JPS6352345B2 - - Google Patents
Info
- Publication number
- JPS6352345B2 JPS6352345B2 JP57219073A JP21907382A JPS6352345B2 JP S6352345 B2 JPS6352345 B2 JP S6352345B2 JP 57219073 A JP57219073 A JP 57219073A JP 21907382 A JP21907382 A JP 21907382A JP S6352345 B2 JPS6352345 B2 JP S6352345B2
- Authority
- JP
- Japan
- Prior art keywords
- measured
- magnetic
- steel material
- electromagnet
- detector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/12—Measuring magnetic properties of articles or specimens of solids or fluids
- G01R33/1215—Measuring magnetisation; Particular magnetometers therefor
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Measuring Magnetic Variables (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Description
【発明の詳細な説明】
本発明は、鋼材の磁気特性、具体的には保持
力、残留磁化、飽和磁化、透磁率、ヒステリシス
損等を同時に、非接触で連続して測定する方法に
関するものである。[Detailed Description of the Invention] The present invention relates to a method for simultaneously and continuously measuring magnetic properties of steel materials, specifically coercive force, residual magnetization, saturation magnetization, magnetic permeability, hysteresis loss, etc., without contact. be.
鋼材の磁気特性と機械的性質との間には極めて
強い相関があることが知られており、この相関関
係を利用して硬さ、焼入深さ、強度、結晶粒度等
の非破壊測定が行われている。また珪素鋼板のよ
うにトランスの鉄心として使用される磁性材料で
は、そのヒステリシス損は最も重要な品質要素で
あり、そのため、厳密な測定と品質管理が行われ
ている。 It is known that there is an extremely strong correlation between the magnetic properties and mechanical properties of steel materials, and this correlation can be used to perform non-destructive measurements of hardness, quench depth, strength, grain size, etc. It is being done. Furthermore, for magnetic materials such as silicon steel sheets used as transformer cores, hysteresis loss is the most important quality factor, and therefore strict measurement and quality control are performed.
しかしながら、このような磁気特性値の測定
は、実験室的には、被測定材をソレノイド状に加
工した後、磁化コイルと検出コイルを巻き、従来
から一般に使用されている磁気特性測定装置を使
用することによつて行われている。この方法は測
定法としては最も正確ではあるが、試料の採取、
加工、コイル巻き等面倒な手続を必要とする。ま
たやや現場的な方法として短冊状の試料を重ね矩
形の磁路を形成して行なうエプスタイン試験があ
るが、これも試料の採取を必要とするオフライン
試験である。 However, in the laboratory, measurement of such magnetic property values requires processing the material to be measured into a solenoid shape, winding a magnetizing coil and a detection coil, and using a conventional magnetic property measuring device. It is done by doing. Although this method is the most accurate measurement method, it
It requires complicated procedures such as processing and coil winding. Another slightly more on-site method is the Epstein test, which is performed by stacking strip-shaped samples to form a rectangular magnetic path, but this is also an off-line test that requires sample collection.
一方オンラインで使用できるものとしては、走
行中の鋼板を電磁石で飽和磁化させた後、その下
流で鋼材の残留磁化を検出する方法や、鋼板に高
周波の磁界を加えたときに生じる渦電流による磁
界を検出し、渦電流と初透磁率の関係、初透磁率
と硬度の相関を利用した連続硬さ計等の例がある
が、いずれも上述の磁気特性知値のうちの一つが
求められるに過ぎない。また帯鋼に磁力を透過さ
せ、透過磁気量から鋼板の硬度を測定する方法が
特公昭50−21869号公報により知られており、特
開昭56−82443号公報には同様の方法により鋼材
の変態量を測定する装置が示されている。しかし
ながらこれらの方法はいずれも一定直流磁界を被
測定鋼材に加えて透過磁気量を測定し、その量と
硬さあるいは変態量とを直接対応させたものであ
るに過ぎず、前記の場合と同様に磁気特性のうち
の一つが求められるに過ぎない。 On the other hand, methods that can be used online include a method that saturates a moving steel plate with an electromagnet and then detects the residual magnetization of the steel material downstream, and a method that detects the residual magnetization of the steel material downstream, and a method that generates a magnetic field due to eddy currents generated when a high-frequency magnetic field is applied to the steel plate. There are examples of continuous hardness meters that detect eddy currents and utilize the relationship between eddy current and initial magnetic permeability, and the correlation between initial magnetic permeability and hardness. Not too much. In addition, a method of transmitting a magnetic force through a steel strip and measuring the hardness of a steel plate from the amount of transmitted magnetism is known from Japanese Patent Publication No. 50-21869, and Japanese Patent Application Laid-Open No. 56-82443 describes a method of measuring the hardness of a steel plate by a similar method. An apparatus for measuring the amount of transformation is shown. However, in all of these methods, a constant DC magnetic field is applied to the steel material to be measured, the amount of permeation magnetism is measured, and the amount of permeation is directly correlated with the hardness or the amount of transformation. only one of the magnetic properties is required.
