[go: up one dir, main page]

JPS6353512A - Scanning optical system for correcting surface inclination - Google Patents

Scanning optical system for correcting surface inclination

Info

Publication number
JPS6353512A
JPS6353512A JP19785186A JP19785186A JPS6353512A JP S6353512 A JPS6353512 A JP S6353512A JP 19785186 A JP19785186 A JP 19785186A JP 19785186 A JP19785186 A JP 19785186A JP S6353512 A JPS6353512 A JP S6353512A
Authority
JP
Japan
Prior art keywords
scanning
lens
optical system
deflector
scanned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19785186A
Other languages
Japanese (ja)
Inventor
Kazuo Yamakawa
山川 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP19785186A priority Critical patent/JPS6353512A/en
Publication of JPS6353512A publication Critical patent/JPS6353512A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To make the field angle wider in the main scanning direction, by providing a 1st lens having a toric surface on a deflector side and a 2nd lens having a toric surface on an object to be scanned side. CONSTITUTION:A scanning and image forming optical system is constituted by providing the 1st lens G1 having a toric surface on a deflector side and the 2nd lens G2 having a toric surface on an object to be scanned side in the order from the deflector side. By installing the two toric surfaces to the lenses G1 and G2 respectively, the image forming characteristic in the direction intersecting the scanning plane at right angles can be maintained excellently over a considerably wider range and the degree of freedom in designing is increased. Therefore, restriction in designing in the direction along the scanning plane can be reduced and the image forming characteristic can be maintained excellently and the field angle can be made wider while a distortion characteristic which can maintain the uniform-speed scanning property of a bundle of rays of light on an object to be scanned at a sufficiently high level is maintained.

Description

【発明の詳細な説明】 本発明は、主としてレーザビームプリンタ等に用いられ
て、走査線の副走査方向についてのピンチのムラを除去
する面倒れ補正走査光学系に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface tilt correction scanning optical system that is mainly used in laser beam printers and the like and eliminates pinch unevenness in the sub-scanning direction of scanning lines.

さらに詳述すると、光源から発した光線束を偏向器の偏
向反射面上に線状に結像する線状結像光学系と、前記偏
向器で反射偏向された光線束を被走査物上に結像する走
査結像光学系とを備えた面倒れ補正走査光学系に関する
More specifically, it includes a linear imaging optical system that forms a linear image of a beam of light emitted from a light source onto a deflection/reflection surface of a deflector, and a linear imaging optical system that forms a linear image of a beam of light emitted from a light source onto a deflection/reflection surface of a deflector, and a beam of light reflected and deflected by the deflector onto an object to be scanned. The present invention relates to a surface tilt correction scanning optical system including a scanning imaging optical system that forms an image.

レーザビームプリンタは、記録を極めて高速で行える利
点に加えて、昨今、その小型化と低コスト化が次第に実
現されてきており、OA機器の多様化及び発達に伴って
、増々その需要が高まっている。
In addition to the advantage of being able to record at extremely high speeds, laser beam printers have recently become increasingly compact and low-cost, and as office automation equipment diversifies and develops, demand for them is increasing. There is.

例えば、このようなレーザビームプリンタにおいて、光
源からの光線束を走査するために用いられるポリゴンミ
ラー等の偏向器の偏向反射面には、製作誤差や取付誤差
、或いは、回転時の振動等によって、走査面に直交する
方向に対して多少の倒れ誤差がある。
For example, in such a laser beam printer, the deflection reflection surface of a deflector such as a polygon mirror used to scan the light beam from the light source may be affected by manufacturing errors, installation errors, vibrations during rotation, etc. There is some tilt error in the direction perpendicular to the scanning plane.

そのため、このような倒れ誤差のある偏向反射面で反射
された光線束は、被走査物上での結像位置が副走査方向
にずれ、走査線のピッチのむらが生じる。そして、この
走査線のピンチむらは、例えば、レーザビームプリンタ
のような記録装置においては、記録の画質低下を引き起
こす。
Therefore, the imaging position of the light beam reflected by the deflecting reflection surface having such a tilting error shifts in the sub-scanning direction on the object to be scanned, resulting in uneven scanning line pitch. This pinch unevenness of the scanning line causes a deterioration in the image quality of recording in a recording apparatus such as a laser beam printer, for example.

