JPS6351370B2 - - Google Patents
Info
- Publication number
- JPS6351370B2 JPS6351370B2 JP56152680A JP15268081A JPS6351370B2 JP S6351370 B2 JPS6351370 B2 JP S6351370B2 JP 56152680 A JP56152680 A JP 56152680A JP 15268081 A JP15268081 A JP 15268081A JP S6351370 B2 JPS6351370 B2 JP S6351370B2
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- oxide film
- silicon layer
- polycrystalline silicon
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
- H01L21/02675—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
- H01L21/02683—Continuous wave laser beam
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02488—Insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02598—Microstructure monocrystalline
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
- H01L21/02691—Scanning of a beam
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optics & Photonics (AREA)
- Materials Engineering (AREA)
- Recrystallisation Techniques (AREA)
- Formation Of Insulating Films (AREA)
Description
【発明の詳細な説明】
本発明は半導体装置の製造方法に係り、特に半
導体基板の一部に形成した絶縁膜と半導体基板上
に多結晶膜を形成し、該多結晶膜をレーザアニー
ルして単結晶化する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and in particular includes forming an insulating film on a part of a semiconductor substrate and a polycrystalline film on the semiconductor substrate, and annealing the polycrystalline film with a laser. Concerning a method for single crystallization.
従来、多結晶をCVD法(Chemical Vapor
Deposition)法によつて基板上に形成し、レーザ
アニールによつて単結晶領域を形成したり、真空
蒸着によつて単結晶シリコン基板上に形成した非
晶質シリコン層にパルスレーザーを照射し、非晶
質膜を単結晶化している。 Conventionally, polycrystals were produced using the CVD method (Chemical Vapor
A pulse laser is irradiated onto an amorphous silicon layer formed on a substrate using a deposition method, a single crystal region is formed using laser annealing, or an amorphous silicon layer is formed on a single crystal silicon substrate using vacuum evaporation. The amorphous film is made into a single crystal.
上述の如きレーザアニールに於て、第1図に示
すように半導体基板1として単結晶シリコン基板
上に絶縁膜即ち熱酸化膜(SiO2)2が形成され、
これら単結晶シリコン基板(Single−Si)及び熱
酸化膜2上にCVD法により0.2〜0.6μm厚程度の
多結晶シリコン層3(Poly−Si)を形成し、CW
レーザ4等を照射し、矢印a方向にレーザを走査
することで多結晶シリコン層3を溶融して単結晶
化がなされる。 In the laser annealing described above, an insulating film, that is, a thermal oxide film (SiO 2 ) 2 is formed on a single crystal silicon substrate as a semiconductor substrate 1, as shown in FIG.
A polycrystalline silicon layer 3 (Poly-Si) with a thickness of about 0.2 to 0.6 μm is formed on these single-crystal silicon substrates (Single-Si) and thermal oxide film 2 by the CVD method, and
By irradiating with a laser 4 or the like and scanning the laser in the direction of arrow a, the polycrystalline silicon layer 3 is melted and made into a single crystal.
上述の様なレーザアニール技術で多結晶シリコ
ン層3を単結晶化する場合に、酸化膜2上の多結
晶シリコン層3aと単結晶シリコン基板1上の多
結晶シリコン層3bをレーザアニールにより溶融
する時に溶融に要するレーザエネルギーが異な
り、単結晶シリコン基板1上の多結晶シリコン層
3bを溶融する方が酸化膜2上の多結晶シリコン
層3bを溶融するより多くのエネルギーを必要と
する。 When polycrystalline silicon layer 3 is single-crystallized using the laser annealing technique as described above, polycrystalline silicon layer 3a on oxide film 2 and polycrystalline silicon layer 3b on single-crystal silicon substrate 1 are melted by laser annealing. Sometimes, the laser energy required for melting differs, and melting polycrystalline silicon layer 3b on single-crystal silicon substrate 1 requires more energy than melting polycrystalline silicon layer 3b on oxide film 2.
これは、酸化膜2の熱伝導率が、0.014W/cm,
degであるのに対し単結晶シリコン基板1の熱伝
導率が1.5W/cm,degと約2桁の差があることに
起因するものと考えられる。 This means that the thermal conductivity of oxide film 2 is 0.014W/cm,
This is thought to be due to the fact that the thermal conductivity of the single crystal silicon substrate 1 is 1.5 W/cm, which is about two orders of magnitude different from the thermal conductivity of the single crystal silicon substrate 1.
