JPS6345850B2 - - Google Patents
Info
- Publication number
- JPS6345850B2 JPS6345850B2 JP54080807A JP8080779A JPS6345850B2 JP S6345850 B2 JPS6345850 B2 JP S6345850B2 JP 54080807 A JP54080807 A JP 54080807A JP 8080779 A JP8080779 A JP 8080779A JP S6345850 B2 JPS6345850 B2 JP S6345850B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- sand
- amount
- fine
- days
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
- Drying Of Solid Materials (AREA)
Description
【発明の詳細な説明】
本発明は、原特許第1389070号(特公昭61―
57050号)の改良に係り、砂やスラツジ類のよう
な細粒材に附着した水分を風力などに妨害される
ことのない条件下で円滑且つ高能率に適生な範囲
として調整し、しかも高い歩留りで回収すること
のできる調整装置を提供しようとするものであ
る。[Detailed description of the invention] The present invention is based on original patent No. 1389070 (Special Publication No. 1389070).
57050), the moisture adhering to fine grain materials such as sand and sludge can be adjusted to a suitable range in a smooth and highly efficient manner under conditions that are not disturbed by wind power, etc. The purpose is to provide an adjustment device that can be recovered at a yield.
川砂又はこれに準じた細粒材は所謂細骨材とし
て今日におけるセメント類を利用した各種の建築
又は土木工業上不可欠の資材であり、勿論古くか
ら一般に使用されて来たものであつて、近時にお
いては海砂や水滓砂或いはスラツジ類も代用され
つつある。ところがこのような細粒材には附着水
分があり、この附着水分値は多様広範囲に変動す
ることが常である。即ち斯かる川砂等はその産地
自体が川原のような屋外であり、これを採取して
ヤードに堆積するとしても特別に屋根を施すよう
なことが殆んどないものであるからそれらの採取
乃至運搬、貯蔵事情の何れからしても河川水、雨
露と接触する可能性が極めて高く、一方この砂等
はその細粒の故に比表面積が絶大であつて表面附
着水などを含有することが不可避であり、又それ
ら粒子間の空隙においても水分を保有するのでそ
の附着水分は常に存在し、しかもそれが天候条
件、気象条件によつて不断に変化する。同様のこ
とは前記した海砂、水滓砂などにおいても認めら
れ、特にこれらのものにおいてはその採取条件な
どに原因して異質成分な附着混入している可能性
が高く、これは上記川砂の場合においても粘土質
その他の泥分などが附着し、これらのものは上記
したような利用上において種々の弊害をもたら
す。一方斯様な砂類を用いてセメント混練物を調
整するに当つてはその水セメント比(以下W/C
という)やセメント砂比(以下C/Sという)、
或いはコンクリートとする場合においてそれらの
セメント又は砂の何れが一方又は双方に対する砂
利のような粗骨材Gの配合比(以下S/G又は
C/Gという)如何は得られる成形体の強度や流
動性(成形性、施工性)の如何に夫々重大な影響
を及ばすことが明かであり、即ち過剰に配合され
た水分は何れにしても分離、ブリージングを惹起
し又その強度低下の大きな原因となり、反応に水
分過少は成形性や注入性を損い、成程振動や圧縮
のような補助処理を併用しても緻密な組織を形成
することができず、同様に強度低下その他の製品
欠陥を招来する。従つて上記のようなW/Cなど
を適正に決定することが好ましい製品を得、又円
滑な注入成形を図り更には有効な吹付施工を得る
上において不可欠であるに拘わらず、それに用い
られる砂の附着水量が上記のように変動しこれを
的確に把握、管理することのできない事情である
ことは事実上前記したような関係を適正に決定し
得ないわけであつて、W/CのみならずS/Cも
不定であり、結局好ましい強度や成形作業をなし
得ない。勿論この砂の重量を絶乾状態まで乾燥し
或いは水中で測定するような方法もあるが、大量
に必要とされる砂にあつては実地的に採用不可能
に近く、又前者は大量の熱エネルギーと時間を費
消し、後者も又砂粒内に完全に水を滲透し空気を
放出するための工数(JISによれば24時間浸水を
要件とする)及びその後にその含有水を排出する
工数が著しく嵩む。 River sand or similar fine-grained materials are so-called fine aggregates and are indispensable materials for various types of construction or civil engineering that use cement today.Of course, they have been commonly used since ancient times, and In some cases, sea sand, water slag, or sludge are being used as substitutes. However, such fine grain materials have adhering moisture, and this adhering moisture value usually varies over a wide range. In other words, the source of such river sand is outdoors, such as a riverbed, and even if it is collected and deposited in a yard, there is hardly any special roofing, so it is difficult to collect or deposit it in a yard. Due to both transportation and storage conditions, there is an extremely high possibility that it will come into contact with river water or rain and dew.On the other hand, because of the fine grain size of sand, it has an extremely large specific surface area, and it is inevitable that it will contain water that adheres to the surface. Moreover, since water is retained in the spaces between these particles, the adhering water is always present, and moreover, it constantly changes depending on the weather conditions. A similar phenomenon is observed in the sea sand, water slag sand, etc. mentioned above, and in these cases, there is a high possibility that foreign components are mixed in due to the sampling conditions, etc., and this is due to the above-mentioned river sand. Even in such cases, clay and other mud particles are deposited, and these substances cause various problems when used as described above. On the other hand, when preparing a cement mixture using such sand, the water-cement ratio (hereinafter referred to as W/C
), cement-sand ratio (hereinafter referred to as C/S),
Or, in the case of making concrete, the mixing ratio of coarse aggregate G such as gravel (hereinafter referred to as S/G or C/G) to one or both of cement and sand will affect the strength and flow of the resulting compact. It is clear that it has a significant effect on the properties (formability, workability), and in any case, excessive water content causes separation and breathing, and is a major cause of a decrease in strength. Insufficient water content during the reaction impairs moldability and injectability, and even with auxiliary treatments such as continuous vibration and compression, it is not possible to form a dense structure, which also causes a decrease in strength and other product defects. Invite. Therefore, although it is essential to properly determine the W/C as described above in order to obtain a desirable product, achieve smooth injection molding, and obtain effective spraying, it is essential to determine the sand used for it. The fact that the amount of water deposited in the water fluctuates as described above and it is impossible to accurately grasp and manage it means that in fact, it is impossible to properly determine the relationship described above, and only W/C can do so. The S/C is also unstable, and as a result, desirable strength and molding work cannot be achieved. Of course, there are methods to measure the weight of this sand, such as drying it to an absolute dry state or measuring it in water, but this method is practically impossible to use when a large amount of sand is required, and the former method requires a large amount of heat. Energy and time are consumed, and the latter also requires man-hours to completely penetrate water into the sand grains and release air (according to JIS, 24-hour immersion is required) and then to drain the water contained. It bulks up significantly.