前述した面倒れ補正走査光学系は、このような走査線の
ピッチむらを除去するためのものであり、光源からの光
線束を、−旦、線状結像光学系によって走査面に直交す
る方向に収束させて偏向器の偏向反射面上に線状に結像
させ、偏向反射点からの光線束を、走査結像光学系によ
ってこの方向において復元して被走査物上に共役に結像
することで、偏向反射面の倒れ誤差の影響を受けないよ
うにするものである。
The above-mentioned surface tilt correction scanning optical system is for eliminating such pitch unevenness of the scanning line, and first, the light beam from the light source is focused in a direction perpendicular to the scanning surface by the linear imaging optical system. The light beam from the deflection reflection point is restored in this direction by the scanning and imaging optical system to form a conjugate image on the object to be scanned. This prevents the influence of the tilting error of the deflection-reflecting surface.

一方、走査面内においては、被走査物上での光線束の走
査速度を等速なものとすべく、偏向反射面からの光線束
をこの光学系への入射角に比例する像高となるように被
走査物上に結像するものである。
On the other hand, in the scanning plane, in order to make the scanning speed of the beam on the object to be scanned constant, the image height of the beam from the deflection reflection surface is proportional to the angle of incidence on this optical system. An image is formed on the object to be scanned.

なお、本明細書において、走査面とは、走査される光線
束の時系列的な集合によって形成される平面、即ち、被
走査物における主走査ラインと、この面倒れ補正走査光
学系の光軸とを含む平面を意味するものとする。
Note that in this specification, a scanning plane is a plane formed by a time-series collection of light beams to be scanned, that is, a main scanning line on an object to be scanned, and an optical axis of this surface tilt correction scanning optical system. shall mean a plane containing.

従来から、上述のような面倒れ補正走査光学系として、
種々の構成のものが提案されている。
Conventionally, as the above-mentioned surface tilt correction scanning optical system,
Various configurations have been proposed.

その−例としては、特公昭52−28666号公報にお
いて開示されているように、走査結像光学系が、線状結
像光学系によって線状に結像された光線束を偏向器によ
る反射後に一旦円形に復元整形するシリンドリカルレン
ズ等のビーム整形光学系と、復元整形された光線束を被
走査物上に収束結像する収束光学系とからなるものがあ
る。
As an example, as disclosed in Japanese Patent Publication No. 52-28666, a scanning imaging optical system uses a linear imaging optical system to form a linear image of a light beam, and after reflection by a deflector, Some beam shaping systems include a beam shaping optical system such as a cylindrical lens that once restores and shapes the beam into a circular shape, and a convergent optical system that converges and images the restored and shaped beam onto an object to be scanned.

この場合は、ビーム整形光学系によって光線束の復元整
形を行うよ゛うに構成すると、ビーム整形光学系に円形
ビームに復元するという制約条件が課せられることにな
り、光線束の等速走査性を得るために収束光学系に持た
せる歪曲特性や、被走査物上での結像特性を良好にする
自由度が少なくなる。従って、この走査結像光学系とし
て上述の緒特性が優れたものを得るためには、多くのレ
ンズが必要となり、光学系の構成が複雑になるものであ
った。
In this case, if the beam shaping optical system is configured to restore and shape the beam, a constraint will be imposed on the beam shaping optical system to restore the beam to a circular beam. In order to achieve this, the degree of freedom in improving the distortion characteristics provided to the converging optical system and the imaging characteristics on the object to be scanned is reduced. Therefore, in order to obtain the above-mentioned excellent characteristics as a scanning imaging optical system, many lenses are required, and the structure of the optical system becomes complicated.

