JPS6349140B2 - - Google Patents
Info
- Publication number
- JPS6349140B2 JPS6349140B2 JP59080465A JP8046584A JPS6349140B2 JP S6349140 B2 JPS6349140 B2 JP S6349140B2 JP 59080465 A JP59080465 A JP 59080465A JP 8046584 A JP8046584 A JP 8046584A JP S6349140 B2 JPS6349140 B2 JP S6349140B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- stopped
- indoor blower
- compressor
- detection means
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005057 refrigeration Methods 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 6
- 230000009467 reduction Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 8
- 239000003507 refrigerant Substances 0.000 description 7
- 238000001704 evaporation Methods 0.000 description 5
- 230000002265 prevention Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Air Conditioning Control Device (AREA)
Description
【発明の詳細な説明】
本発明は冷凍サイクルを具備した空気調和機に
おける温湿度制御装置の改良に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a temperature and humidity control device for an air conditioner equipped with a refrigeration cycle.
近年、世界的傾向として省エネルギーの方向に
あり、当然、空気調和機においても、省エネルギ
ー化の傾向になつている。この省エネルギーを
云々するに、空気調和機においては、EER(エネ
ルギー有効比)を一つの目安としており、EER
の大きい空気調和機を開発することが強く要求さ
れている。 In recent years, there has been a global trend toward energy conservation, and naturally air conditioners are also becoming energy efficient. When talking about this energy saving, EER (Energy Effective Ratio) is used as a guideline for air conditioners.
There is a strong need to develop large air conditioners.
そこで、本発明は、上記省エネルギーという点
に鑑み、主に能力制御運転時の減圧量を変えるこ
とにより、運転効率のよい冷凍サイクルを得るも
のである。 Therefore, in view of the above-mentioned energy saving, the present invention provides a refrigeration cycle with good operational efficiency, mainly by changing the amount of pressure reduction during capacity control operation.
以下、本発明をその一実施例を示す添付図面を
参考に説明する。 Hereinafter, the present invention will be described with reference to the accompanying drawings showing one embodiment thereof.
第1図において、標準冷房運転時の冷媒回路は
圧縮機1、凝縮機2、電磁2方弁3,第1キヤピ
ラリチユーブ4,蒸発器5,圧縮機1で構成され
る。この時、電磁三方弁6には、aからb方向へ
高圧液冷媒が流れ、能力調節弁7は閉じられる。 In FIG. 1, the refrigerant circuit during standard cooling operation is composed of a compressor 1, a condenser 2, an electromagnetic two-way valve 3, a first capillary tube 4, an evaporator 5, and a compressor 1. At this time, high-pressure liquid refrigerant flows through the electromagnetic three-way valve 6 from direction a to b, and the capacity adjustment valve 7 is closed.
次に、能力制御運転時の冷媒回路は電磁二方弁
3の開閉状態で2通りの冷媒回路が考えられる。
その第1の回路は電磁2方弁3が開の場合で、圧
縮機1,凝縮器2,電磁2方弁3,第1キヤピラ
リチユーブ4,蒸発器5,圧縮機1から成る冷媒
回路であり、第の回路は電磁2方弁3が閉の場
合で、圧縮機1,凝縮器2,第2キヤピラリチユ
ーブ8,第1キヤピラリチユーブ4,蒸発器5,
圧縮器1から成る冷媒回路であり、第,第の
回路共に電磁三方弁6にはbからcの方向へ冷媒
が流れるようになつている。 Next, two types of refrigerant circuits can be considered for the refrigerant circuit during capacity control operation depending on the open/closed state of the electromagnetic two-way valve 3.
The first circuit is a refrigerant circuit consisting of a compressor 1, a condenser 2, an electromagnetic two-way valve 3, a first capillary tube 4, an evaporator 5, and a compressor 1 when the two-way solenoid valve 3 is open. Yes, the second circuit is when the electromagnetic two-way valve 3 is closed, and the compressor 1, condenser 2, second capillary tube 8, first capillary tube 4, evaporator 5,
This is a refrigerant circuit consisting of a compressor 1, and refrigerant flows through an electromagnetic three-way valve 6 in the direction from b to c in both the first and second circuits.
次に、第2図〜第3図により、温湿度制御回路
について説明する。第2図は第1図の室外送風機
9,室内送風機10,電磁2方弁3そして電磁3
方弁6を制御する電気回路図である。 Next, the temperature and humidity control circuit will be explained with reference to FIGS. 2 and 3. Figure 2 shows the outdoor blower 9, indoor blower 10, solenoid two-way valve 3, and solenoid 3 shown in Figure 1.
6 is an electric circuit diagram for controlling the direction valve 6. FIG.