即ち、単結晶シリコン基板1の熱伝導率が大き
いためにレーザエネルギーがより多く逃げるため
である。 That is, since the thermal conductivity of the single crystal silicon substrate 1 is high, more laser energy escapes.
上述の如く照射するレーザエネルギーが異るこ
とにより次の如き弊害が生ずる。 As described above, the following disadvantages occur due to the difference in irradiation laser energy.
即ち、酸化膜2上の多結晶シリコン層3aが充
分に溶融するようなレーザエネルギーを照射する
と単結晶シリコン基板1上の多結晶シリコン層3
bを溶融させることが出来ず、一方単結晶シリコ
ン基板1上の多結晶シリコン層3bを充分に溶融
させるレーザエネルギーを照射すると酸化膜2上
の多結晶シリコン層3aにとつてはパワーが強す
ぎてはがれの生ずる原因となる。 That is, when laser energy is irradiated to sufficiently melt the polycrystalline silicon layer 3a on the oxide film 2, the polycrystalline silicon layer 3a on the single crystal silicon substrate 1 melts.
On the other hand, if the laser energy to sufficiently melt the polycrystalline silicon layer 3b on the single crystal silicon substrate 1 is irradiated, the power is too strong for the polycrystalline silicon layer 3a on the oxide film 2. This may cause peeling.
いずれにしても、この様な半導体装置の基板で
レーザアニールを例えば、a方向走査すると単結
晶シリコン基板1と酸化膜2の境界付近で吸収エ
ネルギーのミスマツチングが起つて単結晶シリコ
ン基板1からの単結晶化が困難となる欠点を有す
る。 In any case, when laser annealing is performed on the substrate of such a semiconductor device, for example, by scanning in the a direction, mismatching of absorbed energy occurs near the boundary between the single crystal silicon substrate 1 and the oxide film 2, resulting in a loss of energy from the single crystal silicon substrate 1. It has the disadvantage that crystallization is difficult.
本発明は上述の如き欠点を除いた半導体装置の
レーザアニーリングを提供するものであり、本発
明の特徴とするところは、多結晶シリコン層3上
に厚さの異なるキヤツプをかぶせ単結晶シリコン
基板1と酸化膜2上の多結晶シリコン層が常に同
じ吸収エネルギーを吸収する様にし、境界のミス
マツチング現象を避けることで半導体基板上の多
結晶シリコン層をレーザアニーリングにより単結
晶化するものである。 The present invention provides laser annealing for semiconductor devices that eliminates the above-mentioned drawbacks.The present invention is characterized by covering the polycrystalline silicon layer 3 with caps of different thicknesses and forming the monocrystalline silicon substrate 1. The polycrystalline silicon layer on the semiconductor substrate is made into a single crystal by laser annealing by making sure that the polycrystalline silicon layer on the oxide film 2 always absorbs the same absorbed energy and avoiding the boundary mismatching phenomenon.
以下、本発明の実施例を図面を参照して説明す
る。 Embodiments of the present invention will be described below with reference to the drawings.
第2図は本発明を得る過程を説明する為の半導
体基板の断面図を示すものであり、単結晶シリコ
ン基板1上に5000〜6000Åの酸化膜2を形成し、
その上に4000Åの多結晶シリコン層3上にCVD
法又は熱酸化によつてSiO2即ち第2の酸化膜5
を1μmの厚みでキヤツプとして堆積させたもの
に、CW−Arレーザ4を照射して酸化膜2上の多
結晶シリコン3aを溶融させて単結晶化させると
きのレーザパワーは10W(10cm/s500℃・60μφ)
である。 FIG. 2 shows a cross-sectional view of a semiconductor substrate for explaining the process of obtaining the present invention, in which an oxide film 2 of 5000 to 6000 Å is formed on a single crystal silicon substrate 1,
On top of that, CVD on 4000 Å polycrystalline silicon layer 3
SiO 2 , that is, the second oxide film 5, is formed by
is deposited as a cap with a thickness of 1 μm and is irradiated with a CW-Ar laser 4 to melt the polycrystalline silicon 3a on the oxide film 2 and turn it into a single crystal.The laser power is 10W (10cm/s at 500°C).・60μφ)
It is.