上記のように附着混入する異質成分がその性能
に変化を来すことも当然で、特に海砂に附着した
塩分などは鉄筋材の腐食を招くこととなるので厳
しく規制され、JISなどにおいてもその除塩手法
が規定されているが、斯様な除塩のための海砂洗
滌には大量の清水が消費され、その取扱いも煩雑
で、勿論除塩洗滌後の脱水にも困難な処理を必要
とする。 As mentioned above, it is natural that the adhesion and contamination of foreign components will change the performance of the product.In particular, salt adhering to sea sand can lead to corrosion of reinforcing steel, so it is strictly regulated, and JIS etc. Although salt removal methods are prescribed, a large amount of clean water is consumed in washing sea sand for such salt removal, its handling is complicated, and of course, difficult treatment is required for dehydration after salt removal washing. shall be.
なおこのような粒状材表面の脱水を図るために
風力を利用して粒状材を飛散し、この飛散した粒
状材の衝撃力で脱水させることが特開昭53−
54358号に提案されているが、この場合には相当
に強い風力を必要とすることは明らかで、この風
力が設備のケーシング内で乱流し且つ設備の周辺
に噴出することは当然で、単に設備から噴出する
ものだけでも台風なみの風力またはそれ以上であ
る。即ち仮に工場内で実施すると工場内が台風の
ように吹き荒れることになり、屋外で実施しても
周辺の土砂を吹き飛ばせ、作業者が設備に近寄る
ことも困難な程で、ケーシング内ではそれ以上に
強い圧力気流が発生し、粒状材の衝撃反転後にお
ける挙動も乱れ、特に砂粒の場合にはケースから
の噴出気流で砂粒がケース外に吹き飛ばされ、そ
の処理結果が大きく乱れると共に作業自体も不安
定なものとならざるを得ない。 In order to dehydrate the surface of such granular materials, Japanese Patent Laid-Open Publication No. 1983-1989 discloses that the granular materials are dispersed using wind power, and the water is dehydrated by the impact force of the scattered granular materials.
This is proposed in No. 54358, but it is clear that this would require a fairly strong wind force, and it is natural that this wind flow would flow turbulently within the casing of the equipment and blow out around the equipment. The force ejected from the typhoon alone is as strong as a typhoon, or even stronger. In other words, if it were carried out inside a factory, the inside of the factory would be blown up like a typhoon, and even if it was carried out outdoors, it would blow away the surrounding earth and sand, making it difficult for workers to get close to the equipment. A strong pressure airflow is generated, and the behavior of the granular material after the impact is reversed is also disturbed. Especially in the case of sand grains, the sand grains are blown out of the case by the airflow from the case, which greatly disrupts the processing results and makes the work itself unstable. It has to be stable.
本発明者等は前記した原特許第1389070(以下原
発明という)を提案し上記したような砂などの細
骨材を遠心力を利用して殊更に風力などを利用し
ないで飛散せしめ、この分散飛行粒子を板面に衝
突させ、該衝突時の衝撃力によつて附着水分を衝
突板面に移行させ、細骨材を板面から反転落下さ
せて附着水分を調整することを創案し、上記のよ
うな粒子の衝撃時において完全な粒子からの脱水
をなし得ないとしてもケース内気流などによつて
粒子挙動の乱されることが少なく一般的に粒子に
残留する水量は上記した飛行速度、遠心力に反比
例し、従つて遠心力の程度を適当に選ぶことによ
り衝撃板から反転落下する砂粒の附着水量を略一
定化させることも提案したが、この方法の場合に
おいて衝突板面に衝撃反転する細粒材のロスがそ
れなりに生じ、成程飛行方向などについて検討し
ても一部の細粒材が充分な歩留りを得難い傾向を
有している。 The present inventors have proposed the above-mentioned original patent No. 1389070 (hereinafter referred to as the original invention) to disperse fine aggregate such as sand using centrifugal force without using wind power or the like, and to disperse this material. We invented a method in which flying particles collide with the board surface, the impact force at the time of the collision causes adhering moisture to be transferred to the impact board surface, and fine aggregate is reversely dropped from the board surface to adjust the adhering moisture. Even if it is not possible to completely remove water from the particles during a particle impact, the behavior of the particles is less likely to be disturbed by air currents inside the case, etc., and the amount of water remaining on the particles is generally determined by the flight speed mentioned above. Since it is inversely proportional to the centrifugal force, it has also been proposed that by appropriately selecting the degree of centrifugal force, the amount of water attached to the sand grains falling from the impact plate can be made approximately constant. A certain amount of fine grain material is lost, and even when considering the direction of flight, it tends to be difficult to obtain a sufficient yield of some fine grain materials.
本発明はこのような実情に鑑み更に検討を重ね
て創案されたものであつて前記原発明の技術手法
に従うに当つてその衝撃壁面に区分手段を設け、
壁面にそつて運動する細粒材の壁面からの離脱を
図ることにより好ましい歩留り向上を得しめるも
のである。 The present invention was devised after further study in view of the above circumstances, and in accordance with the technical method of the original invention, a dividing means is provided on the impact wall surface,
By separating the fine grain material moving along the wall surface from the wall surface, a favorable improvement in yield can be achieved.
蓋し上記したような本発明装置の1例は添付図
面に示す通りであつてホツパーのような細粒材供
給手段1の下方が遠心力附与手段たる回転円板2
が取付けられ、即ちこの回転円板2の中央部には
ホッパ1からの装入口11が臨ませられると共に
その周側部に分散片7が配設されており、しかも
このような回転円板2は前記供給手段1の装入口
外側に対して回転自在に設けられた軸筒12に連
結されたものであつて、該軸筒12は固定筒13
に対してベアリング3を介装して組付けられ、又
この軸筒12の上部に取付けられたプーリ15は
モータ4のプーリ5との間にベルト14が懸回さ
れていて所要の速度で回転されるように成つてい
る。然して上記したような回転円板2の周側には
適当な距離を採つて衝突部体たる環状の衝突板6
がケーシング10内の下拡がりに傾斜した釣鐘状
の誘導部体9に対して適宜に装脱可能に設けら
れ、該誘導部体9の下部には区分手段8,8a,
8bが多段に環設され最下段の区分手段8bは上
記誘導部体9の下方域を上記ケーシング10と相
俟つて、実質的に密閉するように成つており、こ
の区分手段8bに連結板18を以て他の区分手段
8a,8が段設されることは図示の通りである。 An example of the apparatus of the present invention as described above is as shown in the attached drawing, in which a rotating disk 2 serving as a centrifugal force imparting means is located below a fine grain material supplying means 1 such as a hopper.
In other words, the charging port 11 from the hopper 1 faces the center of the rotating disk 2, and the dispersing piece 7 is arranged on the peripheral side thereof. is connected to a shaft cylinder 12 rotatably provided outside the charging port of the supply means 1, and the shaft cylinder 12 is connected to a fixed cylinder 13.
A belt 14 is suspended between the pulley 15 attached to the upper part of the shaft cylinder 12 and the pulley 5 of the motor 4, and the pulley 15 rotates at a required speed. It is designed to be done. However, on the circumferential side of the rotating disk 2 as described above, an annular collision plate 6 serving as a collision part is arranged at an appropriate distance.
are provided in the casing 10 so that they can be attached to and removed from the bell-shaped guiding body 9 that extends downward, and the lower part of the guiding body 9 is provided with dividing means 8, 8a,
8b are arranged in a ring in multiple stages, and the lowermost dividing means 8b is configured to substantially seal the lower area of the guide member 9 together with the casing 10, and the connecting plate 18 is connected to the dividing means 8b. As shown in the figure, the other dividing means 8a, 8 are arranged in stages.
