JPS6354052B2 - - Google Patents
Info
- Publication number
- JPS6354052B2 JPS6354052B2 JP58115418A JP11541883A JPS6354052B2 JP S6354052 B2 JPS6354052 B2 JP S6354052B2 JP 58115418 A JP58115418 A JP 58115418A JP 11541883 A JP11541883 A JP 11541883A JP S6354052 B2 JPS6354052 B2 JP S6354052B2
- Authority
- JP
- Japan
- Prior art keywords
- molten metal
- inclusions
- experiment
- gas
- blown
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Description
本発明はアルミニウム溶湯に含まれる介在物を
除去するための処理方法に関する。
近年アルミニウム材料に対する品質要求が増々
厳しくなつてきている。例えば磁気デイスクの基
盤をアルミニウムで作るためには、各種酸化物等
の非金属介在物が数μm以下であるような清浄度
のアルミニウム材料が要求される。このような微
小な介在物を除去するために、様々なインライン
溶湯処理装置が開発され実用化されつつある。
アルミニウム溶湯に含まれる介在物を除去する
一つの方法として、溶湯をフイルターに通してろ
過することが行われている。このろ過による除去
によれば、フイルターの気孔径によつて除去可能
な介在物の大きさが決まることになる。しかし数
μm程度の微小介在物をろ過するために気孔径の
相応に小さなフイルターを使用すると、溶湯をフ
イルターに通すために要する圧力特に初期圧力が
非常に高くなるので、通常の自重ろ過装置では困
難となるうえ効率良い除去はできない。
また溶湯中に塩素ガス等を吹込んで微小介在物
を捕集し浮上分離させるフローテーシヨン方式の
除去処理技術もまた実際に使用されてきている。
一般に吹込むガスとしては塩素ガスの他に例えば
窒素ガスやアルゴンもしくはそれらの混合ガスを
使用している。例えば、特開昭52−32811号公報
にはカルボテルミツク法で製造したアルミニウム
カーバイドを多量に含有する汚染したアルミニウ
ム溶湯からアルミニウムカーバイド含有量を低減
させる方法として、汚染したアルミニウム溶湯内
に酸素、空気、二酸化炭素、水蒸気、塩素、窒素
ガス等を吹込んで、アルミニウムカーバイドを浮
上分分離することが開示されている。しかしなが
らこのフローテーシヨン方式の処理を行つても介
在物の大きさが微小な場合は捕集効果を有効に得
られない場合があり、このような微小介在物の確
実な除去を実現することが強く望まれていた。
本発明者等は、このような現状のもとで、幾多
の実験を行つた結果、水蒸気をアルミニウム溶湯
に吹込み、然る後ろ過した場合に、溶湯の通過し
易い気孔径の大きいフイルターを用いても、これ
の径よりも遥かに微小な介在物まで除去できると
言う知見を得て、本発明を完成したものであつ
て、その目的とするところは、数μm程度までの
微小介在物を確実且つ容易に、しかも効率良く除
去できるアルミニウム溶湯の処理方法を提供する
ことである。
すなわち本発明は、アルミニウム溶湯中に水蒸
気を吹込み、然る後ろ過処理することを特徴とす
るアルミニウム溶湯処理方法である。
本発明者等はアルミニウム溶湯に水蒸気を吹込
んでろ過した場合に、気孔径の大きいフイルター
を用いても、これの径よりも遥かに微小な介在物
までも除去できると言う現象について種々検討し
た結果、水蒸気がアルミニウム溶湯と接触するこ
とによつてγ―Al2O3を反応生成し、この反応生
成物が微少な介在物を強力に捕集する効果を有
し、微小な介在物がγ―Al2O3と共に大きい介在
物に成長して気孔径の大きいフイルターに捕捉さ
れるものと考察した。
以下にさらに本発明の方法を実施例につき詳し
く説明する。
本発明の効果を調べるために次のような比較試
験を実施した。すなわち下記〔実験1〕〜〔実験
4〕(比較例)、〔実験5〕〜〔実験7〕(本発明
例)で示す如くそれぞれ異なる溶湯処理を行つた
後、それぞれの溶湯から試料を鋳造し、各試料に
ついて介在物検査を行つた。各実験で使用した供
試材はAl―Mg系アルミニウム合金(AA5056)、
約100Kgである。
〔実験1〕
溶湯を無処理のまま試料を鋳造した。
〔実験2〕
フイルター孔径200μmのセラミツクスフイルタ
ーに溶湯を通してろ過処理した後、試料を鋳造し
た。
〔実験3〕
溶湯中に塩素ガス(溶湯100Kg当り50g)を吹
込んで脱ガス処理し、次に〔実験2〕のろ過処理
を行つた後、試料を鋳造した。
〔実験4〕
溶湯中に水蒸気(溶湯100Kg当り0.17g)を吹込
んだ後浮上した介在物を除去し、然る後試料を鋳
造した。
〔実験5〕
溶湯中に水蒸気(溶湯100Kg当り0.17g)を吹込
み、次に〔実験2〕のろ過処理を行つた後、試料
を鋳造した。
〔実験6〕
溶湯中に塩素ガス(溶湯100Kg当り50g)をキ
ヤリヤガスとして水蒸気(溶湯100Kg当り0.17g)
を吹込み、次に〔実験2〕のろ過処理を行つた