本発明はこのような実情に鑑みてなされたもの
で、鋼材の各種の磁気特性値を同時に非接触、オ
ンラインで測定する方法を提供しようとするもの
である。すなわち本発明は、被測定鋼材を挟ん
で、一方に交流励磁源によつて励磁される電磁石
を設け、他方に被測定鋼材を貫通した透過磁束を
検出する磁気検出器を設け、該検出器により電磁
石の励磁電流の変化に対する透過磁束量の変化の
特性を求め、この特性曲線から被測定鋼材の前述
のような各種の磁気特性値を測定しようとするも
のである。以下図面により本発明の詳細を説明す
る。第1図は、鋼材の磁化曲線を示すもので、周
知のとおりHcは保持力、Imは飽和磁化、Irは残
留磁化と呼ばれ、また消磁状態0からの立上りの
曲線(0→1→2)は初磁化曲線、その曲線の0
からの立上りの勾配を初透磁率μ0、また曲線(2
→3→4→5→2)が囲む面積はヒステリシス損
Wlと呼ばれる。 The present invention has been made in view of these circumstances, and aims to provide a method for simultaneously measuring various magnetic property values of steel materials in a non-contact, online manner. That is, in the present invention, an electromagnet excited by an AC excitation source is provided on one side of the steel material to be measured, and a magnetic detector for detecting the transmitted magnetic flux passing through the steel material to be measured is provided on the other side. The purpose is to determine the characteristics of changes in the amount of transmitted magnetic flux with respect to changes in the excitation current of the electromagnet, and to measure various magnetic characteristic values of the steel material to be measured as described above from this characteristic curve. The details of the present invention will be explained below with reference to the drawings. Figure 1 shows the magnetization curve of steel. As is well known, Hc is called the coercive force, Im is the saturation magnetization, and Ir is the remanent magnetization. ) is the initial magnetization curve, 0 of that curve
The slope of the rise from the initial permeability μ 0 and the curve (2
→3→4→5→2) is the hysteresis loss
Called Wl.
第2図は本発明を実施する場合の装置の配置図
で、1は被測定鋼材で例えば冷延鋼板、2は被測
定鋼材1の表面側に設けられた励磁用電磁石の磁
芯、3は磁芯2に巻回された励磁コイル、4は前
記励磁コイルに励磁電流を供給するための電源
で、電流の大きさに比例する電圧出力E1を有す
る。そして、5は磁芯2より発生する磁束であ
り、被測定鋼材1の中を通過する磁束51及び被
測定材1を貫き裏側に透過する磁束52より成る。
6は透過磁束52を検出する磁気検出器、7は前
記励磁電源4の電流比例出力E1及び磁気検出器
6の出力E2を受けて両出力の関係を表わす特性
曲線から被測定鋼材1の磁気特性を演算する装置
である。なお、Lは磁芯2の先端と磁気検出器間
の距離、l1は磁芯先端と被測定鋼材1の表面そし
てl2は被測定鋼材の裏面と磁気検出器6の間のそ
れぞれの距離を表わし、tは被測定鋼材の板厚を
表わす。 FIG. 2 is a layout diagram of an apparatus for carrying out the present invention, in which 1 is a steel material to be measured, such as a cold-rolled steel plate, 2 is the magnetic core of an excitation electromagnet provided on the surface side of the steel material 1 to be measured, and 3 is a An excitation coil 4 wound around the magnetic core 2 is a power source for supplying an excitation current to the excitation coil, and has a voltage output E 1 proportional to the magnitude of the current. 5 is a magnetic flux generated from the magnetic core 2, which is composed of a magnetic flux 5 1 passing through the steel material 1 to be measured and a magnetic flux 5 2 penetrating through the material 1 to be measured and transmitted to the back side.
Reference numeral 6 denotes a magnetic detector that detects the transmitted magnetic flux 5 2 , and 7 receives the current proportional output E 1 of the excitation power source 4 and the output E 2 of the magnetic detector 6, and determines the steel material 1 to be measured from a characteristic curve representing the relationship between both outputs. This is a device that calculates the magnetic properties of. Note that L is the distance between the tip of the magnetic core 2 and the magnetic detector, l1 is the distance between the tip of the magnetic core and the surface of the steel material to be measured 1, and l2 is the distance between the back surface of the steel material to be measured and the magnetic detector 6. , and t represents the plate thickness of the steel material to be measured.