各区分手段8〜8bの上端はナイフ状に形成さ
れ、この部分が誘導部体9のの内面に対し少くと
も液体及び空気を通過させる程度の間隙を採つて
対設されることは図示の通りであり、誘導部体9
面に沿つて運動する細粒材を該壁面から離脱させ
るように成つている。 As shown in the figure, the upper end of each of the dividing means 8 to 8b is formed into a knife shape, and this portion is opposed to the inner surface of the guide member 9 with a gap that is at least large enough to allow liquid and air to pass through. and the guide member 9
The fine grain material moving along the surface is separated from the wall surface.
なお上記したような回転円板2の外周には場合
によつてはその周側部を少許下向きに屈曲させた
環状の回転板2aを仮想像で示すように添設して
もよく、この場合においては砂粒の飛散がそれな
りに下向きに行われることとなり、衝突板6の設
定位置はより下方となるが、特別に分散片7を配
設しなくも円板2面で展開された砂粒に対しその
飛散離脱に際してその下向屈曲域における砂粒の
摩擦作用と相俟つて有効な遠心力附与を図ること
ができる。然してこのような場合の各区分手段8
〜8bの誘導部体9面との間隔は図示の場合より
更に小とすることにより砂粒の好ましい離脱が図
られ、上記同様の作用を得しめることができる。
又ホツパー1に対してはベルトコンベアの如きを
前置して砂粒を連続的に送入する。 In some cases, an annular rotating plate 2a with its peripheral side bent slightly downward may be attached to the outer periphery of the rotating disk 2 as described above, as shown in the virtual image. In this case, the sand grains are scattered downward to some extent, and the setting position of the collision plate 6 is lower, but even if the dispersion piece 7 is not specially installed, the sand grains spread on the two surfaces of the disk can be scattered. When the sand particles scatter and separate, an effective centrifugal force can be applied in combination with the frictional action of the sand grains in the downward bending region. However, in such a case, each sorting means 8
By making the distance between .about.8b and the surface of the guide member 9 smaller than that shown in the figure, the sand grains can be preferably separated, and the same effect as described above can be achieved.
A belt conveyor or the like is installed in front of the hopper 1 to continuously feed sand grains.
なお後述する実施例のように上記したような装
置において好ましい運転条件を採用するならば上
記した装置において誘導部体9面にそい排出する
ものは水分と実質的泥分となるから、このものは
そのまま放流してもよい。 Furthermore, if preferred operating conditions are adopted for the above-mentioned device as in the embodiment described later, what is discharged along the guiding part 9 surface in the above-mentioned device will be water and substantial mud. It may be released as is.
然し適用される砂粒などの性状如何によりこの
ように好ましい運転条件が常に得られない場合も
あり、斯様な場合には誘導部体9の下端から区分
手段8bの外部に落下したものを適宜に沈降分離
その他の処理をなしてその細粒材を分取し、これ
をコンベアなどによつてホツパー1に装入し再処
理を行い得ることは勿論である。又本発明の処理
によつて細粒材から除去された水分はこれを単に
放流することなく、これを適宜に回収利用するこ
とができ、例えば水分調整された該細粒材のその
後のモルタル又はコンクリート混練用に利用す
る。 However, such favorable operating conditions may not always be obtained depending on the properties of the applied sand grains, etc. In such cases, the material that has fallen from the lower end of the guiding member 9 to the outside of the separating means 8b may be appropriately removed. Of course, it is possible to carry out sedimentation separation or other treatment to separate the fine granules, and charge them into the hopper 1 using a conveyor or the like for reprocessing. In addition, the moisture removed from the fine granule material by the treatment of the present invention can be recovered and used as appropriate without simply discharging it. Used for concrete mixing.
蓋しこれらの関係をも考慮した具体的な装置は
第2図に示す通りであつて、第1図に示したよう
な装置における誘導部体9の下方に受 19を若
干傾斜させて環設し、又区分手段8bの下方は図
示のように絞り、これに搬出ベルトコンベア20
を配設し、調整処理された砂が絞り口20aにお
いて常に若干堆積された状態でコンベア20で搬
出することによりこの区分手段8a内を実質的に
密閉状態とするようにし、然して上記受樋19の
傾斜した下位部分に放流口19aを設けて排水槽
18内に設けられたホツパー状の受器17内に細
粒材から除去された水を落し込むように成つてい
る。又このような受器17の底部には掻上片21
aの配設された所謂むかでコンベアの如き掻上コ
ンベア21が設けられ、受器17の底部に沈降し
た固形分を排水槽18の外部に掻上げるようにさ
れ、しかも排水槽18には別に吸入口23を有す
る送水管22が設けられていて所要の揚水機構
(図示せず)で揚水し前記したようなモルタル又
はコンクリートを混練するための混合機部分に送
るように成つており、前記排水槽18の一側には
水位レベル検出機構24を有する給水管25が設
けられていて常に該排水槽18の水位レベルを一
定とするように成つている。上記した送水管22
は場合によつては受樋19部分に導いて該受樋1
9内を清掃するように注水せしめ、或いはホツパ
ー1に送入するコンベア30の基部に導いてホツ
パー1に送り込まれる細粒材に予め加水する目的
に利用され得る。即ち本発明によるものが結局は
衝撃力を利用して細粒材の表面附着水を除去する
ものであつて、この除去すべき水を事前に殊更に
加水することは無意味のようであるけれども場合
によつては除去調整された水分値に達しない転燥
状態の細粒材である場合があり、この場合には折
角の除去調整処理によつても一様な水分値となら
ない。又各細粒材にそれなりの泥分が混入してい
ることが避けられず、この泥分は粘性を有するの
で衝撃板6面に粘着する可能性が特に被処理細粒
材の水分値が低い場合に高いから、このような場
合に被処理細粒材の水分量を予め高めておくこと
は頗る有意であり、即ち細粒材から除去され壁面
を流下する水によつて衝突板6面などに凝着しよ
うとする泥分なども流下させることができる。 A concrete device that takes these relationships into consideration is as shown in FIG. In addition, the lower part of the sorting means 8b is constricted as shown in the figure, and the discharge belt conveyor 20 is connected to this.
is disposed, and the conditioned sand is always carried out by the conveyor 20 in a state in which it is slightly accumulated at the throttle opening 20a, so that the inside of this sorting means 8a is substantially sealed, and the receiving gutter 19 A discharge port 19a is provided at the lower inclined portion of the drain tank 19 so that water removed from the fine granule material is allowed to fall into a hopper-shaped receiver 17 provided in a drainage tank 18. Furthermore, a scraping piece 21 is provided at the bottom of such a receiver 17.