その改良案として、特開昭50−93720号公報にお
いて開示されているように、前記シリンドリカルレンズ
等のビーム整形光学系を、収束光学系と被走査物との間
に介装したものがある。
As an improvement, as disclosed in Japanese Patent Laid-Open No. 50-93720, a beam shaping optical system such as the cylindrical lens is interposed between the convergent optical system and the object to be scanned.

このような構成の場合、良質な画像を得るためには、ビ
ーム整形光学系を被走査物に近接して設けなければなら
ない。そのため、このビーム整形光学系として主走査方
向に長いものが必要となり、コンパクトな構成にするこ
とが難しいものであった。
In such a configuration, in order to obtain a high-quality image, the beam shaping optical system must be provided close to the object to be scanned. Therefore, this beam shaping optical system needs to be long in the main scanning direction, making it difficult to achieve a compact configuration.

また、特開昭56−36622号公報において開示され
ているように、走査結像光学系として、偏向器側から順
に、球面単レンズとトーリック面を有する単レンズとを
配置したものも知られている。そして、この走査結像光
学系は、光線束の等速走査性を得るための歪曲特性と、
線状結像光学系と協働して偏向反射面の倒れ誤差を補正
するための機能とをともに有している。
Furthermore, as disclosed in Japanese Patent Laid-Open No. 56-36622, a scanning imaging optical system in which a spherical single lens and a toric surface single lens are arranged in order from the deflector side is also known. There is. This scanning and imaging optical system has distortion characteristics to obtain uniform speed scanning of the light beam,
It also has the function of correcting the tilting error of the deflection/reflection surface in cooperation with the linear imaging optical system.

しかし、この構成の場合、光学系はコンパクトになって
いるものの、構成上、自由度が少なく、光線束の等速走
査性を得るための歪曲特性と、偏向反射面の倒れ誤差に
対する補正機能とを、ともに良好に維持するようにする
と、光線束の走査範囲を広いものとして画角の拡大を計
ることが難しいものであった。
However, in this configuration, although the optical system is compact, there are few degrees of freedom due to the configuration, and there is a distortion characteristic to obtain uniform speed scanning of the beam bundle, and a correction function for tilting errors of the deflection and reflection surface. If both of these are maintained in good condition, it is difficult to expand the angle of view by widening the scanning range of the light beam.

本発明は上記実情に鑑みてなされたものであり、その目
的とするところは、結像特性や面倒れ補正機能を良好に
維持しながら、主走査方向について広画角化を計り、装
置をより一層コンパクトに構成できる面倒れ補正走査光
学系を提供することにある。
The present invention has been made in view of the above-mentioned circumstances, and its purpose is to widen the field of view in the main scanning direction while maintaining good imaging characteristics and surface tilt correction function, thereby making the device more efficient. It is an object of the present invention to provide a surface tilt correction scanning optical system that can be constructed more compactly.

この目的を達成するべく、本発明による面倒れ補正走査
光学系は、偏向器で反射偏向された光線束を被走査物上
に結像する走査結像光学系を、偏向器側から順に、偏向
器側にトーリック面を有する第1レンズ、及び、被走査
動画にトーリック面を有する第2レンズを配置して構成
したことを特徴とする。
In order to achieve this object, the surface tilt correction scanning optical system according to the present invention includes a scanning imaging optical system that images a beam reflected and deflected by a deflector onto an object to be scanned. The present invention is characterized in that a first lens having a toric surface on the device side and a second lens having a toric surface on the moving image to be scanned are arranged.

なお、ここでの、および、以下本明細書中において、ト
ーリック面とは、面倒れ補正走査光学系の光軸に直交す
る面内において、光線束が走査される主走査方向と、こ
の主走査方向に直交する副走査方向とに、夫々、異なる
屈折力を有する屈折面を意味するものである。
Note that here and hereinafter in this specification, the toric surface refers to the main scanning direction in which the light beam is scanned in the plane perpendicular to the optical axis of the surface tilt correction scanning optical system, and the main scanning direction in which the light beam is scanned. It means a refractive surface having different refractive powers in the sub-scanning direction orthogonal to the sub-scanning direction.