これに対して単結晶シリコン基板1上の多結晶
シリコン層3bを溶融させて単結晶化させるとき
のレーザパワーは14W(同一条件)であつた。 On the other hand, the laser power when melting the polycrystalline silicon layer 3b on the single crystal silicon substrate 1 to form a single crystal was 14 W (under the same conditions).
これらを考慮するとレーザパワーに4割の差が
あるので、この差をなくす為の上記第2の酸化膜
5の厚みをコントロールすることでエネルギー吸
収率をコントロールすることが出来る。 Taking these into consideration, there is a 40% difference in laser power, so the energy absorption rate can be controlled by controlling the thickness of the second oxide film 5 to eliminate this difference.
即ち、第3図に示す線に酸化膜2上の多結晶シ
リコン層3a上に1μmの第2の酸化膜5aを好
ましくはCVD法により厚みt1がコントロール出
来る様に形成し、同じく単結晶シリコン基板3上
の多結晶シリコン層3bの上にCVD法で形成す
る第2の酸化膜5bの厚みt2を約9000Åと成るよ
うにする。 That is, a second oxide film 5a having a thickness of 1 μm is formed on the polycrystalline silicon layer 3a on the oxide film 2 along the line shown in FIG. 3, preferably by CVD method so that the thickness t1 can be controlled. The thickness t 2 of the second oxide film 5b formed by the CVD method on the polycrystalline silicon layer 3b on the substrate 3 is about 9000 Å.
この様な厚みにすると上記1μmの厚みの第2
の酸化膜(SiO2)3aでは反射率が38%、吸収
率が62%となり、9000Åの厚みの第2の酸化膜3
bでは反射率が13%吸収率87%となり、単結晶シ
リコン基板1上の多結晶シリコン3bの上の第2
の酸化膜5bには、酸化膜2上の多結晶シリコン
層3bの上の第2の酸化膜5aに比べて40%多く
のレーザエネルギーを吸収するようになる。 With such a thickness, the second layer of the above 1 μm thickness
The second oxide film (SiO 2 ) 3a with a thickness of 9000 Å has a reflectance of 38% and an absorption rate of 62%.
In b, the reflectance is 13% and the absorption rate is 87%, and the second layer on the polycrystalline silicon 3b on the single crystal silicon substrate 1 is
The oxide film 5b absorbs 40% more laser energy than the second oxide film 5a on the polycrystalline silicon layer 3b on the oxide film 2.
一般に第2の酸化膜5a,5bの厚さを横軸に
縦軸に反射率をとると、それらの関係は第4図に
示す如く周期函数となるので上述したように反射
率の差が40%になるような第2の酸化膜の選択方
法は複数個所あり、本発明ではこれらのどの点を
選択してもよいが、好ましくは第2の酸化膜5a
の反射率をSiO2の最高の38%の反射率に選択し、
それから40%反射率の少ない第2の酸化膜5b点
を選択すればよい。 Generally, when the thickness of the second oxide films 5a and 5b is plotted on the horizontal axis and the reflectance is plotted on the vertical axis, the relationship between them becomes a periodic function as shown in FIG. %, and in the present invention, any of these methods may be selected, but preferably the second oxide film 5a
The reflectance of SiO2 is selected to be the highest 38% reflectance of SiO2,
Then, a point 5b of the second oxide film having a 40% lower reflectance may be selected.
本発明は上述の如く第2の酸化膜の反射率に着
目したので冒頭に述べた単結晶シリコン基板と酸
化膜上に形成した多結晶シリコン層をレーザアニ
ールする際にレーザ照射エネルギーを一様にして
インターバルエピタキシヤル成長を行うことが出
来て境界のミスマツチを防止し得るものである。 As mentioned above, the present invention focuses on the reflectance of the second oxide film, so when laser annealing the single crystal silicon substrate mentioned at the beginning and the polycrystalline silicon layer formed on the oxide film, the laser irradiation energy is made uniform. This allows interval epitaxial growth to be carried out using the same method, thereby preventing boundary mismatches.