A scraping conveyor 21, such as a so-called water conveyor, is provided to scrape up the solid matter that has settled at the bottom of the receiver 17 to the outside of the drain tank 18. A water pipe 22 having a port 23 is provided, and is adapted to lift water by a necessary water pumping mechanism (not shown) and send it to a mixer section for mixing mortar or concrete as described above, and is adapted to send water to the mixing machine section for kneading mortar or concrete as described above. A water supply pipe 25 having a water level detection mechanism 24 is provided on one side of the drain tank 18 so as to keep the water level of the drain tank 18 constant at all times. Water pipe 22 mentioned above
In some cases, it may be guided to the receiving gutter 19 part and the receiving gutter 1
It can be used for the purpose of injecting water to clean the inside of the hopper 9, or for pre-adding water to the fine granule material that is guided to the base of the conveyor 30 and fed into the hopper 1. That is, the present invention ultimately uses impact force to remove water adhering to the surface of fine granular material, and it seems pointless to add water to the water to be removed in advance. In some cases, the fine grain material may be in a tumbled state that does not reach the moisture content adjusted for removal, and in this case, the moisture content will not be uniform even if the removal adjustment treatment is carried out. In addition, it is inevitable that each fine grain material contains a certain amount of mud, and since this mud has viscosity, there is a possibility that it will stick to the 6 surfaces of the impact plate.Especially, the moisture value of the fine grain material to be treated is low. In such cases, it is very important to increase the moisture content of the fine grain material to be treated in advance.In other words, water that is removed from the fine grain material and flows down the wall surface can cause damage to the six surfaces of the collision plate, etc. It also allows mud and other particles that tend to adhere to the surface to flow down.
更にこのように衝突板6部分に泥分などの凝着
する可能性の高い場合には第2図実施態様で示す
ようにホツパー1の上方に設けられたモータ4a
で駆動される垂軸27をこの衝突板6部分まで垂
下し、該垂軸27に清掃片28を配設して緩徐な
垂軸27の回転(例えば毎分10回以下)で衝突板
6部分の掻取清掃を行わせることができる。蓋し
粘着性の高い泥分凝着層がこの衝突板6面部分に
形成されるようなことはそれが緩衝層となつて折
角の衝撃エネルギーを利用した調整効果を損うこ
ととなり、又その泥分などによる凝着層に細粒材
自体が補着され衝撃反転されなくなる可能性も高
くなるが、斯様な泥分附着量の高いような細粒材
の場合においても前記のような清掃片28による
清掃を適宜に行わせることによりそれらの不利の
ない水分調整処理を有効に実施することができ
る。 Furthermore, if there is a high possibility that mud or the like will adhere to the collision plate 6, the motor 4a installed above the hopper 1 will be moved as shown in the embodiment in FIG.
A vertical shaft 27 driven by the vertical shaft 27 is suspended down to the collision plate 6 portion, and a cleaning piece 28 is arranged on the vertical shaft 27, and the collision plate 6 portion is rotated slowly (for example, 10 times or less per minute) of the vertical shaft 27. It is possible to perform scraping cleaning. If a highly sticky mud adhesion layer is formed on the 6th surface of the collision plate, it will act as a buffer layer and impair the adjustment effect that utilizes the impact energy. There is a high possibility that the fine-grained material itself will be adhered to the adhesion layer due to mud etc., and the impact will not be reversed. By appropriately performing cleaning with the piece 28, moisture adjustment processing can be effectively carried out without these disadvantages.
なお上記のような垂軸27には必要に応じてス
クリユー29を設け、ホツパー1からの細粒材を
回転円板2上に定常的に供給するようにする。即
ち回転円板2に供給される細粒材の量が極端に変
動することが一定状態の水分調整を得る上におい
て好ましくないことは明かであり、回転円板2と
は別のモーター4aによる駆動で該定常供給を図
ることにより好ましい供給と操業が得られること
となる。 Incidentally, a screw 29 is provided on the vertical shaft 27 as described above, if necessary, so that the fine grain material from the hopper 1 is constantly supplied onto the rotating disk 2. That is, it is clear that extreme fluctuations in the amount of fine grain material supplied to the rotating disk 2 are not preferable in terms of achieving constant moisture control, and it is not desirable to have the rotating disk 2 driven by a motor 4a separate from the rotating disk 2. By aiming at the steady supply, favorable supply and operation can be obtained.
上記したような装置による本発明による具体的
な調整例について述べると以下の通りである。 A specific example of adjustment according to the present invention using the above-mentioned apparatus will be described below.
調整例 1
上記した図面に示すような装置によつて附着水
量の4%〜25%の範囲で種々に異る千葉県君津産
出の含水中目川砂(吸水率2.25%、粗粒率3.27
%)を供給し、回転円板2としては径450mmのも
のを用い、この回転円板2をモータ4によつて毎
分1250回転の速度で回転させ、供給された砂粒を
衝突板6に対して衝突せしめた。ホツパー1に対
する砂粒供給速度は含水砂として25m2/hrとし、
ホツパー1に送入するコンベア上で5〜40/
minの散水をなしつつ供給させたが、上記したよ
うな回転円板2の回転条件下において区分手段8
b内下部に堆積した砂をその密閉条件が堆積砂で
確保させつつコンベアで搬出された砂を毎分サン
プリングしその含有水量を測定した結果は8.79〜
8.93%の範囲内であり、附着水量としては6.54〜
6.58%の略完全状態で一定したものであることが
確認され、更にその回収量は24.1m2/hrで歩留り
は96.2%に達し、減量分は実質的に泥分と認めら
れた。Adjustment example 1 Using the equipment shown in the drawing above, the water-containing Megawa sand produced in Kimitsu, Chiba Prefecture, which varies in the range of 4% to 25% of the amount of attached water (water absorption rate 2.25%, coarse grain rate 3.27)
%), a rotating disk 2 with a diameter of 450 mm is used, and the rotating disk 2 is rotated by the motor 4 at a speed of 1250 revolutions per minute, and the supplied sand grains are struck against the collision plate 6. caused a collision. The sand grain supply rate to hopper 1 is 25 m 2 /hr as water-containing sand.
5 to 40/ on the conveyor feeding into hopper 1
Water was supplied to the separating means 8 under the rotational conditions of the rotating disk 2 as described above.
While ensuring that the sand deposited in the lower part of b is sealed by the deposited sand, the sand carried out by the conveyor is sampled every minute and the water content is measured.The results are 8.79 ~
It is within the range of 8.93%, and the amount of attached water is 6.54 ~
It was confirmed that the recovery rate was 6.58%, which was almost completely constant, and the recovered amount was 24.1 m 2 /hr, and the yield reached 96.2%, and the reduced amount was recognized to be essentially mud.
又上記したところと同じ条件で回転円板2の回
転速度を毎分1500回転と前記の場合より高速とし
たときにおいて搬出された砂のサンプリングに関
する含水量測定結果は6.92〜7.04%(附着水量
4.66〜4.77%)であり、更に該回転速度を1750
回/minとした場合は含水率5.79〜5.88%(附着
水量3.53〜3.62%)であつて、何れの場合もその
附着水量がより低く、しかもばらつき斑囲がより
狭い範囲内で一定化していることが確認され、そ
の回収量は1500rpmのときは24.28m2/hr、
1750rpmのときが24.52m3/hrであつた。 Furthermore, under the same conditions as above, when the rotational speed of the rotating disk 2 was set to 1500 revolutions per minute, which was higher than in the above case, the moisture content measurement results for the sampling of sand carried out were 6.92 to 7.04% (the amount of water deposited).