後、試料を鋳造した。
〔実験7〕
溶湯中に水蒸気(溶湯100Kg当り0.17g)を吹
込み、次に塩素ガス(溶湯100Kg当り50g)を吹
込んで脱ガス処理し、然る後〔実験2〕のろ過処
理を行つた後、試料を鋳造した。
ここで、脱ガス処理のための塩素ガスおよび本
発明の特徴とする水蒸気の吹込みに際しては、所
要量を大体5分間で吹込むような吹込み速度と
し、吹込み後の鎮静時間を約15分間とした。また
溶湯温度は約720℃に保持した。
尚上述の各実験の実施には第1図および第2図
に基本構成を示するつぼ装置およびガス吹込み装
置を使用した。以下に使用した実験装置について
概略を説明する。
第1図に示したるつぼ装置は装置本体1内にる
つぼ2が配置され、電熱コイル3によりるつぼ2
内に投入した供試材4を溶融して大体720℃の温
度に保持できるものである。ろ過処理不要に際し
てはるつぼ2内から溶湯を直接に採取して金型に
鋳込んだ。ろ過処理を行う場合は、蓋5を閉じて
導管6から窒素ガス等の加圧気体をるつぼ2内の
空間7に導びき、この加圧により溶湯4をるつぼ
底部に備えた所要のフイルター装置8に通してろ
過し、溶湯受けるつぼ9で採取したろ過溶湯を金
型に鋳込んだ。
一方水蒸気および脱ガス用の塩素ガスの吹込み
には第2図に示す如きガス吹込み装置を使用し
た。この装置はるつぼ2の溶湯4内に差込む管部
材10と、水蒸気発生装置11と、塩素ガスボン
ベ12とを含み、それぞれ流量計13,14を介
して管15,16により混合室17へ導びくよう
に構成されている。水蒸気のための配管15には
必要に応じて加熱コイル18を備えた。水蒸気お
よび塩素ガスの供給・停止はバルブ19,20,
21等で行い、単独にあるいは一緒に供給できる
ようになつている。符号22および23は安全バ
ルブおよび温度計である。
管部材10の先端にはポーラスセラミツクス1
0Aを備え、供給する水蒸気および/または塩素
ガスが第1図に示す如く小気泡30となつて溶湯
中を上昇するようにした。
上述の如く行つた〔実験1〕〜〔実験7〕によ
り得たそれぞれの鋳造試料に対して通常の介在物
検査を実施し、この結果として得た介在物の存在
状況を第1表に示す。
The present invention relates to a treatment method for removing inclusions contained in molten aluminum. In recent years, quality requirements for aluminum materials have become increasingly strict. For example, in order to make the base of a magnetic disk from aluminum, the aluminum material is required to be clean enough to contain non-metallic inclusions such as various oxides of several μm or less. In order to remove such minute inclusions, various in-line molten metal processing apparatuses have been developed and are being put into practical use. One method for removing inclusions contained in molten aluminum is to filter the molten metal through a filter. According to this removal by filtration, the size of the inclusions that can be removed is determined by the pore size of the filter. However, when using a filter with a correspondingly small pore size to filter minute inclusions of several micrometers, the pressure required to pass the molten metal through the filter, especially the initial pressure, becomes extremely high, making it difficult to use with a normal gravity filtration device. Moreover, efficient removal is not possible. In addition, a flotation-type removal treatment technique in which chlorine gas or the like is blown into the molten metal to collect and float away minute inclusions has also been used in practice.