本発明による面倒れ補正走査光学系においては、2つの
トーリック面を、夫々、別のレンズに設けることによっ
て、走査面に直交する方向での結像特性をかなり広範囲
に亘って良好に維持することができ、設計の自由度が増
えた。そして、このことで、走査面に沿う方向での設計
の制約が軽減され、この方向において、被走査物上での
光線束の等速走査性を充分に高く維持できる歪曲特性を
有しながら、結像特性を良好に維持し、かつ、画角を広
いものにできる。
In the surface tilt correction scanning optical system according to the present invention, by providing two toric surfaces on separate lenses, it is possible to maintain good imaging characteristics over a fairly wide range in the direction perpendicular to the scanning surface. This increased the degree of freedom in design. This reduces the design constraints in the direction along the scanning plane, and in this direction, while having distortion characteristics that can maintain a sufficiently high uniform speed scanning property of the light beam on the object to be scanned, Good imaging characteristics can be maintained and the angle of view can be widened.

そして、このように、設計の自由度が高められたから、
小さいサイズの光学系でも所望の性能に見合った設計が
比較的容易に行えるようになり、光学系の広角化が計れ
、コンパクトな構成のものにできるようになった。
And, because the degree of freedom in design has been increased in this way,
It has become relatively easy to design a small optical system that meets the desired performance, and it has become possible to make the optical system wider and more compact.

特に、第1レンズのトーリック面を、走査面に沿った方
向及び走査面に直交する方向において、何れも偏向器側
に凹にすることで、より広い範囲に亘って夫々の方向で
の結像特性を一層高くすることができる。
In particular, by making the toric surface of the first lens concave toward the deflector both in the direction along the scanning plane and in the direction orthogonal to the scanning plane, imaging in each direction can be achieved over a wider range. The characteristics can be further improved.

さらに、第1レンズおよび第2レンズにおいて、夫々、
トーリック面に対向する面を平面にすることで、トーリ
ック面の加工時における位置決めが正確に行えて加工の
手間を軽減することも可能になる。
Furthermore, in the first lens and the second lens, respectively,
By making the surface facing the toric surface a flat surface, it is possible to accurately position the toric surface during machining, thereby reducing the labor involved in machining.

さらに、次の2つの条件は、夫々、本発明を実施するに
あたって、結像特性を良好に維持するために充足される
べきものである。
Furthermore, the following two conditions must be satisfied in order to maintain good imaging characteristics when carrying out the present invention.

(イ) r1v/r4v≦1 但し、 rlv:第1レンズの偏向器側面の走査面に直交する方
向の曲率半径 r4v:第2レンズの被走査物側面の走査面に直交する
方向の曲率半径 この条件は、主として、走査面に直交する方向において
、球面収差と像面彎曲とを補正するためのものである。
(b) r1v/r4v≦1 However, rlv: radius of curvature of the side surface of the deflector of the first lens in a direction perpendicular to the scanning surface r4v: radius of curvature of the second lens on the side surface of the object to be scanned in a direction perpendicular to the scanning surface The conditions are mainly for correcting spherical aberration and field curvature in the direction perpendicular to the scanning plane.

この条件が満たされない場合には、上記両収差の補正を
広画角でバランスよく行うことが困難である。特に、像
面彎曲が充分に補正されていない場合には、スポット径
が走査線上で変動することとなり、画質の劣化を招来す
ることとなる。
If this condition is not met, it is difficult to correct both of the aberrations described above in a well-balanced manner over a wide angle of view. In particular, if the field curvature is not sufficiently corrected, the spot diameter will vary on the scanning line, leading to deterioration in image quality.