第3図は、第2図の装置によつて測定した励磁
電流比例出力E1と磁気検出器の出力E2との間の
特性曲線の一例で、消磁状態の被測定鋼材につい
て、励磁電流を0から正方向に、ある値から負方
向に、また負のある値から正方向へと変化させて
得たものであり、その時の曲線の変化は、図の矢
印の方向0′→1′→2′→3′→4′→5′→2′の順序で
ある。
第2図において透過磁束52は被測定鋼材1の中
を通る磁束51が増加すれば減少し、逆に磁束51
が減少すれば透過磁束52は増加する。そして被
測定鋼材中の磁束51は被測定鋼材の磁化率に比
例するので、第3図の曲線(E1−E2)は、被測
定鋼材の磁化特性(第1図I−H曲線)、被測定
鋼材の寸法(板厚、板巾、長さ)、距離l1,l2及び
磁芯2の磁化特性によつてきまる。こゝで、被測
定鋼材1の板巾及び長さが磁芯2の大きさに比べ
て十分大きい条件では板巾及び長さの影響は無視
できる。そして、磁芯2としてパーマロイや珪素
鋼板のような高磁化率でヒステリシスの少ない磁
性材料を用い、被測定鋼材1の磁化特性が飽和す
る励磁条件においても磁芯2では磁気飽和が起こ
らないように磁芯2の断面寸法を大きくとれば、
磁芯2の磁化特性は励磁電流に対して近似的に線
形となり、磁芯2の磁化特性の影響を除くことが
できる。その結果、励磁電流比例出力E1と磁気
検出器の出力E2の特性曲線(E1−E2)は次式の
関数形で表わされ、
(E1−E2)=f〔l1、l2、t(I−H)〕 (1)
(1)式を解析的に解けば、曲線(E1−E2)から、
被測定鋼材の磁化曲線(I−H)が求まり、任意
の磁気特性値が測定できる。しかし、周知のよう
に磁気回路は非線型である上、個々の変数が相互
に関係するので、(1)式を解析的に解くことは難か
しい。そこで保持力Hc、残留磁化Ir等の磁気特
性値毎に第1図の磁化曲線に対応する点を第3図
の曲線上で求め、両者の関係について板厚tや測
定距離l1,l2の補正を行なう方が実用的である。 Figure 3 is an example of a characteristic curve between the excitation current proportional output E 1 measured by the apparatus shown in Figure 2 and the output E 2 of the magnetic detector. It is obtained by changing from 0 in the positive direction, from a certain value in the negative direction, and from a certain negative value in the positive direction, and the change in the curve at that time is in the direction of the arrow in the figure 0' → 1' → The order is 2′→3′→4′→5′→2′.
In Fig. 2, the transmitted magnetic flux 5 2 decreases as the magnetic flux 5 1 passing through the steel material 1 to be measured increases, and conversely, the magnetic flux 5 1
If the value decreases, the transmitted magnetic flux 5 2 increases. Since the magnetic flux 5 1 in the steel to be measured is proportional to the magnetic susceptibility of the steel to be measured, the curve (E 1 -E 2 ) in Fig. 3 is the magnetization characteristic of the steel to be measured (I-H curve in Fig. 1). , depends on the dimensions of the steel material to be measured (plate thickness, plate width, length), the distances l 1 and l 2 and the magnetization characteristics of the magnetic core 2. Here, under the condition that the plate width and length of the steel material 1 to be measured are sufficiently larger than the size of the magnetic core 2, the influence of the plate width and length can be ignored. A magnetic material with high magnetic susceptibility and low hysteresis, such as permalloy or silicon steel plate, is used as the magnetic core 2, so that magnetic saturation does not occur in the magnetic core 2 even under excitation conditions where the magnetization characteristics of the steel material 1 to be measured are saturated. If the cross-sectional dimension of the magnetic core 2 is made large,
The magnetization characteristics of the magnetic core 2 are approximately linear with respect to the excitation current, and the influence of the magnetization characteristics of the magnetic core 2 can be removed. As a result, the characteristic curve (E 1 − E 2 ) of the excitation current proportional output E 1 and the output E 2 of the magnetic detector is expressed by the following functional form, (E 1 − E 2 )=f[l 1 , l 2 , t(I-H)] (1) If we solve equation (1) analytically, we get from the curve (E 1 −E 2 ),
The magnetization curve (I-H) of the steel material to be measured is determined, and arbitrary magnetic property values can be measured. However, as is well known, magnetic circuits are nonlinear and individual variables are interrelated, so it is difficult to solve equation (1) analytically. Therefore, for each magnetic property value such as coercive force Hc and residual magnetization Ir, points corresponding to the magnetization curve in Figure 1 are found on the curve in Figure 3, and the relationship between the two is determined by the plate thickness t and measurement distances l 1 , l 2 It is more practical to perform the correction.