In addition to chlorine gas, nitrogen gas, argon, or a mixture thereof is generally used as the gas to be blown. For example, Japanese Patent Application Laid-Open No. 52-32811 describes a method for reducing the aluminum carbide content from contaminated aluminum molten metal containing a large amount of aluminum carbide produced by the carbothermic method. It has been disclosed that aluminum carbide is separated as a floating fraction by blowing carbon, water vapor, chlorine, nitrogen gas, etc. However, even if this flotation method is used, if the size of the inclusions is minute, the collection effect may not be obtained effectively, and it is difficult to achieve reliable removal of such minute inclusions. It was strongly desired. Under these circumstances, the inventors of the present invention conducted numerous experiments and found that when water vapor is blown into molten aluminum and then filtered, a filter with a large pore diameter through which the molten metal can easily pass has been developed. The present invention was completed based on the knowledge that it is possible to remove inclusions that are much smaller than the diameter of this material, and the purpose is to remove inclusions that are much smaller than the diameter of An object of the present invention is to provide a method for treating molten aluminum that can reliably, easily, and efficiently remove aluminum. That is, the present invention is a method for treating molten aluminum, which is characterized by blowing steam into molten aluminum and then subjecting it to overtreatment. The inventors have conducted various studies on the phenomenon that when water vapor is blown into molten aluminum and filtered, even inclusions much smaller than the diameter of the filter can be removed even if a filter with a large pore diameter is used. When water vapor comes into contact with molten aluminum, γ-Al 2 O 3 is produced by a reaction, and this reaction product has the effect of strongly collecting minute inclusions, and the minute inclusions become γ-Al2O3. It was considered that the inclusions grow together with Al 2 O 3 into large inclusions and are captured by a filter with a large pore size. The method of the invention will be explained in more detail below with reference to examples. In order to examine the effects of the present invention, the following comparative tests were conducted. That is, after performing different molten metal treatments as shown in the following [Experiment 1] to [Experiment 4] (comparative example) and [Experiment 5] to [Experiment 7] (example of the present invention), samples were cast from each molten metal. , each sample was inspected for inclusions. The test materials used in each experiment were Al-Mg aluminum alloy (AA5056);
It is approximately 100Kg. [Experiment 1] A sample was cast with the molten metal left untreated. [Experiment 2] After filtering the molten metal through a ceramic filter with a filter pore size of 200 μm, a sample was cast. [Experiment 3] Chlorine gas (50 g per 100 kg of molten metal) was blown into the molten metal for degassing treatment, and then the filtration treatment of [Experiment 2] was performed, and then a sample was cast. [Experiment 4] After steam (0.17 g per 100 kg of molten metal) was blown into the molten metal, the floating inclusions were removed, and then the sample was cast. [Experiment 5] Steam (0.17 g per 100 kg of molten metal) was blown into the molten metal, and then the filtration treatment of [Experiment 2] was performed, and then a sample was cast. [Experiment 6] Add chlorine gas (50g per 100kg of molten metal) to the molten metal as a carrier gas and water vapor (0.17g per 100kg of molten metal)
was blown into the mold, followed by the filtration treatment of [Experiment 2], and then the sample was cast. [Experiment 7] Steam (0.17 g per 100 kg of molten metal) was blown into the molten metal, then chlorine gas (50 g per 100 kg of molten metal) was blown into the molten metal for degassing treatment, followed by the filtration treatment of [Experiment 2]. After that, the sample was cast. Here, when blowing in chlorine gas for degassing treatment and steam, which is a feature of the present invention, the blowing speed is such that the required amount is blown in approximately 5 minutes, and the sedation time after blowing is approximately 15 minutes. It was set as 1 minute. Furthermore, the molten metal temperature was maintained at approximately 720°C. In carrying out each of the above-mentioned experiments, a crucible device and a gas blowing device whose basic configurations are shown in FIGS. 1 and 2 were used. The experimental equipment used will be outlined below. The crucible device shown in FIG.