(o)   0.3<(d、+d3)/f<0.5但し
、 d−第1レンズの両側面の軸上面間 隔d3=第2レンズの両側面の軸上面間隔f:走査面に
沿った方向での全ての走査結像光学系の焦点距離 この条件は、主として、走査面に沿った方向において、
被走査物上での光線束の等速走査性を得るために意図的
に与える歪曲収差に係わるものである。この条件が満た
されない場合には、広画角でこの等速走査性を良好に維
持することが困難になり、実用に耐えない。
(o) 0.3<(d,+d3)/f<0.5 However, d - axial distance on both sides of the first lens d3 = axial distance on both sides of the second lens f: Along the scanning plane This condition is primarily defined by the focal length of all scanning imaging optics in the direction along the scan plane.
This relates to distortion aberration that is intentionally given in order to obtain uniform speed scanning of a beam of light on an object to be scanned. If this condition is not met, it becomes difficult to maintain good uniform speed scanning at a wide angle of view, making it impractical.

具体的には、条件式の下限をはずれると等速走査性の補
正が困難になり、上限を越えると全系が大きくなってコ
ンパクトに構成できなくなる。
Specifically, if the lower limit of the conditional expression is exceeded, it becomes difficult to correct the uniform speed scanning property, and if the upper limit is exceeded, the entire system becomes large and cannot be configured compactly.

以下、本発明を具体的に説明する。本発明による面倒れ
補正走査光学系は、例えば、レーザビームプリンタ等の
レーザ走査装置において用いられる光学系である。
The present invention will be explained in detail below. The surface tilt correction scanning optical system according to the present invention is, for example, an optical system used in a laser scanning device such as a laser beam printer.

第16図に示すように、レーザ走査装置は、光源として
の半導体レーザ(1)、コリメータレンズ(2)、シリ
ンドリカルレンズ(3)、ポリゴンミラー(4)、fθ
レンズ(5)、及び、感光体ドラム(6)等から構成さ
れている。
As shown in FIG. 16, the laser scanning device includes a semiconductor laser (1) as a light source, a collimator lens (2), a cylindrical lens (3), a polygon mirror (4), an fθ
It is composed of a lens (5), a photosensitive drum (6), and the like.

半導体レーザ(1)からは、画像情報に応じて直接変調
されたレーザビーム(B)が発せられ、光線束の一例で
あるこのレーザビーム(B)はコリメータレンズ(2)
で平行光に整形される。その後、線状結像光学系の一例
であるシリンドリカルレンズ(3)により一旦線状に収
束され、偏向器の一例であるポリゴンミラー(4)の偏
向反射面(4a)に結像する。この偏向反射面(4a)
で反射された後のレーザビーム(B)は、ポリゴンミラ
ー(4)の回転に伴って偏向され、走査結像光学系の一
例であるfθレンズ(5)によって感光体ドラム(6)
上に結像されて図中A方向に走査される。
A laser beam (B) that is directly modulated according to image information is emitted from the semiconductor laser (1), and this laser beam (B), which is an example of a ray bundle, is emitted by the collimator lens (2).
The light is shaped into parallel light. Thereafter, the light is once converged linearly by a cylindrical lens (3), which is an example of a linear imaging optical system, and is imaged on a deflection reflection surface (4a) of a polygon mirror (4), which is an example of a deflector. This deflection reflecting surface (4a)
The laser beam (B) after being reflected is deflected by the rotation of the polygon mirror (4), and is directed to the photoreceptor drum (6) by the fθ lens (5), which is an example of a scanning imaging optical system.
An image is formed above and scanned in the direction A in the figure.

面倒れ補正走査光学系は、上述した線状結像光学系(3
)と、2つのレンズ(Gl) 、 (G2)から構成さ
れる走査結像光学系(5)とからなり、偏向器(4)の
偏向反射面(4a)の面倒れにより生じる走査線のピッ
チのずれを除去するものである。以下、走査結像光学系
(5)の具体構成を示す実施例の諸元を示す。
The surface tilt correction scanning optical system is the linear imaging optical system (3) described above.
) and a scanning imaging optical system (5) consisting of two lenses (Gl) and (G2), and the pitch of the scanning line caused by the surface tilt of the deflection reflection surface (4a) of the deflector (4). This is to remove the misalignment. Specifications of an embodiment showing a specific configuration of the scanning imaging optical system (5) are shown below.