4.66~4.77%), and the rotation speed is further increased to 1750%.
times/min, the water content is 5.79 to 5.88% (the amount of attached water is 3.53 to 3.62%), and in each case, the amount of attached water is lower, and the variation area is constant within a narrower range. It was confirmed that the recovery amount was 24.28m 2 /hr at 1500rpm,
At 1750 rpm, it was 24.52 m 3 /hr.
調整例 2
前記した調整例1におけると同じ装置で広島県
産出の中目海砂(吸水率2.46%、粗粒率2.62%、
で塩分含有量0.33%)を処理し、この場合におい
てホツパーに対するコンベア上において毎分30
の水を添加して処理した。Adjustment Example 2 Using the same equipment as in Adjustment Example 1 above, medium-sized sea sand produced in Hiroshima Prefecture (water absorption rate 2.46%, coarse grain rate 2.62%,
with a salt content of 0.33%) and in this case 30% per minute on the conveyor to the hopper.
of water was added for treatment.
即ちこのときにおいて上記実施例における前段
で示した回転円板2の回転条件下では得られたサ
ンプリングの含有水が8.56〜8.71%(附着水量
6.40〜6.55%)であつて同じ回転条件でも中目砂
たることから附着水量が低くなつており、又その
塩分含有量が0.03%であつてそのまま充分に生モ
ルタル又は生コンクリート調整用として利用し得
ることが確認され、回収量は23.8m3/hrであつ
た。 That is, at this time, under the rotation conditions of the rotating disk 2 shown in the previous section of the above example, the water content of the obtained sampling was 8.56 to 8.71% (the amount of water landed).
6.40 to 6.55%), and even under the same rotation conditions, the amount of water deposited is low because it is medium-sized sand, and its salt content is 0.03%, so it can be used as it is for preparing fresh mortar or ready-mixed concrete. It was confirmed that the amount recovered was 23.8 m 3 /hr.
同様に実施例1後段の回転条件のときのサンプ
リング含有水測定値は1500rpmのときが6.76〜
6.83%(附着水量4.30〜4.37%)であり、
1750rpmのときが5.51〜5.58%(附着水量3.05〜
3.12%)であつて前記同様にばらつきの少い結果
を得ることができしかもこれらのときの塩分含有
量は0.028%、0.027%であつて何れもそのままコ
ンクリート用に供し得ることは勿論であつた。 Similarly, the measured value of sampled water under the latter rotation conditions of Example 1 was 6.76 to 6.76 at 1500 rpm.
6.83% (accompanying water landing amount 4.30-4.37%),
5.51~5.58% at 1750 rpm (attached water amount 3.05~
3.12%), and similar results were obtained with little variation, and the salt content in these cases was 0.028% and 0.027%, which of course could be used for concrete as is. .
なおこの場合において、従来の除塩処理技術に
従い清水によつてその塩分を除去する洗滌をなす
には少くとも被処理海砂の容積と同じ量以上の清
水による洗滌操作が必要であつて上述した調整例
に相当する25m3の海砂を処理するには25〜80m3の
清水が消費される。これに対して上記した本発明
の場合においては30×60(分)であつて、必要
な水量は僅かに1.8m3/hrであり、清水消費量が
大幅に縮減される。 In this case, in order to perform washing to remove the salt with fresh water according to the conventional salt removal treatment technology, it is necessary to perform a washing operation with at least the same amount of fresh water as the volume of the sea sand to be treated, as described above. To process 25 m 3 of sea sand corresponding to the adjustment example, 25-80 m 3 of fresh water is consumed. On the other hand, in the case of the present invention described above, the required water amount is only 1.8 m 3 /hr, which is 30×60 (minutes), and the amount of fresh water consumed is significantly reduced.
しかも上記した従来法の除塩処理はスプリンク
ラー又は単なる散水のような手法によるもので除
塩効果が相当にばらつき、例えば平均値が0.03%
となつても具体的には例えば0.002〜0.150%のも
のであり、工業的に好ましい範囲とされる0.04%
以下の要件を満たされないものが相当に混入して
いるが本発明の上記調整例の場合はコンベア上で
均等に加水されること、衝撃分離が均等且つ的確
に行われることから0.007〜0.038%であつてその
ばらつき範囲が少く、この点からしても好ましい
ものであることが知られた。 Moreover, the conventional salt removal treatment described above uses sprinklers or simple watering, and the salt removal effect varies considerably, for example, the average value is 0.03%.
Specifically, for example, it is 0.002 to 0.150%, and 0.04% is considered to be an industrially preferable range.
Although a considerable amount of substances that do not meet the following requirements are mixed in, in the case of the above adjustment example of the present invention, water is added evenly on the conveyor and impact separation is performed evenly and accurately, so it is 0.007 to 0.038%. It has been found that the range of variation is small, which is preferable from this point of view as well.
調整例 3
粗粒率2.53%、吸水率2.90%の水滓スラグ砕砂
を調整例1において記載したところと同様に処理
した。Preparation Example 3 Crushed water slag slag sand having a coarse grain ratio of 2.53% and a water absorption rate of 2.90% was treated in the same manner as described in Preparation Example 1.
即ち1250rpmのときは毎分行われたサンプリン
グの含有水が8.99〜9.27%(附着水6.09〜6.37%)
であり、1750rpmのときは含有水が6.19〜6.28%
(附着水4.29〜4.38%)であつて、回収量につい
ては1250rpmのときが24.0m3、1500rpmのときが
24.3m3、1750rpmのときが24.51m3であつた。 In other words, at 1250 rpm, the water content of sampling conducted every minute is 8.99 to 9.27% (6.09 to 6.37% of attached water).
At 1750rpm, the water content is 6.19~6.28%
(4.29 to 4.38% of attached water), and the amount of recovered water is 24.0 m 3 at 1250 rpm and 24.0 m 3 at 1500 rpm.
24.3m 3 , and 24.51m 3 at 1750 rpm.
上記したような水分調整材を用いて行う利用法
についての具体例を示すと次の通りである。 Specific examples of how to use the moisture regulating material as described above are as follows.
利用例 1
従来一般法に従つてセメントモルタルを調整す
べく絶乾に近い千葉県君津産中目川砂を用い、セ
メントを956Kg/m3とし、C:S=1:1cm2で
W/Cを35%、リグニンスルフオン酸系分散剤を
7.65Kg/m3の割合で混練されたものは相当に気泡
発生が認められ、このものの流動性はJロートで
42秒であり、ブリージング率は3時間後で6%で
あつて、又このモルタルによる成形体の3日後圧
縮強度は375Kg/cm2、7日後で489Kg/cm2、28日後
では563Kg/cm2であつた。なおこの28日後におけ
る変動係数は15.3%である。Application example 1 To adjust cement mortar according to the conventional general method, we used near-dry Nakamegawa sand from Kimitsu, Chiba Prefecture, the cement was 956Kg/ m3 , and the W/C was C:S=1: 1cm2 . 35%, lignin sulfonic acid dispersant
The product kneaded at a ratio of 7.65Kg/m 3 was found to have considerable air bubbles, and the fluidity of this product was
42 seconds, the breathing rate was 6% after 3 hours, and the compressive strength of the molded product made from this mortar after 3 days was 375 Kg/cm 2 , 489 Kg/cm 2 after 7 days, and 563 Kg/cm 2 after 28 days. It was hot. The coefficient of variation after 28 days is 15.3%.