次にその具体的手段について各磁気特性値毎に
第4図を参照して説明する。第4図は、第3図の
曲線のヒステリシス部分を拡大した曲線イと、曲
線イの測定条件と同じ条件で、第2図の被測定鋼
材1を取除いた時の励磁電流比例出力E1と磁気
検出器出力E2の特性曲線ロを重ねて図示したも
のである。 Next, specific means thereof will be explained for each magnetic characteristic value with reference to FIG. Figure 4 shows curve A, which is an enlarged hysteresis part of the curve in Figure 3, and the exciting current proportional output E 1 when the steel material 1 to be measured in Figure 2 is removed under the same measurement conditions as curve A. and the characteristic curve B of the magnetic detector output E 2 are shown superimposed on each other.
最初に、保持力Hcは第4図の曲線イとロの交
点Cにおける励磁電流比例出力E1cから求まるこ
とを示す。なぜならば、保持力の定義は第1図の
磁化曲線上で鋼材の磁化Iが0になる時の磁界の
大きさHcであり、鋼材自身の磁化が0というこ
とは鋼材が無いことと同じであるから、鋼材を取
除いた時の曲線イと曲線ロの交点である励磁電流
比例出力E1cから、つまり出力E1は電磁石の励磁
電流に比例した出力であるから、距離l1が一定で
あれば、被測定鋼材1に加わる磁界の大きさに比
例し、またl1が変わる場合にはその補正を行なう
ことによつてE1cから保磁力Hcが求められる。ま
た、保磁力Hcは被測定鋼材の板厚が変わつても、
十分飽和するだけの磁界が加えられるならば板厚
に依存しない。 First, it will be shown that the holding force Hc is determined from the excitation current proportional output E 1c at the intersection C of curves A and B in FIG. This is because the definition of coercive force is the magnitude Hc of the magnetic field when the magnetization I of the steel material becomes 0 on the magnetization curve in Figure 1, and the fact that the magnetization of the steel material itself is 0 is the same as the absence of steel material. Therefore, from the excitation current proportional output E 1c , which is the intersection of curves A and B when the steel material is removed, in other words, the output E 1 is an output proportional to the excitation current of the electromagnet, so the distance l 1 is constant. If there is, it is proportional to the magnitude of the magnetic field applied to the steel material 1 to be measured, and if l 1 changes, the coercive force Hc can be determined from E 1c by correcting it. In addition, the coercive force Hc changes even if the thickness of the steel material to be measured changes.
It does not depend on the plate thickness as long as a magnetic field sufficient for saturation is applied.
次に、飽和磁化Imは第4図の曲線イの点mに
おける曲線ロとの磁気検出器出力E2の差ΔE2mか
ら求められる。ここでmは曲線イとロの傾きが等
しくなつた点である。つまり、被測定鋼材の磁化
が飽和すると、その透化率dI/dHはほゞ空気の
磁化率に等しく、磁気飽和以上の磁界が被測定鋼
材に加わつた状態では被測定鋼材が無いことと同
じであり、曲線イと曲線ロの傾きは等しい。そし
て、磁気検出器の出力の差ΔE2nは被測定鋼材中
を通る磁束51に比例しているので、板厚が一定
ならば出力差ΔE2nは被測定鋼材の飽和磁化Inに
比例する。板厚が変化する一般的な場合は板厚の
補正を必要とするが、第2図の演算装置7に板厚
補正曲線を記憶させておき、別に設けた板厚計の
信号で捕正することが可能である。また距離l1の
補正についても保持力Hcの測定の場合と同様に
行なえばよい。 Next, the saturation magnetization Im is determined from the difference ΔE 2 m between the magnetic detector output E 2 at point m of curve A in FIG. 4 and curve B. Here, m is the point where the slopes of curves A and B become equal. In other words, when the magnetization of the steel material to be measured is saturated, its permeability dI/dH is approximately equal to the magnetic susceptibility of air, and when a magnetic field greater than the magnetic saturation is applied to the steel material to be measured, it is the same as there being no steel material to be measured. , and the slopes of curve A and curve B are equal. The difference in the output of the magnetic detector ΔE 2n is proportional to the magnetic flux 5 1 passing through the steel material to be measured, so if the plate thickness is constant, the output difference ΔE 2n is proportional to the saturation magnetization I n of the steel material to be measured. . In the general case where the plate thickness changes, it is necessary to correct the plate thickness, but the plate thickness correction curve is stored in the arithmetic unit 7 shown in Fig. 2, and it is corrected using the signal from a separately provided plate thickness meter. Is possible. Further, the distance l 1 may be corrected in the same manner as in the case of measuring the holding force Hc.