The test material 4 placed inside can be melted and maintained at a temperature of approximately 720°C. When filtration treatment was not required, the molten metal was directly sampled from the crucible 2 and poured into a mold. When performing filtration processing, the lid 5 is closed and a pressurized gas such as nitrogen gas is introduced from the conduit 6 into the space 7 inside the crucible 2, and by this pressurization, the molten metal 4 is passed through the required filter device 8 provided at the bottom of the crucible. The filtered molten metal was collected in a crucible 9 to receive the molten metal, and the filtered molten metal was poured into a mold. On the other hand, a gas blowing device as shown in FIG. 2 was used to blow water vapor and chlorine gas for degassing. This device includes a pipe member 10 that is inserted into the molten metal 4 of the crucible 2, a steam generator 11, and a chlorine gas cylinder 12, which are led to a mixing chamber 17 by pipes 15 and 16 via flow meters 13 and 14, respectively. It is configured as follows. The piping 15 for water vapor was equipped with a heating coil 18 as required. Valves 19 and 20 are used to supply and stop water vapor and chlorine gas.
21 etc., and can be supplied individually or together. Reference numerals 22 and 23 are safety valves and thermometers. Porous ceramics 1 are placed at the tip of the tube member 10.
0A, so that the supplied water vapor and/or chlorine gas formed small bubbles 30 as shown in FIG. 1 and rose in the molten metal. A conventional inclusion inspection was performed on each of the cast samples obtained in Experiments 1 to 7 as described above, and the presence of inclusions obtained as a result is shown in Table 1.
【表】
第1表の結果から水蒸気を吹込んだ後ろ過する
工程を含む本発明例(〔実験5〕〜〔実験7〕)は
比較例(〔実験1〕〜〔実験4〕)に較べて微小介
在物が著しく低減されることが判る。このことは
前述したように、水蒸気の吹込みによつてこれと
アルミニウム溶湯との接触でγ―Al2O3が生成さ
れ、このγ―Al2O3が微小介在物を付着捕集する
作用に優れ、γ―Al2O3と微小介在物とが一緒に
なつて大きな介在物に成長し、気孔径の大きいフ
イルターに捕捉されるものと考察されるのであ
る。
しかしながら、水蒸気の吹込みによつて鋳造後
のガス含有量は大きくなる傾向を示している。こ
のガス含有量を低減させるために、塩素ガスを吹
込むことが有効なことは〔実験6〕および〔実験
7〕によつて明らかである。
以上の如く、本発明は、水蒸気をアルミニウム
溶湯に吹込んだ後、ろ過することで微小介在物の
除去に多大な効果をあげるものである。また水蒸
気の吹込みによりガス含有量の増大する傾向が認
められるが、これは塩素ガス等の脱ガス剤の吹込
みによつて充分に低減できる。従つてその他の脱
ガス処理例えば真空鋳造や減圧鋳造と組合すこと
も有利となる。このように本発明の処理方法は、
従来の処理方法と極めて簡単に組合せることがで
き、これによりより清浄度の高いアルミニウム材
料の製造を可能とする。しかもこのために必要と
する装置等は極めて簡単であり、既存の処理装置
に即座に適用できる利点もある。
尚、水蒸気の吹込みは塩素ガス等の吹込みと同
時に行える。すなわち塩素ガス等をキヤリヤガス
として、水蒸気を容易に吹込むことができるので
ある。[Table] From the results in Table 1, the examples of the present invention ([Experiment 5] to [Experiment 7]), which include the step of blowing water vapor and then filtering, are compared to the comparative examples ([Experiment 1] to [Experiment 4]). It can be seen that minute inclusions are significantly reduced. As mentioned above, this is because γ-Al 2 O 3 is generated when steam is blown into contact with the molten aluminum, and this γ- Al 2 O 3 has the effect of adhering to and collecting minute inclusions. It is considered that γ-Al 2 O 3 and minute inclusions grow together into large inclusions and are captured by a filter with a large pore size. However, the gas content after casting tends to increase due to the injection of steam. It is clear from [Experiment 6] and [Experiment 7] that blowing chlorine gas is effective in reducing this gas content. As described above, the present invention is highly effective in removing minute inclusions by injecting water vapor into molten aluminum and then filtering it. Furthermore, although there is a tendency for the gas content to increase due to the injection of water vapor, this can be sufficiently reduced by injection of a degassing agent such as chlorine gas. Therefore, it is also advantageous to combine other degassing treatments, such as vacuum casting or reduced pressure casting. In this way, the treatment method of the present invention