これに対し上記と同じ中目砂を本発明による水
分調整処理を調整例1で記載したところと同じに
回転円板を1750rpmで回転させたものの表面附着
水は3.53%であり、このような川砂に対し、前記
したところと同じセメント量、C/sおよびW/
Cの関係となるように残部の水(上記表面附着水
量を差引いて)と分散剤とを添加混合したモルタ
ルの流動性はJロートで13secであり、3時間後
のフリージング率は0.5%であつた。又斯かるモ
ルタルにより成形された製品の3日後圧縮強度は
532Kg/cm2、7日後で698Kg/cm2、28日後では790
Kg/cm2であり、その変動係数は4.8%であつた。 On the other hand, when the same medium-sized sand as above was subjected to the water adjustment treatment according to the present invention and the rotating disk was rotated at 1750 rpm as described in Adjustment Example 1, the water adhering to the surface was 3.53%. However, the same amount of cement, C/s and W/ as mentioned above
The fluidity of the mortar prepared by adding and mixing the remaining water (subtracting the amount of water adhering to the surface above) and a dispersant so as to satisfy the relationship C is 13 sec in a J-funnel, and the freezing rate after 3 hours is 0.5%. Ta. The compressive strength of the product molded with such mortar after 3 days is
532Kg/cm 2 , 698Kg/cm 2 after 7 days, 790 after 28 days
Kg/cm 2 and its coefficient of variation was 4.8%.
更に上記中目砂を同じく回転円板が1750rpmの
回転速度で水分調整し表面附着水3.53%とされた
ものに16.47%の1次水を均等に添加混合してか
らセメントをC/s=1:1となるように添加混
合して砂粒表面にW/Cが20%とされた造殻を形
成せしめ、その後に2次水15%と分散剤0.8%を
添加混練して得られたモルタルの流動性は19sec
であり、又その3時間におけるプリージング率は
零であつた。然して斯かるモルタルで形成された
製品の3日後圧縮強度は619Kg/cm2、7日後で739
Kg/cm2、28日後では855Kg/cm2であつて、変動係
数は2.2%であり、前記した従来一般法に比すれ
ば同じ配合であるに拘わらず著しい強度増大が得
られ、且つ安定した品質たることを確認できた。 Furthermore, the moisture content of the above-mentioned medium-sized sand was adjusted using a rotating disk at a rotation speed of 1750 rpm, and 16.47% of primary water was evenly added to and mixed with 3.53% of water adhering to the surface, and then cement was added to C/s = 1. : 1 to form a shell with a W/C of 20% on the surface of the sand grains, and then 15% secondary water and 0.8% dispersant were added and kneaded. Liquidity is 19sec
And the pleating rate during that 3 hours was zero. However, the compressive strength of the product formed with such mortar after 3 days was 619 Kg/cm 2 and after 7 days it was 739
Kg/cm 2 , after 28 days it was 855Kg/cm 2 and the coefficient of variation was 2.2%.Compared to the conventional general method mentioned above, a significant increase in strength was obtained despite the same formulation, and a stable I was able to confirm the quality.
利用例 2
従来一般法により利用例1におけると同じ君津
産出中目砂を用い、セメントを347Kg/m2、C/
S=1:2、C/G=1:3.6、分散剤を3.5Kg/
m3の割合で配合しW/Cを42%とされたコンクリ
ートのスランプ値は2.1cmであり、又このコンク
リートでは相当のブリージング及び気泡の発生が
目視で確認できた。Usage example 2 Using the same Kimitsu-produced medium sand as in usage example 1 using the conventional general method, cement was added at 347Kg/m 2 and C/
S=1:2, C/G=1:3.6, dispersant 3.5Kg/
The slump value of the concrete mixed at a ratio of m 3 and with a W/C of 42% was 2.1 cm, and considerable breathing and air bubbles were visually confirmed in this concrete.
然してこのコンクリートにより得られた成形物
の3日後圧縮強度は208Kg/cm2、7日後で284Kg/
cm2、28日後では334Kg/cm2であつて、その変動係
数は17.4%であつた。 However, the compressive strength of the molded product obtained with this concrete was 208 Kg/cm 2 after 3 days, and 284 Kg/cm 2 after 7 days.
cm 2 was 334 Kg/cm 2 after 28 days, and its coefficient of variation was 17.4%.
これに対し利用例1における同じ表面附着水量
を3.53%とする調整処理を行つた同じ中目砂で上
記したところと同じ配合比、組成とし混練調整さ
れたコンクリートのスランプ値は8.2cmであり、
若干の分離、ブリージングに認められるものであ
つたが、斯様なコンクリートで得られた成形体の
3日後圧縮強度は274Kg/cm2、7日後で348Kg/
cm2、28日後では482Kg/cm2であつてその変動係数
は8.2%であり、50%近い強度増大が得られてい
ると共にバラツキ範囲のそれなりに少いものであ
つた。 On the other hand, the slump value of concrete that was mixed and adjusted with the same mixing ratio and composition as described above using the same medium-sized sand that was subjected to the adjustment treatment to make the amount of water adhering to the surface 3.53% in Application Example 1 was 8.2 cm.
Although some separation and breathing were observed, the compressive strength of the compact obtained with such concrete was 274 Kg/cm 2 after 3 days and 348 Kg/cm 2 after 7 days.
cm 2 was 482 Kg/cm 2 after 28 days, and its coefficient of variation was 8.2%, indicating that an increase in strength of nearly 50% was obtained and the range of variation was relatively small.
更に上記と同じ3.53%の表面附着水調整川砂に
対し6.47%の1次水を添加混合してからセメント
量を上記と同じになるように添加し造殻部のW/
Cを20%とした造殻砂を得、このものに砂利と共
に2次水を22%と分散剤をセメント量の1%の割
合で添加混合し前記したところと同じ配合組成の
コンクリートとした。然してこのコンクリートの
スランプ値は11.6cmであり、又このコンクリート
による成形体の3日後圧縮強度は308Kg/cm2、7
日後で382Kg/cm2、28日後では513Kg/cm2であり、
且つその変動係数は5.1%であつて、更にその強
度が50%前後高められており、又ばらつき範囲の
頗る少い安定したコンクリートを得ることができ
た。 Furthermore, 6.47% primary water was added and mixed to the same 3.53% surface adhesion water adjusted river sand as above, and then the amount of cement was added to the same amount as above, and the W/
Shelling sand containing 20% C was obtained, and this was mixed with gravel, 22% secondary water, and a dispersant at a ratio of 1% of the amount of cement to obtain concrete having the same composition as described above. However, the slump value of this concrete is 11.6 cm, and the compressive strength after 3 days of a molded body made of this concrete is 308 Kg/cm 2 , 7
382Kg/cm 2 after 28 days, 513Kg/cm 2 after 28 days,
In addition, the coefficient of variation was 5.1%, and the strength was increased by about 50%, and stable concrete with a small variation range could be obtained.