なお、実施例は5例あり、夫々、第1図ないし第5図に
示すレンズ構成図、及び、第6図ないし第15図に示す
収差図に対応している。次頁の第1表にその対応関係を
一括して示す。
There are five examples, each corresponding to the lens configuration diagrams shown in FIGS. 1 to 5 and the aberration diagrams shown in FIGS. 6 to 15. Table 1 on the next page shows all the correspondence relationships.

第1表 各レンズ構成図において、(イ)は走査面に沿って切断
したレンズ配置を、また、(El)は走査面に直交する
面に沿って切断したレンズ配置を、夫々示すものである
。なお、反射面の符号の肩に符した〔**]はトーリッ
ク面を示す。なお、レンズ面の符号と軸上面間隔との表
示は、各実施例の(イ)のレンズ構成図のみとし、(ロ
)のレンズ構成図においては異なるもの以外はその表示
を省略する。
In each lens configuration diagram in Table 1, (A) shows the lens arrangement cut along the scanning plane, and (El) shows the lens arrangement cut along the plane perpendicular to the scanning plane. . Note that the mark [**] next to the symbol of the reflective surface indicates a toric surface. Note that the symbols of the lens surfaces and the distances between the axial surfaces are shown only in the lens configuration diagram in (a) of each embodiment, and are omitted in the lens configuration diagram in (b) except for those that are different.

また、走査面に沿った方向の収差図において、歪曲収差
は、光線束の等速走査性を得るための理想像高を、 f・θ 但し、 θ:入射角[偏向された光線束がレンズ光軸となす角度
コ r:走査面に沿った方向の全ての走査結像光学系の焦点
距離 とし、次式で示すこの理想像高からの実際の像高の偏差
の百分率で表しである。
In addition, in the aberration diagram in the direction along the scanning plane, the distortion aberration is defined as the ideal image height for obtaining uniform speed scanning of the beam of light. Angle r with the optical axis: The focal length of all scanning and imaging optical systems in the direction along the scanning plane, and is expressed as a percentage of the deviation of the actual image height from this ideal image height as shown by the following formula.

((y’−fθ)/ fθ)xloo(%)但し、 y゛:実際の像高 その他、各実施例諸元において、 2ω;最大入射角 n、:第1レンズ(G1)を構成する光学材料の屈折率
[780nmにおける] n2;第2レンズ(G2)を構成する光学材料の屈折率
[780nmにおける] 〈実施例1〉 f=125.  F隘50,2ω−97゜r1v/r4
v=0.867   (tL+dt)/f  =0.4
27〈実施例2〉 f=125.  F隘50,2ω=97゜r1v/rn
v=0.300  (d++d3)# =0.387〈
実施例3〉 f=125.  F階50,2ω=97゜rlv/r4
V=o、sot  (tL+d3)/f =0.419
〈実施例4〉 f=125.  FNa50. 2ω=97゜r1v/
r4v=0.865  (rL +dz)/f =0.
426〈実施例5〉 f=125.  F隘50,2ω−97“r1v/r4
v=0.672  (a+ +#、l)#−テ0.39
((y'-fθ)/fθ)xloo(%) However, y゛: Actual image height and other specifications of each example, 2ω: Maximum angle of incidence n,: Optical elements constituting the first lens (G1) Refractive index of material [at 780 nm] n2; Refractive index of optical material constituting the second lens (G2) [at 780 nm] <Example 1> f=125. F 50, 2ω-97°r1v/r4
v=0.867 (tL+dt)/f=0.4
27 <Example 2> f=125. F 50, 2ω = 97°r1v/rn
v=0.300 (d++d3)# =0.387〈
Example 3> f=125. F floor 50, 2ω = 97°rlv/r4
V=o, sot (tL+d3)/f =0.419
<Example 4> f=125. FNa50. 2ω=97°r1v/
r4v=0.865 (rL +dz)/f=0.
426 (Example 5) f=125. F 50, 2ω-97"r1v/r4
v=0.672 (a+ +#, l)#-Te0.39
0