It can be very easily combined with conventional processing methods, making it possible to produce aluminum materials with higher purity. Moreover, the equipment required for this purpose is extremely simple, and has the advantage that it can be immediately applied to existing processing equipment. Note that the injection of water vapor can be performed simultaneously with the injection of chlorine gas, etc. That is, water vapor can be easily blown in using chlorine gas or the like as a carrier gas.
第1図は本発明の効果を調べるのに使用した実
験装置であるるつぼ装置の概略断面図。第2図は
本発明の特徴とせる水蒸気吹込みを吹込むための
実験装置の概略図。
1…容器本体、2…るつぼ、3…電熱コイル、
4…溶湯、5…蓋、6…管、8…セラミツクフイ
ルター、9…溶湯受けるつぼ、10…管部材、1
1…水蒸器発生装置、12…塩素ガスボンベ、1
3,14…流量計、15,16…管、17…混合
室、18…加熱コイル、19,20,21…バル
ブ、22…安全バルブ、23…温度計。
FIG. 1 is a schematic sectional view of a crucible device, which is an experimental device used to examine the effects of the present invention. FIG. 2 is a schematic diagram of an experimental apparatus for injecting steam, which is a feature of the present invention. 1... Container body, 2... Crucible, 3... Electric heating coil,
4... Molten metal, 5... Lid, 6... Pipe, 8... Ceramic filter, 9... Pot for receiving molten metal, 10... Pipe member, 1
1... Steam generator, 12... Chlorine gas cylinder, 1
3, 14... Flowmeter, 15, 16... Tube, 17... Mixing chamber, 18... Heating coil, 19, 20, 21... Valve, 22... Safety valve, 23... Thermometer.
Claims (1)
去するために、溶湯中に水蒸気を吹込み、微小介
在物を捕集させた後、ろ過処理することを特徴と
するアルミニウム溶湯処理方法。 2 前記水蒸気の吹込みのために塩素ガス、窒素
ガス、アルゴンガス等の脱ガス用ガスをキヤリヤ
ガスとして一緒に吹込むことを特徴とする特許請
求の範囲第1項記載のアルミニウム溶湯処理方
法。 3 前記水蒸気の吹込み後に脱ガス処理を行うこ
とを特徴とする特許請求の範囲第1項記載のアル
ミニウム溶湯処理方法。[Scope of Claims] 1. A molten aluminum treatment characterized in that in order to remove minute inclusions contained in the molten aluminum, steam is blown into the molten metal, the minute inclusions are collected, and then filtered. Method. 2. The method for treating molten aluminum according to claim 1, wherein a degassing gas such as chlorine gas, nitrogen gas, or argon gas is also blown in as a carrier gas for the purpose of blowing in the water vapor. 3. The molten aluminum processing method according to claim 1, wherein a degassing treatment is performed after the steam is blown into the molten aluminum.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11541883A JPS609836A (en) | 1983-06-27 | 1983-06-27 | Treatment of molten aluminum |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11541883A JPS609836A (en) | 1983-06-27 | 1983-06-27 | Treatment of molten aluminum |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS609836A JPS609836A (en) | 1985-01-18 |
JPS6354052B2 true JPS6354052B2 (en) | 1988-10-26 |
Family
ID=14662076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11541883A Granted JPS609836A (en) | 1983-06-27 | 1983-06-27 | Treatment of molten aluminum |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS609836A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7082106B2 (en) | 1993-01-08 | 2006-07-25 | Multi-Tech Systems, Inc. | Computer-based multi-media communications system and method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3097730B2 (en) * | 1995-01-31 | 2000-10-10 | アルプス電気株式会社 | Paper cassette |