同図において、11は交流電源、12は主の圧
縮機1の運転停止を制御する電子制御装置13へ
低電圧を送るためのトランスである。14aは前
記電子制御装置13の有する電磁開閉器14の接
点であり、圧縮機1,室外送風機9および室内送
風機10をも制御する。15は能力制御運転スイ
ツチ(図では、全能力運転の状態になつている。)
で、電磁2方弁3と電磁3方弁6を切換えること
により能力制御運転と全能力運転とを行なう。1
6は圧縮機1が停止した時だけ室内送風機10を
運転または停止に切換える再蒸発防止運転スイツ
チで、本図では再蒸発防止運転は「切」の状態に
なる。17,17aは前記再蒸発防止運転スイツ
チ16「入」,「切」により能力制御運転時のみ電
磁2方弁3を「閉」,「開」を行なう電磁開閉器で
ある。 In the figure, 11 is an AC power source, and 12 is a transformer for sending a low voltage to an electronic control unit 13 that controls the shutdown of the main compressor 1. 14a is a contact point of the electromagnetic switch 14 included in the electronic control device 13, which also controls the compressor 1, the outdoor blower 9, and the indoor blower 10. 15 is a capacity control operation switch (in the figure, it is in full capacity operation).
By switching between the electromagnetic two-way valve 3 and the electromagnetic three-way valve 6, capacity control operation and full capacity operation are performed. 1
Reference numeral 6 denotes a re-evaporation prevention operation switch that switches the indoor blower 10 to operation or stop only when the compressor 1 stops; in this figure, the re-evaporation prevention operation is in the "off" state. Reference numerals 17 and 17a designate electromagnetic switches that close and open the electromagnetic two-way valve 3 only during capacity control operation by turning the re-evaporation prevention operation switch 16 on and off.
次に第3図により、第2図に示した温湿度制御
回路の働きの中で主に圧縮機1の運転・停止を制
御する電子制御装置13について説明する。 Next, with reference to FIG. 3, the electronic control device 13 which mainly controls the operation/stop of the compressor 1 in the function of the temperature/humidity control circuit shown in FIG. 2 will be explained.
同図において、R1は冷房負荷を検出するサー
ミスタ等の感温抵抗素子で、蒸発器5の吸込み温
度を検出する如く設けられ、また、この感温抵抗
素子R1は温度調節用ボリユームR2と抵抗R3
からなる直列回路と直列に接続されている。18
はコンパレータで、入力端子+を感温抵抗素子R
1と温度調節用ボリユームR2との間に接続し、
基準端子−を抵抗R4,R5の直列回路の中間に
接続している。また、コンパレータ18の出力端
子はトランジスタQ1のベース端子にタイオード
D2を介して接続されている。14はトランジス
タQ1のコレクタ端子に接続されたリレーコイル
で、第2図に示す常用のリルー接点14aを開閉
させ、圧縮機1の運転を制御する。Vccは直流電
源、R6,R7,R8はそれぞれ抵抗、D1,D
3はダイオードである。 In the same figure, R1 is a temperature-sensitive resistance element such as a thermistor that detects the cooling load, and is installed to detect the suction temperature of the evaporator 5, and this temperature-sensitive resistance element R1 is connected to a temperature control volume R2 and a resistor R3.
connected in series with a series circuit consisting of 18
is a comparator, and input terminal + is connected to temperature-sensitive resistance element R.
1 and the temperature adjustment volume R2,
The reference terminal - is connected to the middle of the series circuit of resistors R4 and R5. Further, the output terminal of the comparator 18 is connected to the base terminal of the transistor Q1 via a diode D2. Reference numeral 14 denotes a relay coil connected to the collector terminal of the transistor Q1, which controls the operation of the compressor 1 by opening and closing a commonly used reloo contact 14a shown in FIG. Vcc is a DC power supply, R6, R7, R8 are resistors, D1, D
3 is a diode.
上記構成において、コンパレータ18は入力電
圧V+が基準電圧V-より高いとトランジスタQ1
をONさせ、逆の場合にはOFFさせる。よつて、
このトランジスタQ1のON,OFFにより、リレ
ー14がON,OFFして圧縮機1は運転,停止の
制御が行なわれることになる。 In the above configuration, when the input voltage V + is higher than the reference voltage V - , the comparator 18 detects the transistor Q1.
Turns ON, and turns OFF in the opposite case. Then,
By turning ON and OFF the transistor Q1, the relay 14 is turned ON and OFF, and the compressor 1 is controlled to operate and stop.
以上、温湿度制御回路の構成を第1図〜第3図
に説明したが、この構成に基づいて能力制御運転
を行なつた場合の運転モード図を第4図と第5図
に、それぞれの場合の相対湿度をEER(エネルギ
ー有効比)の関係を第6図に示す。 The configuration of the temperature and humidity control circuit has been explained above in Figures 1 to 3, and Figures 4 and 5 show operation mode diagrams when capacity control operation is performed based on this configuration. Figure 6 shows the relationship between relative humidity and EER (Energy Effective Ratio).