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る面倒れ補正走査光学系の実施例を示
し、第1図ないし第5図は各実施例のレンズ構成図で、
第1図ないし第5図の(イ)は走査面に沿った方向で切
断したレンズ構成図、第1図ないし第5図の(υ)は走
査面に直交する方向で切断したレンズ構成図、第6図な
いし第10図は各実施例における走査面に沿った方向の
収差図、第11図ないし第15図は各実施例における走
査面に直交する方向の収差図、第16図はレーザビーム
プリンタの走査装置の概略構成図である。 (1)・・・・・・光源、(3)・・・・・・線状結像
光学系、(4)・・・・・・偏向器、(4a)・・・・
・・偏向反射面、(5)・・・・・・走査結像光学系、
(6)・・・・・・被走査物、(ロ)・・・・・・光線
束、(G1)・・・・・・第1レンズ、(G2)・・・
・・・第2レンズ。
The drawings show embodiments of the surface tilt correction scanning optical system according to the present invention, and FIGS. 1 to 5 are lens configuration diagrams of each embodiment.
(A) in FIGS. 1 to 5 is a lens configuration diagram cut in the direction along the scanning plane, and (υ) in FIGS. 1 to 5 is a lens configuration diagram cut in the direction perpendicular to the scanning plane. Figures 6 to 10 are aberration diagrams in the direction along the scanning plane in each embodiment, Figures 11 to 15 are aberration diagrams in the direction perpendicular to the scanning plane in each embodiment, and Figure 16 is the laser beam 1 is a schematic configuration diagram of a scanning device of a printer. (1)...Light source, (3)...Linear imaging optical system, (4)...Deflector, (4a)...
...Polarizing reflective surface, (5)...Scanning imaging optical system,
(6)...Scanned object, (B)...Light ray flux, (G1)...First lens, (G2)...
...Second lens.

Claims (5)

【特許請求の範囲】[Claims] (1)光源から発した光線束を偏向器の偏向反射面上に
線状に結像する線状結像光学系と、前記偏向器で反射偏
向された光線束を被走査物上に結像する走査結像光学系
とを備えた面倒れ補正走査光学系であって、前記走査結
像光学系が、前記偏向器側から順に、前記偏向器側にト
ーリック面を有する第1レンズ、及び、前記被走査物側
にトーリック面を有する第2レンズを配置して構成され
たものである面倒れ補正走査光学系。
(1) A linear imaging optical system that forms a linear image of a beam of light emitted from a light source onto a deflection reflection surface of a deflector, and forms an image of a beam of light reflected and deflected by the deflector onto an object to be scanned. A surface tilt correction scanning optical system comprising a scanning imaging optical system, wherein the scanning imaging optical system includes, in order from the deflector side, a first lens having a toric surface on the deflector side; A surface tilt correction scanning optical system configured by disposing a second lens having a toric surface on the side of the object to be scanned.
(2)前記第1レンズのトーリック面が、走査面に沿っ
た方向及び走査面に直交する方向において、何れも前記
偏向器側に凹である特許請求の範囲第(1)項に記載の
面倒れ補正走査光学系。
(2) The problem described in claim (1), wherein the toric surface of the first lens is concave toward the deflector in both the direction along the scanning plane and the direction perpendicular to the scanning plane. Erase correction scanning optical system.
(3)前記第1レンズの前記被走査物側面が平面である
特許請求の範囲第(1)項または第(2)項の何れかに
記載の面倒れ補正走査光学系。
(3) The surface tilt correction scanning optical system according to claim 1, wherein the side surface of the object to be scanned of the first lens is a flat surface.
(4)前記第2レンズの前記偏向器側面が平面である特
許請求の範囲第(1)項または第(2)項の何れかに記
載の面倒れ補正走査光学系。
(4) The surface tilt correction scanning optical system according to claim 1 or 2, wherein the side surface of the deflector of the second lens is a flat surface.
(5)前記第1レンズ及び第2レンズの各面が、次の条
件を満たすものである特許請求の範囲第(1)項ないし
第(4)項の何れかに記載の面倒れ補正走査光学系。 (イ)r_1_v/r_4_v≦1 (ロ)0.3<(d_1+d_3)/f<0.5但し、 r_1_v:第1レンズの偏向器側面の走査面に直交す
る方向の曲率半径 r_4_v:第2レンズの被走査物側面の走査面に直交
する方向の曲率半径 d_1:第1レンズの両側面の軸上面間隔 d_3:第2レンズの両側面の軸上面間隔 f:走査面に沿った方向での全ての走査 結像光学系の焦点距離
(5) The surface tilt correction scanning optical system according to any one of claims (1) to (4), wherein each surface of the first lens and the second lens satisfies the following conditions. system. (a) r_1_v/r_4_v≦1 (b) 0.3<(d_1+d_3)/f<0.5, however, r_1_v: radius of curvature of the side surface of the deflector of the first lens in a direction perpendicular to the scanning plane r_4_v: second lens Radius of curvature d_1 of the side surface of the object to be scanned in the direction perpendicular to the scanning plane: Distance between the axial surfaces of both side surfaces of the first lens d_3: Distance between the axial surfaces of both side surfaces of the second lens f: All in the direction along the scanning plane focal length of the scanning imaging optics
JP19785186A 1986-08-22 1986-08-22 Scanning optical system for correcting surface inclination Pending JPS6353512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19785186A JPS6353512A (en) 1986-08-22 1986-08-22 Scanning optical system for correcting surface inclination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19785186A JPS6353512A (en) 1986-08-22 1986-08-22 Scanning optical system for correcting surface inclination