CN104946900B (en) * | 2015-06-19 | 2018-01-05 | 法格霭德兰汽车配件(昆山)有限公司 | A kind of aluminium liquid off gas system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5232811A (en) * | 1975-09-09 | 1977-03-12 | Reynolds Metals Co | Treatment of aluminium produced by carbotermic method |
-
1983
- 1983-06-27 JP JP11541883A patent/JPS609836A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5232811A (en) * | 1975-09-09 | 1977-03-12 | Reynolds Metals Co | Treatment of aluminium produced by carbotermic method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7082106B2 (en) | 1993-01-08 | 2006-07-25 | Multi-Tech Systems, Inc. | Computer-based multi-media communications system and method |
US7082141B2 (en) | 1993-01-08 | 2006-07-25 | Multi-Tech Systems, Inc. | Computer implemented voice over data communication apparatus and method |
US7092406B2 (en) | 1993-01-08 | 2006-08-15 | Multi-Tech Systems, Inc. | Computer implemented communication apparatus and method |
US7542555B2 (en) | 1993-01-08 | 2009-06-02 | Multi-Tech Systems, Inc. | Computer-based multifunctional personal communication system with caller ID |
Also Published As
Publication number | Publication date |
---|---|
JPS609836A (en) | 1985-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ATE110583T1 (en) | METHOD AND DEVICE FOR REMOVAL OF IMPURITIES IN FLUE GASES. | |
JPS6354052B2 (en) | ||
JPH06242104A (en) | Sampling device | |
ATE224960T1 (en) | METHOD FOR TREATING A MATERIAL CONTAINING METAL AND ORGANIC SUBSTANCES BY MEANS OF METAL SEPARATION | |
US6210478B1 (en) | Refining and analysis of material using horizontal cold-crucible induction levitation melting | |
US3010712A (en) | Apparatus for treating molten light metal | |
Canullo et al. | Cleanliness of primary A356 alloy: Interpretation and standardisation of PODFA laboratory measurements | |
NO171044B (en) | PROCEDURE FOR SEPARATION BY FILTERING OF INCLUSIONS INCLUDED IN A MOLD METAL BATH | |
Zeng et al. | Relationship between aluminum oxide inclusion and porosity in aluminum melt | |
CN104603053B (en) | Mud recovery method and bulk material | |
US9145597B2 (en) | Simultaneous multi-mode gas activation degassing device for casting ultraclean high-purity metals and alloys | |
JP2000131313A (en) | Secondary treatment method of inclusion and precipitate contained in steel sample | |
US2583438A (en) | Method and apparatus for eliminating impurities from metals which are in a fluid state | |
SU997741A1 (en) | Magnetic filter | |
RU2177046C1 (en) | Probe for refining of aluminum alloys | |
JPS55158300A (en) | Purifying method for washing liquid for electrolytic washing equipment of steel material surface | |
JPS56164004A (en) | Cooling method of ozonizer for treating water | |
RU2715321C1 (en) | Method of producing steel powders | |
JPH06921B2 (en) | Method and apparatus for producing metal powder by spraying method | |
Zhao et al. | Interface phenomena in ceramic-lined composite pipes produced by GS-T SHS process | |
CA2511533A1 (en) | Separating vessel | |
RU2062294C1 (en) | Method for purification of oil lubricating and cooling liquid | |
RU2173722C1 (en) | Facility to treat magnesium alloys by gases in process of flux-free preparation | |
JPH0422977B2 (en) | ||
Akagi et al. | A study on mineral compositions of suspended particles in coastal and estuarine water using X-ray diffractiometry |