第4図は第2図において能力制御運転はスイツ
チ15を能力制御運転側に入れた場合で、かつ、
再蒸発防止運転スイツチ16を「切」にした場合
の運転モードである。この場合には電磁2方弁3
が開く、絞りは、第1キヤピラリチユーブ4のみ
であるため、絞り量は、小さい。また室内送風機
10は圧縮機1が停止中でも運転しているため、
蒸発器5に付いた水滴が蒸発して室内の相対湿度
は60〜70%と高くなる。しかし、室内送風機10
による気流があるので、それほど不快感はない。
この時の相対湿度とEERとの関係を示したもの
が第6図に示す右半分の実線である。 FIG. 4 shows the capacity control operation in FIG. 2 when the switch 15 is set to the capacity control operation side, and
This is the operation mode when the re-evaporation prevention operation switch 16 is turned off. In this case, the solenoid two-way valve 3
Since the first capillary tube 4 is the only aperture that opens, the amount of aperture is small. In addition, since the indoor blower 10 is operating even when the compressor 1 is stopped,
The water droplets attached to the evaporator 5 evaporate, and the relative humidity in the room increases to 60 to 70%. However, indoor blower 10
There is an airflow, so there is no discomfort.
The solid line in the right half of FIG. 6 shows the relationship between relative humidity and EER at this time.
第5図は第2図において能力制御運転スイツチ
15を第4図の場合と同じ能力制御運転側に入
れ、かつ、再蒸発防止運転スイツチ16を「入」
にした場合の運転モードである。この場合には、
電磁2方弁3が閉となるので、絞りは第1キヤピ
ラリチユーブ4と第2キヤピラリチユーブ8の直
列接続であるので絞り量は大きく、また、室内送
風機10は圧縮機1が停止中は運転しないため蒸
発器5からの水滴の再蒸発はほとんどなく、した
がつて、室内の相対湿度も50〜60%と低くするこ
とができる。この時の相対湿度をEERとの関係
を示したものが第6図に示す左半分の実線であ
る。 In FIG. 5, the capacity control operation switch 15 in FIG. 2 is set to the same capacity control operation side as in the case of FIG.
This is the driving mode when set to . In this case,
Since the electromagnetic two-way valve 3 is closed, the amount of restriction is large because the first capillary tube 4 and the second capillary tube 8 are connected in series, and the indoor blower 10 is closed while the compressor 1 is stopped. Since the evaporator 5 is not operated, there is almost no re-evaporation of water droplets from the evaporator 5, and therefore, the relative humidity in the room can be as low as 50 to 60%. The solid line in the left half of FIG. 6 shows the relationship between relative humidity and EER at this time.
上記実施例より明らかなように、本発明におけ
る空気調和機の温湿度制御装置は比較検出手段の
信号により熱交換装置を運転・停止する制御手段
の停止中に室内送風機が運転・停止のいずれの状
態にあるかを検知する手段、該手段に基づき室内
送風機が運転状態にあるときは停止状態にあると
きよりも、冷凍サイクルの減圧装置の減圧量が小
さくなるように制御する手段を設けているので室
内送風機を運転するか停止するかによつて室内の
相対湿度を判断し、主に能力制御運転時の絞り量
を変えてやることによつて最適なエネルギー有効
比での運転を行ない、省エネルギー化がはかれ、
使用者にとつては気流優先かまたは相対湿度優先
かの選択が可能となり幅広い機能を有する制御効
果が得られる等、種々の利点を有するものであ
る。 As is clear from the above embodiments, the temperature and humidity control device for an air conditioner according to the present invention is capable of controlling whether the indoor blower is started or stopped while the control means for operating and stopping the heat exchanger is stopped based on the signal from the comparison detection means. means for detecting whether the indoor blower is in the operating state, and means for controlling the pressure reduction amount of the refrigeration cycle pressure reducing device to be smaller when the indoor blower is in the operating state than when it is in the stopped state based on the means. Therefore, the indoor relative humidity is determined by whether the indoor fan is operated or stopped, and by mainly changing the throttle amount during capacity control operation, the operation is performed at the optimal energy effective ratio, thereby saving energy. The transformation of
It has various advantages for the user, such as being able to select between giving priority to airflow or relative humidity, and obtaining control effects with a wide range of functions.