さらに、残留磁化Irは、励磁電流が0即ちE1=
0の時の磁気検出器出力E2rから求まる。つまり、
被測定鋼材1に加わる磁界が0の時に磁気検出器
3で測定される磁束の大きさは被測定鋼材1の残
留磁化Irによつて生じるものである。またヒステ
リシス損Wlは第4図の曲線イの囲む面積から求
まり、初透磁率μ0は、曲線イの立上りの勾配から
求められる。板厚や距離の補正は前述の保持力
Hcや飽和磁化Imの場合と同様にして行うことが
できる。 Furthermore, the residual magnetization Ir has an excitation current of 0, that is, E 1 =
It can be found from the magnetic detector output E 2r at 0. In other words,
The magnitude of the magnetic flux measured by the magnetic detector 3 when the magnetic field applied to the steel material 1 to be measured is 0 is caused by the residual magnetization I r of the steel material 1 to be measured. Further, the hysteresis loss W l is determined from the area enclosed by the curve A in FIG. 4, and the initial magnetic permeability μ 0 is determined from the slope of the rise of the curve A. Correction of plate thickness and distance is based on the holding force mentioned above.
This can be done in the same manner as in the case of Hc and saturation magnetization Im.
第6図は、特許請求範囲2に記載した本発明の
別の実施例を示す装置配置図で、図の記号1〜7
は第2図と同一の部分を表わす。8は被測定鋼材
1をはさんで磁気検出器6と対向して配置した磁
気検出器で、電磁石によつて発生する磁束のうち
被測定鋼材1の表側を通過する磁束を検出する。
第2図の励磁電流比例出力E1のかわりに、磁気
検出器8の出力E1′と磁気検出器6の出力E2との
間の特性曲線も第3図の曲線と同じものとなり、
上述と同じ手段によつて被測定鋼材1の磁気特性
が測定できる。ところで本発明をオンラインで適
用する場合、被測定鋼材の走行速度に比例して励
磁周波数を高くすることができる。高周波では磁
芯2や被測定鋼材1に渦電流が生じ、そのため励
磁電流と電磁石によつて作られる磁束との間に位
相差ができ、励磁電流比例出力E1を用いる方法
では第4図の曲線の形が変化するため補正が必要
となるが、第6図の方法では、磁気検出器8によ
つて電磁石によつて作られる磁束を直接測定する
ため上記の補正を必要としない利点がある。 FIG. 6 is a device layout diagram showing another embodiment of the present invention as set forth in claim 2, with symbols 1 to 7 in the figure.
represents the same part as in FIG. A magnetic detector 8 is placed opposite the magnetic detector 6 across the steel material 1 to be measured, and detects the magnetic flux passing through the front side of the steel material 1 among the magnetic flux generated by the electromagnet.
Instead of the excitation current proportional output E 1 in FIG. 2, the characteristic curve between the output E 1 ' of the magnetic detector 8 and the output E 2 of the magnetic detector 6 is also the same as the curve in FIG.
The magnetic properties of the steel material 1 to be measured can be measured by the same means as described above. By the way, when the present invention is applied online, the excitation frequency can be increased in proportion to the traveling speed of the steel material to be measured. At high frequencies, eddy currents occur in the magnetic core 2 and the steel material 1 to be measured, which creates a phase difference between the exciting current and the magnetic flux produced by the electromagnet . Correction is required because the shape of the curve changes, but the method shown in Fig. 6 has the advantage that the above correction is not necessary because the magnetic flux produced by the electromagnet is directly measured by the magnetic detector 8. .