利用例 3
利用例2におけると同じ配合組成のものに更に
嵩比で1.5%の鋼繊維を添加したコンクリートを
従来一般法で調整混練したものはスランプ値が
1.5cmであつて分離、ブリージングの大きいこと
が目視で確認され、このコンクリートによる成形
28日後の曲げ強度は58Kg/cm2であつた。Application example 3 Concrete with the same composition as in application example 2 with an additional 1.5% steel fiber added by bulk ratio was adjusted and kneaded using a conventional conventional method, and the slump value was
It was visually confirmed that the concrete had a diameter of 1.5 cm and had large separation and breathing.
The bending strength after 28 days was 58 Kg/cm 2 .
これに対し本発明による水分調整を行つた砂を
用い同様に鋼繊維を配合したコンクリートのスラ
ンプ値は7.4cmであり、若干の分離、ブリージン
グが認められたが、このコンクリートによる成形
体の28日後における曲げ強度は75Kg/cm2であつ
た。 On the other hand, the slump value of concrete made with sand with water content adjusted according to the present invention and steel fibers in the same manner was 7.4 cm, and some separation and breathing were observed, but after 28 days of molding of this concrete. The bending strength was 75Kg/ cm2 .
更に上記のように水分調整してから砂粒に対し
W/Cを20%とした造殻を形成させ、このものを
用いて上記と同じ配合組成とし調整された鋼繊維
入りコンクリートにおいてはスランプ値が12.8cm
で分離、ブリージングが認められず又このものに
よる成形体の28日後曲げ強度は92Kg/cm2であつ
た。 Furthermore, after adjusting the water content as described above, a shell was formed with a W/C of 20% relative to the sand grains, and in steel fiber-containing concrete prepared using this shell and having the same composition as above, the slump value was 12.8cm
No separation or breathing was observed, and the bending strength of the molded product after 28 days was 92 kg/cm 2 .
利用例 4
上記した利用例1〜3におけると同じ川砂を用
いセメントを吹付工として350Kg/m3、砂を1120
Kg/m3、粗骨材を700Kg/m3、急結剤を10.5Kg/
m3となるように乾式条件下で混合したものを高圧
空気で圧送し、このような乾式圧送物に吹付ノズ
ル部でW/Cが50%となるように水を添加し直角
壁面(側壁面)に吹付施工した場合におけるリバ
ウンド量は約35%で、又トンネル内粉塵発生量は
約750CPMであつた。又該吹符工の28日後におけ
る圧縮強度は232Kg/cm2であり、その変動係数は
14.5%であつた。Usage example 4 Using the same river sand as in usage examples 1 to 3 above, spraying cement at 350Kg/m 3 and sand at 1120Kg/m3.
Kg/m 3 , coarse aggregate 700Kg/m 3 , quick setting agent 10.5Kg/
m 3 is mixed under dry conditions and pumped with high pressure air, water is added to the dry pumped material so that the W/C is 50% at the spray nozzle part, ), the rebound amount was approximately 35% and the amount of dust generated inside the tunnel was approximately 750 CPM. The compressive strength of the pipework after 28 days is 232Kg/ cm2 , and its coefficient of variation is
It was 14.5%.
これに対し上記したものと同じ川砂を利用例1
〜3と同じに表面附着水を3.53%に調整した川砂
を用いた場合には同じ配合組成および吹付施工条
件でのリバウンド量が18%となり、しかもその粉
塵発生量は340CPMであり、且つその吹付工の28
日後圧縮強度は363Kg/cm2、その変動係数は5.3%
であつた。 On the other hand, example 1 of using the same river sand as above.
When using river sand with the surface adhesion water adjusted to 3.53% in the same way as in ~3, the rebound amount was 18% under the same composition and spraying conditions, and the amount of dust generated was 340CPM, and the spraying 28 of engineering
Compressive strength after 363Kg/cm 2 and its coefficient of variation is 5.3%
It was hot.
更に上記の表面附着水率3.53%とされた川砂を
用い、C/sが1:1となるモルタルを得るに当
つて前記川砂に造殻層のW/Cが20%の造殻を形
成してからW/C=34.2%で分散剤が0.6%(セ
メント量に対し)として調整された流動性のよい
モルタルを一方の管路で圧送し、他方の管路では
吹付工としてC/sが1:3.01、S/A(Aは粗
骨材、即ちAggricate)が56%となるように上記
同様に水分3.53%に調整された砂と粗骨材を乾式
条件で圧送し、これらのものを急結剤などでノズ
ル部において一方の管路からの発送量1部に対し
他方の管路から圧送量を1.75部の割合で混合させ
垂直壁面に吹付施工した。この吹付コンクリート
におけるW/Cは42%でセメント量は352Kg/m3
のものであり、吹付時のリバウンド量は8.9%、
粉塵発生量は72CPMであつて、吹付け28日後の
圧縮強度は542Kg/cm2、変動係数は3.2%のもので
あつて、強度においては従来一般法の倍以上、変
動係数では5分の1近くに縮限された好ましい吹
付施工をなすことができた。 Furthermore, using river sand with a surface adhesion rate of 3.53%, a shell with a W/C of 20% was formed in the river sand to obtain a mortar with a C/s of 1:1. Then, a mortar with good fluidity adjusted to W/C = 34.2% and a dispersant of 0.6% (based on the amount of cement) is pumped through one pipe, and the other pipe is sprayed with C/s. Sand and coarse aggregate, whose moisture content was adjusted to 3.53% in the same manner as above, were pumped under dry conditions so that S/A (A is coarse aggregate) was 56%. A quick-setting agent or the like was mixed at the nozzle at a ratio of 1 part delivered from one pipe to 1.75 parts pumped from the other pipe, and the mixture was sprayed onto a vertical wall. The W/C in this shotcrete is 42% and the amount of cement is 352Kg/m 3
The rebound amount during spraying is 8.9%,
The amount of dust generated is 72 CPM, the compressive strength after 28 days of spraying is 542 Kg/cm 2 , and the coefficient of variation is 3.2%, which is more than twice the strength of conventional general methods and one-fifth of the coefficient of variation. We were able to carry out preferable spraying work that was limited to nearby areas.