第1図は本発明の一実施例における温湿度制御
装置を具備した空気調和機の冷凍サイクル図、第
2図は同温湿度制御装置の電気系統図、第3図は
同温湿度制御装置の電気回路図、第4図および第
5図はそれぞれ同温湿度制御装置による圧縮機停
止時の室内送風機が停止もしくは運転の場合の運
転モード図、第6図は第4図および第5図の運転
モードによる相対湿度変化対EEF特性図である。
R1……感温抵抗素子(温度検出器)、1……
圧縮機(熱交換装置)、4,8……キヤピラリー
チユーブ(減圧装置)、10……室内送風機、1
8……コンパレータ(制御装置)。
Fig. 1 is a refrigeration cycle diagram of an air conditioner equipped with a temperature/humidity control device according to an embodiment of the present invention, Fig. 2 is an electrical system diagram of the temperature/humidity control device, and Fig. 3 is a diagram of the temperature/humidity control device. Electrical circuit diagrams, Figures 4 and 5 are operation mode diagrams when the indoor blower is stopped or running when the compressor is stopped by the same temperature and humidity control device, and Figure 6 is the operation mode shown in Figures 4 and 5. It is a relative humidity change versus EEF characteristic diagram depending on the mode. R1... Temperature sensitive resistance element (temperature detector), 1...
Compressor (heat exchange device), 4, 8...Capillary reach tube (pressure reducing device), 10...Indoor blower, 1
8... Comparator (control device).
Claims (1)
温度検出手段と設定手段とを比較検出する比較検
出手段、前記比較検出手段の信号により熱交換装
置を運転・停止する制御手段、前記比較検出手段
の信号とは別に独立して運転を行う室内送風機を
有し、前記制御手段の停止中に室内送風機が運
転・停止のいずれの状態にあるかを検知する手
段、前記手段に基づき、室内送風機が運転状態に
あるときは停止状態にあるときよりも冷凍サイク
ルの減圧装置の減圧量が小さくなるように制御す
る手段を設けた空気調和機の温湿度制御装置。1. Temperature detection means for detecting the load temperature state, comparison detection means for comparing and detecting the temperature detection means and the setting means, control means for operating and stopping the heat exchange device according to the signal of the comparison detection means, and the comparison detection means. means for detecting whether the indoor blower is running or stopped while the control means is stopped, the indoor blower being operated independently of the signal; and the indoor blower being operated based on the means; A temperature/humidity control device for an air conditioner, which is provided with a means for controlling the pressure reduction amount of a pressure reducing device of a refrigeration cycle to be smaller when the refrigeration cycle is in the stopped state than when the refrigeration cycle is in the stopped state.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59080465A JPS59210252A (en) | 1984-04-20 | 1984-04-20 | Temperature and humidity control device for air- conditioning machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59080465A JPS59210252A (en) | 1984-04-20 | 1984-04-20 | Temperature and humidity control device for air- conditioning machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59210252A JPS59210252A (en) | 1984-11-28 |
JPS6349140B2 true JPS6349140B2 (en) | 1988-10-03 |
Family
ID=13719004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59080465A Granted JPS59210252A (en) | 1984-04-20 | 1984-04-20 | Temperature and humidity control device for air- conditioning machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59210252A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007183020A (en) * | 2006-01-05 | 2007-07-19 | Matsushita Electric Ind Co Ltd | Variable capacity air conditioner |
-
1984
- 1984-04-20 JP JP59080465A patent/JPS59210252A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59210252A (en) | 1984-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9207001B1 (en) | Retrofit device to improve vapor compression cooling system performance by dynamic blower speed modulation | |
US5142880A (en) | Automatic fan control (AFC) unit of low cost and durable construction and related progress for improving the efficiency of existing air conditioning systems | |
JP3475014B2 (en) | Air conditioner | |
JPH026990B2 (en) | ||
JPS6349140B2 (en) | ||
JPH10141730A (en) | Heat exchange ventilator | |
JPH04174B2 (en) | ||
JP2003161500A (en) | Indoor air conditioning system | |
JPS5913548Y2 (en) | Air conditioner operation control device | |
JPH0526426Y2 (en) | ||
JPS6115475Y2 (en) | ||
JPS60596Y2 (en) | air conditioner | |
JP2695375B2 (en) | Air conditioner | |
JPH0350338Y2 (en) | ||
JPS5822045Y2 (en) | Air conditioner/heater operation control device | |
JPS5925126B2 (en) | air conditioner | |
JPS6018898B2 (en) | air conditioner | |
JPS5850193Y2 (en) | air conditioner | |
JP3680336B2 (en) | Internal / external separation type air conditioner | |
JPS5920586Y2 (en) | Heat pump air conditioner | |
JPS5850187Y2 (en) | Air conditioner control circuit | |
JPH031744Y2 (en) | ||
KR0140567B1 (en) | Control method of indoor / outdoor fan of combined cooling / heating air conditioner | |
JPS5843742Y2 (en) | Refrigerant flow control device | |
JPS6151218B2 (en) |