以上詳細に説明したように本発明によれば非接
触で各種の磁気特性値が同時に測定でき、これら
の磁気特性値と機拡的性質との相関を利用して例
えば冷延鋼板の硬さを、また電磁鋼板のヒステリ
シス損などを、オンラインで連続管理することが
可能となる等その効果は大きい。なお磁芯の形状
は第2図のような馬蹄形のみでなく、第7図に示
すような棒型のものを用い被測定材の板面垂直方
向の透過磁束52を検出してもよい。 As explained in detail above, according to the present invention, various magnetic property values can be measured simultaneously without contact, and by utilizing the correlation between these magnetic property values and mechanical properties, it is possible to measure, for example, the hardness of a cold-rolled steel sheet. It also has great effects, such as making it possible to continuously manage the hysteresis loss of electrical steel sheets online. The shape of the magnetic core is not limited to a horseshoe shape as shown in FIG. 2, but a rod shape as shown in FIG. 7 may be used to detect the transmitted magnetic flux 5 2 in the direction perpendicular to the plate surface of the material to be measured.
次に本発明による鋼板の磁気特性を測定した実
例を示す。第2図の配置において、被測定鋼材1
は板厚0.2〜1.6mmの冷延鋼板で、該冷延鋼板の通
板レベルに対してl1,l2がおのおの20mmの間隔に
なるよう磁芯2と磁気検出器6を配置した。磁芯
2の材料は積層珪素鋼板で、断面積は40×40mm2磁
路の長さは240mmである。磁気検出器3は直径1.2
mmの被覆銅線、巻数は250回、励磁電流の大きさ
は最大値で±10A、周波数は100Hzで、また磁気
検出器としてはホール素子を用いた。演算装置7
にはマイクロコンピユータを使い、該装置7には
あらかじめ冷延鋼板が無い状態で測定しておいた
第4図ロに相当する直線が記憶させてあるので、
励磁電流例えば、比例出力E1と磁気検出器出力
E2から第4図イに相当する曲線を得て、例えば、
曲線ロが交わる時の励磁電流比例出力E1cから保
磁力Hcを測定した。 Next, an example will be shown in which the magnetic properties of a steel plate according to the present invention were measured. In the arrangement shown in Fig. 2, the steel material to be measured 1
is a cold-rolled steel plate with a thickness of 0.2 to 1.6 mm, and the magnetic core 2 and magnetic detector 6 were arranged so that l 1 and l 2 were each 20 mm apart from the threading level of the cold-rolled steel plate. The material of the magnetic core 2 is a laminated silicon steel plate, the cross-sectional area is 40 x 40 mm, and the length of the two magnetic paths is 240 mm. Magnetic detector 3 has a diameter of 1.2
mm coated copper wire, the number of turns was 250, the maximum excitation current was ±10A, the frequency was 100Hz, and a Hall element was used as the magnetic detector. Arithmetic device 7
A microcomputer is used for this, and the straight line corresponding to Fig. 4B, which was measured without a cold-rolled steel sheet, is stored in the device 7 in advance.
Excitation current e.g. proportional output E 1 and magnetic detector output
Obtain the curve corresponding to Fig. 4 A from E 2 , for example,
The coercive force Hc was measured from the excitation current proportional output E1c when the curves B intersect.
第5図が測定結果の一例で、縦軸は本発明法に
よる励磁電流比例出力E1c、横軸が冷延鋼板をソ
レノイド状に加工後、従来法である磁気特性測定
装置によつて測定した値で、極めて良い対応が得
られた。 Figure 5 shows an example of the measurement results, where the vertical axis is the excitation current proportional output E 1c obtained by the method of the present invention, and the horizontal axis is the result obtained by processing a cold-rolled steel plate into a solenoid shape and measuring it using a conventional method for measuring magnetic properties. A very good correspondence was obtained in terms of values.
第1図は鋼材の磁化曲線を示す説明図、第2図
は本発明を実施する装置の一例を示す説明図、第
3図は第2図に示す装置によつて測定した励磁電
流比例出力E1と磁気検出器の出力E2との間の特
性曲線、第4図は第3図のヒステリシス部分の拡
大図、第5図は本発明による測定結果の一例を示
すグラフ、第6図および第7図は第2図とは別の
装置の実例を示す説明図である。
1:被測定鋼材、2:励磁用電磁石の磁芯、
3:励磁コイル、4:励磁電源、5,51,52:
磁束、6:磁気検出器、7:演算装置、8:磁気
検出器。
Fig. 1 is an explanatory diagram showing the magnetization curve of steel material, Fig. 2 is an explanatory diagram showing an example of a device implementing the present invention, and Fig. 3 is an excitation current proportional output E measured by the device shown in Fig. 2. 1 and the output E 2 of the magnetic detector, FIG. 4 is an enlarged view of the hysteresis part of FIG. 3, FIG. 5 is a graph showing an example of measurement results according to the present invention, and FIGS. FIG. 7 is an explanatory diagram showing an example of a device different from that shown in FIG. 2. 1: Steel material to be measured, 2: Magnetic core of excitation electromagnet,
3: Excitation coil, 4: Excitation power supply, 5, 5 1 , 5 2 :
Magnetic flux, 6: Magnetic detector, 7: Arithmetic device, 8: Magnetic detector.
