer
US5258474A (en) Process for producing α-olefin polymer
JPH01230606A (en) Method for producing α-olefin polymer
JPS61197607A (en) Catalyst component for olefin polymerization
JP2613621B2 (en) Process for producing ethylene polymer and catalyst for producing ethylene polymer
JP2732581B2 (en) Titanium catalyst component and its production method
JPH0118926B2 (en)
JPS62295908A (en) Production of ethylene/propylene copolymer rubber
JPS6354408A (en) Production of ethylene/propylene copolymer rubber
JPS6315808A (en) Production of propylene copolymer
JP2723134B2 (en) Support-supported titanium catalyst component for ethylene (co) polymerization and process for producing the same
JP2000344820A (en) Catalyst for producing ethylene polymer, method for producing the same, and method for producing ethylene polymer