第1図は従来の半導体装置基板の側断面図、第
2図は本発明の半導体装置基板の発明原理を導く
ための側断面図、第3図は本発明の半導体装置基
板の一部を断面とする側断面図、第4図は本発明
の説明に供する反射率と酸化膜の厚みの関係を示
す線図である。
1……単結晶シリコン基板、2……酸化膜、3
……多結晶シリコン層、4……レーザ光、5……
第2の酸化膜。
FIG. 1 is a side sectional view of a conventional semiconductor device substrate, FIG. 2 is a side sectional view for explaining the inventive principle of the semiconductor device substrate of the present invention, and FIG. 3 is a partial cross-sectional view of the semiconductor device substrate of the present invention. FIG. 4 is a diagram showing the relationship between the reflectance and the thickness of the oxide film, which is used to explain the present invention. 1... Single crystal silicon substrate, 2... Oxide film, 3
... Polycrystalline silicon layer, 4 ... Laser light, 5 ...
Second oxide film.
Claims (1)
形成し、該単結晶半導体基板と該第1の絶縁膜上
に非単結晶半導体層を形成し、エネルギー線を照
射して該非単結晶半導体層を単結晶化する半導体
装置の製造方法に於て、該第1の絶縁膜上に形成
した多結晶半導体層と、単結晶半導体基板上に形
成した多結晶半導体層上に互いに反射率を異にす
る第2の絶縁膜を形成してエネルギー線を照射す
ることを特徴とする半導体装置の製造方法。 2 前記第2の絶縁膜の反射率の差を略40%とす
ることを特徴とする特許請求の範囲第1項記載の
半導体装置の製造方法。[Claims] 1. A first insulating film is formed on a part of a single crystal semiconductor substrate, a non-single crystal semiconductor layer is formed on the single crystal semiconductor substrate and the first insulating film, A method for manufacturing a semiconductor device in which the non-single crystal semiconductor layer is made into a single crystal by irradiation with a polycrystalline semiconductor layer formed on the first insulating film and a polycrystalline semiconductor formed on the single crystal semiconductor substrate A method for manufacturing a semiconductor device, comprising forming second insulating films having different reflectances on the layers and irradiating the layers with energy rays. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the difference in reflectance of the second insulating film is approximately 40%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56152680A JPS5853823A (en) | 1981-09-26 | 1981-09-26 | Manufacturing method of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56152680A JPS5853823A (en) | 1981-09-26 | 1981-09-26 | Manufacturing method of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5853823A JPS5853823A (en) | 1983-03-30 |
JPS6351370B2 true JPS6351370B2 (en) | 1988-10-13 |
Family
ID=15545760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56152680A Granted JPS5853823A (en) | 1981-09-26 | 1981-09-26 | Manufacturing method of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5853823A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0611035B2 (en) * | 1983-04-15 | 1994-02-09 | ソニー株式会社 | Thin film heating method |
JPS63215035A (en) * | 1987-03-04 | 1988-09-07 | Agency Of Ind Science & Technol | Protective film for recrystallization treatment |
JPS6423521A (en) * | 1987-07-20 | 1989-01-26 | Agency Ind Science Techn | Protective film for recrystallization treatment |
-
1981
- 1981-09-26 JP JP56152680A patent/JPS5853823A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5853823A (en) | 1983-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4323417A (en) | Method of producing monocrystal on insulator | |
USRE33096E (en) | Semiconductor substrate | |
US4599133A (en) | Method of producing single-crystal silicon film | |
JPH0343769B2 (en) | ||
JPS6351370B2 (en) | ||
JPH027415A (en) | Formation of soi thin film | |
JPS6119116A (en) | Manufacture of semiconductor device | |
JP2817613B2 (en) | Method for forming crystalline silicon film | |
JP2929660B2 (en) | Method for manufacturing semiconductor device | |
JPS6185815A (en) | Method for formation of polycrystalline silicon film | |
JPH0335821B2 (en) | ||
JPH02177534A (en) | Manufacturing method of semiconductor device | |
JPH024559B2 (en) | ||
JP2993107B2 (en) | Semiconductor thin film manufacturing method | |
JPS61185917A (en) | Manufacture of semiconductor device | |
JP2532252B2 (en) | Method for manufacturing SOI substrate | |
JPH0746683B2 (en) | Method for manufacturing semiconductor device | |
JPS59158515A (en) | Manufacture of semiconductor device | |
JPS6038809A (en) | Manufacture of semiconductor device | |
JPS6126598A (en) | Preparation of germanium thin film crystal | |
JPS58212124A (en) | Method for manufacturing single crystal thin film | |
JPS6347255B2 (en) | ||
JPH01123410A (en) | Compound semiconductor substrate and method for manufacturing the same | |
JPH0523492B2 (en) | ||
JPH01132114A (en) | Method of forming single crystal thin film |