Claims (1)
よつて励磁される電磁石を設け、他方に該被測定
鋼材を貫通した透過磁束52を検出する磁気検出
器6を設け、前記電磁石の励磁電流を変化させた
ときの該電磁石の励磁電流の大きさに比例する電
圧出力E1と前記磁気検出器の電圧出力E2の変化
の特性曲線を求め、この特性曲線と、あらかじめ
別に求めておいた被測定鋼材が無い場合の前記電
磁石の励磁電流の大きさに比例する電圧出力E1
と前記磁気検出器の電圧出力E2の変化に対する
特性曲線とを比較することによつて被測定鋼材の
磁気特性を測定することを特徴とする鋼材の磁気
特性測定方法。 2 被測定鋼材1を挟んで、一方に交流励磁源に
よつて励磁される電磁石と該電磁石によつて発生
する磁束のうち前記被測定鋼材の表側を通過する
磁束を検出する磁気検出器8を設けるとともに、
他方に被測定鋼材を貫通した透過磁束52を検出
する磁気検出器6を設け、電磁石2の励磁電流を
変化させたときの前記磁気検出器8の電圧出力
E1′と前記磁気検出器6の電圧出力E2の変化の特
性曲線を求め、この特性曲線と、あらかじめ別に
求めておいた被測定鋼材が無い場合の前記磁気検
出器8の電圧出力E1′と前記検出器6の電圧出力
E2の変化の特性曲線とを比較することによつて
被測定鋼材の磁気特性を測定することを特徴とす
る鋼材の磁気特性測定方法。[Scope of Claims] 1. An electromagnet excited by an AC excitation source is provided on one side of the steel material 1 to be measured, and a magnetic detector 6 that detects the transmitted magnetic flux 5 2 that has penetrated the steel material 1 to be measured is provided on the other side. is provided, and when the excitation current of the electromagnet is changed, a characteristic curve of the change in the voltage output E 1 proportional to the magnitude of the excitation current of the electromagnet and the voltage output E 2 of the magnetic detector is determined, and this characteristic curve is and the voltage output E 1 which is proportional to the magnitude of the excitation current of the electromagnet when there is no steel material to be measured, which has been separately determined in advance.
1. A method for measuring magnetic properties of a steel material, characterized in that the magnetic properties of the steel material to be measured are measured by comparing the characteristic curve with respect to changes in the voltage output E2 of the magnetic detector. 2 An electromagnet excited by an AC excitation source and a magnetic detector 8 that detects the magnetic flux passing through the front side of the steel material to be measured, which is generated by the electromagnet, are placed on one side with the steel material 1 to be measured sandwiched therebetween. In addition to providing
A magnetic detector 6 is provided on the other side to detect the transmitted magnetic flux 5 2 that penetrates the steel material to be measured, and the voltage output of the magnetic detector 8 when the excitation current of the electromagnet 2 is changed is
A characteristic curve of changes in E 1 ′ and the voltage output E 2 of the magnetic detector 6 is determined, and this characteristic curve and the voltage output E 1 of the magnetic detector 8 in the absence of the previously determined steel material to be measured are calculated. ' and the voltage output of the detector 6
1. A method for measuring magnetic properties of steel, characterized in that the magnetic properties of the steel to be measured are measured by comparing the characteristic curve of change in E2 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21907382A JPS59108970A (en) | 1982-12-13 | 1982-12-13 | Measuring of magnetic property of steel material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21907382A JPS59108970A (en) | 1982-12-13 | 1982-12-13 | Measuring of magnetic property of steel material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59108970A JPS59108970A (en) | 1984-06-23 |
JPS6352345B2 true JPS6352345B2 (en) | 1988-10-18 |
Family
ID=16729834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21907382A Granted JPS59108970A (en) | 1982-12-13 | 1982-12-13 | Measuring of magnetic property of steel material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59108970A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0260365U (en) * | 1988-10-24 | 1990-05-02 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0287873B1 (en) * | 1987-04-16 | 1993-09-29 | Siemens Aktiengesellschaft | Process for measuring and exactly localizing the strain in hardened areas of structural elements |
EP0308888B1 (en) * | 1987-09-21 | 1995-06-21 | Hitachi, Ltd. | Method and apparatus for detecting embrittlement of a measuring object |
US6454911B1 (en) * | 2000-06-01 | 2002-09-24 | Honeywell International Inc. | Method and apparatus for determining the pass through flux of magnetic materials |
US7041204B1 (en) | 2000-10-27 | 2006-05-09 | Honeywell International Inc. | Physical vapor deposition components and methods of formation |
JP2004281624A (en) * | 2003-03-14 | 2004-10-07 | Toei Scientific Industrial Co Ltd | Electromagnet for measuring magnetic physical property using permalloy as core |