Publications (1)

Publication Number Publication Date
JPS6353512A true JPS6353512A (en) 1988-03-07

Family

ID=16381391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19785186A Pending JPS6353512A (en) 1986-08-22 1986-08-22 Scanning optical system for correcting surface inclination

Country Status (1)

Country Link
JP (1) JPS6353512A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508848A (en) * 1989-11-22 1996-04-16 Yamanashi Factory Of Nissin Kohki, Mfg. Co., Ltd. Wide-angle lens for film-combined type cameras

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508848A (en) * 1989-11-22 1996-04-16 Yamanashi Factory Of Nissin Kohki, Mfg. Co., Ltd. Wide-angle lens for film-combined type cameras

Similar Documents

Publication Publication Date Title
JP3445050B2 (en) Scanning optical device and multi-beam scanning optical device
JPH1068903A (en) Scanning optical device
JPH06123844A (en) Optical scanner
JP3620767B2 (en) Reflective scanning optical system
JP3559711B2 (en) Scanning optical device and multi-beam scanning optical device
JPS6350812A (en) Surface tilt correcting and scanning optical system
JP5269169B2 (en) Scanning optical device and laser beam printer having the same
JP2000081584A (en) Scanning optical device
JP4349500B2 (en) Optical scanning optical system
JP2000267030A (en) Optical scanning device
JPS6353512A (en) Scanning optical system for correcting surface inclination
JPS6350814A (en) Surface tilt correcting and scanning optical system
JPH10260371A (en) Scanning optical device
JPS6321619A (en) Scanning optical system with correction for surface tilt
JP3320239B2 (en) Scanning optical device
JP2000002848A (en) Scanning optical device
JPS6353511A (en) Scanning optical system for correcting surface inclination
JP2716428B2 (en) Surface tilt correction scanning optical system
JP3364525B2 (en) Scanning imaging lens and optical scanning device
JP2005338865A (en) Scanning optical apparatus and laser beam printer having the same
JP3706858B2 (en) fθ lens and scanning optical apparatus having the same
JP3069281B2 (en) Optical scanning optical system
JPH02285321A (en) Highly accurate toric ftheta lens system
JP3571808B2 (en) Optical scanning optical system and laser beam printer including the same
JPS6350813A (en) Surface tilt correcting and scanning optical system