US20080116887A1 (en) * | 2006-11-20 | 2008-05-22 | Heraeus, Inc. | Method and apparatus for automation of PTF measurement in sputter targets |
JP4998820B2 (en) | 2007-03-14 | 2012-08-15 | 住友金属工業株式会社 | Eddy current inspection method and eddy current inspection apparatus for implementing the eddy current inspection method |
JP5332474B2 (en) * | 2008-03-03 | 2013-11-06 | 新日鐵住金株式会社 | Magnetic characteristic measuring apparatus and magnetic characteristic measuring method |
JP5195247B2 (en) * | 2008-10-02 | 2013-05-08 | 新日鐵住金株式会社 | Magnetic characteristic measuring apparatus and magnetic characteristic measuring method |
CN103064044B (en) * | 2013-01-03 | 2014-10-08 | 无锡隆盛科技股份有限公司 | Hall displacement sensor magnetic steel detection device |
JP7252466B2 (en) * | 2018-12-12 | 2023-04-05 | 日本製鉄株式会社 | Iron loss measurement method and iron loss measurement system |
JP7502867B2 (en) * | 2020-02-06 | 2024-06-19 | Tdk株式会社 | Apparatus and method for detecting orientation of unmagnetized magnet |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5037474A (en) * | 1973-08-03 | 1975-04-08 |
-
1982
- 1982-12-13 JP JP21907382A patent/JPS59108970A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5037474A (en) * | 1973-08-03 | 1975-04-08 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0260365U (en) * | 1988-10-24 | 1990-05-02 |
Also Published As
Publication number | Publication date |
---|---|
JPS59108970A (en) | 1984-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1015072B (en) | Method and apparatus for detecting magnetization response of ferromagnetic, ferrimagnetic, paramagnetic or diamagnetic materials | |
JPS6352345B2 (en) | ||
US5565773A (en) | Arrangement of excitation and detection heads for detecting the magnetic properties of an object | |
GB1590682A (en) | Method of producing steel strip material involving obtaining a profile or other characteristic indicating quality of a coil of steel strip material and continuous testing apparatus for determining the magnetic characteristics of a strip of moving material including a method of obtaining a profile indicative of the quality of the strip throughout its entire length and flux inducing and pick up device therefor and continuous testing apparatus for determining the magnetic characteristics of a moving workpiece | |
WO1991013347A1 (en) | Magnetic flaw detector for thin steel belt | |
JP2001141701A (en) | Method for measuring coercive force | |
JP2009186433A (en) | Eddy current sample measurement method, eddy current sensor, and eddy current sample measurement system | |
EP0096078A1 (en) | Method of measuring on-line hardness of steel plate | |
JP2841153B2 (en) | Weak magnetism measurement method and device, and nondestructive inspection method using the same | |
JPH0341795B2 (en) | ||
US5122743A (en) | Apparatus and method of non-destructively testing ferromagnetic materials including flux density measurement and ambient field cancellation | |
JP3948594B2 (en) | Method for measuring Si concentration in steel | |
US11692969B2 (en) | Apparatus and method for measuring magnetic properties of a ferromagnetic endless belt | |
JP3755403B2 (en) | Method for measuring transformation state of magnetic material and measuring device for transformation state of magnetic material | |
JP2005315732A (en) | Instrument for measuring displacement of ferromagnetic body | |
JPH02311776A (en) | Apparatus and method for measuring magnetic characteristics of steel material | |
JPH05264704A (en) | Method and apparatus for measuring coercive force of steel plate | |
JP2663767B2 (en) | Transformation rate measuring method and apparatus | |
JP2005315734A (en) | Method and instrument for measuring displacement of ferromagnetic body | |
Beckley | Continuous power loss measurement with and against the rolling direction of electrical steel strip using nonenwrapping magnetisers | |
JPS60247155A (en) | Method and apparatus for measuring particle size of crystal | |
SU789940A1 (en) | Coersive force measuring method | |
US3345559A (en) | Method of measuring the thickness of magnetic metal plates by measuring the variation of magnetic potential difference across said plates | |
JPH06194341A (en) | Magnetic head | |
Khanlou et al. | A computerised on-line power loss testing system for the steel industry, based on the RCP compensation technique |