以上説明したような本発明によれば砂その他の
細粒材に関してその附着水分を風力その他に妨害
されることの少ない条件で有効に調整することが
できるものであり、それによつて従来技術におい
て適正配合比を実地的に求め得なかつた砂などの
細粒材に関し常に好ましい配合関係を得しめその
製品強度を夫々の配合比条件下において最高状態
となし又ばらつき範囲の少い安定した品質の製品
を得しめることが可能となるものであり、しかも
このような処理を量産的に行わせても処理時にお
けるロス量が少く工業的に有利な調整処理を円滑
に実施することができるものであつて工業的にそ
の効果の大きい発明である。 According to the present invention as explained above, it is possible to effectively control the adhering moisture of sand and other fine-grained materials under conditions where there is little interference from wind force or other forces, thereby making it possible to effectively control the adhering moisture of sand and other fine-grained materials. For fine-grained materials such as sand whose compounding ratio could not be determined practically, we always obtain a favorable compounding relationship, and the product strength is the highest under each compounding ratio condition, and the product is of stable quality with a small range of variation. Moreover, even if such a process is mass-produced, the amount of loss during the process is small, and the adjustment process that is industrially advantageous can be carried out smoothly. This invention has great industrial effects.
追加の関係
本発明は原特許第1389070号(特公昭61−57050
号)の改良に係るものであり、即ち附着水を有す
る砂などの細粒材を飛散せしめ、この飛散細粒材
を壁面に衝突させ、該衝突時の衝撃力で細粒材面
附着水分の離脱を図ることにおいてはこの原発明
と同様であるが、本発明においてはこのような衝
突壁面と連続した壁面に対して所要の間隙を採つ
て添設された区分手段を用い該壁面に略そつて運
動する細粒材をその壁面から離脱させることによ
り、該処理を受ける細粒材の回収率を有効に高め
得、実質的に泥分その他の不純分を分離したよう
な細粒材として回収することがきるものであつ
て、更には上記のような区分手段で処理室内外を
区分し実質上密閉条件で処理させることにより処
理雰囲気を適当に高圧化し飛散する細粒材に伴つ
て区分手段の端部と壁面との間隙を通過するよう
に得られる空気の流れによる除水効果の如きも適
切に得られることから調整効率を高め、ばらつき
範囲のより狭い好ましい調整結果を得しめること
ができるものであり、従つて又このようにして精
度高く含有量、附着水量の調整された砂などを生
モルタル又は生コンクリート用に供することによ
りそのW/C、S/Cその他の配合関係も適生に
決定されることから斯様な生モルタル又は生コン
クリートによる成品の強度その他を充分に措信し
得るものとなり、特に斯かる砂のような細粒材の
表面に対し適量のセメント等の附着造殻せしめた
ものを用いるような多段行程を経しめるような場
合において夫々の行程における必要水量を的確に
得しめるだけでなしに該造殻を理想的に得しめる
ための水量を合理的に得しめて所期の目的を常に
最高状態に達成し得るなどの特質を得しめるもの
であるから前記原発明の改良に係るものである。
駆動エネルギーに所期の調整処理を円滑に行わせ
得るものであり、設備的にもコンパクトなもので
足り、大量に必要とされる砂などに対する管理手
法として頗る有効適切なものであるから工業的に
その効果の大きい発明である。Additional Relationship The present invention is disclosed in original patent No. 1389070 (Japanese Patent Publication No. 61-57050).
In other words, fine-grained materials such as sand with attached water are scattered, the scattered fine-grained materials are caused to collide with a wall surface, and the impact force at the time of the collision removes the moisture attached to the surface of the fine-grained materials. The method of detachment is similar to the original invention, but in the present invention, a partitioning means attached to a wall surface continuous with the colliding wall surface with a required gap is used to approximately disengage from the wall surface. By separating the moving fine-grained material from the wall surface, the recovery rate of the fine-grained material subjected to the treatment can be effectively increased, and the fine-grained material can be recovered as fine-grained material from which mud and other impurities have been substantially separated. In addition, the above-mentioned separation means is used to separate the inside and outside of the processing chamber, and the processing is performed under substantially closed conditions, thereby appropriately increasing the pressure of the processing atmosphere and separating the fine particles as they are scattered. Since the water removal effect caused by the air flow passing through the gap between the end of the wall and the wall surface can be appropriately obtained, the adjustment efficiency can be increased and favorable adjustment results with a narrower variation range can be obtained. Therefore, by using sand whose content and adhesion amount have been precisely adjusted in this way for ready-mixed mortar or ready-mixed concrete, its W/C, S/C, and other mixing relationships can be adjusted appropriately. Since it is determined that the strength and other properties of products made from such fresh mortar or ready-mixed concrete can be fully evaluated, it is especially important to apply an appropriate amount of cement to the surface of such fine-grained materials such as sand. In cases where shelled products are used in a multi-stage process, it is possible to not only accurately obtain the amount of water required for each process, but also to reasonably obtain the amount of water necessary to ideally obtain the shelled material. This invention is an improvement on the original invention because it achieves characteristics such as being able to always achieve the intended purpose in the best possible manner.
It allows the drive energy to be adjusted smoothly, requires only compact equipment, and is extremely effective and appropriate as a management method for sand, etc., which is required in large quantities, making it suitable for industrial use. This is a highly effective invention.
図面は本発明の実施形態で示すものであつて、
第1図は本発明による装置の一例を示す断面図、
第2図はその除去された水の処理系を配設した場
合の説明図である。
然してこれらの図面において、1は細粒材供給
手段、2は遠心力付与手段たる回転円板、3はベ
アリング、4はモータ、5はプーリ、6は衝突部
体たる衝突板、7は分散片、8,8a,8bは区
分手段、9は誘導部体、10はケーシングを示す
ものである。
The drawings illustrate embodiments of the invention,
FIG. 1 is a sectional view showing an example of a device according to the present invention;
FIG. 2 is an explanatory diagram when a treatment system for the removed water is installed. In these drawings, 1 is a fine particle supply means, 2 is a rotating disk as a centrifugal force applying means, 3 is a bearing, 4 is a motor, 5 is a pulley, 6 is a collision plate as a collision member, and 7 is a dispersion piece. , 8, 8a, 8b are dividing means, 9 is a guide member, and 10 is a casing.
Claims (1)
どの細粒材を供給するための細骨材供給手段を有
し、前記遠心力付与手段に適当な間隔を採つて衝
突部体を設け、しかも該衝突部体の下方にこの衝
突部体に対し衝突反転した細骨材収集手段を設
け、更に上記衝突部体に対し所要の隙間を採つて
この衝突部体面に略そつた方向に運動する細粒材
の離脱を図るための区分手段を設けたことを特徴
とする細粒材に関する水分調整装置。1. It has a centrifugal force applying means and a fine aggregate supplying means for supplying fine grain material such as sand to the centrifugal force applying means, and a collision member is provided at an appropriate interval on the centrifugal force applying means. Moreover, a fine aggregate collection means is provided below the collision member, and a means for collecting fine aggregate is provided which is reversed by collision with the collision member, and a required gap is provided to the collision member, and the collision member is moved in a direction substantially parallel to the collision member body surface. 1. A moisture adjustment device for fine granule material, characterized in that it is provided with a separating means for separating the fine granule material.
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8080779A JPS567970A (en) | 1979-06-28 | 1979-06-28 | Method of controlling humidity of fine grains and method of utilizing humidity control substance for said grains |
DE19803009332 DE3009332A1 (en) | 1979-03-13 | 1980-03-11 | METHOD AND DEVICE FOR ADJUSTING THE QUANTITY OF LIQUID DEPOSED ON FINE AGENT, AND METHOD FOR PRODUCING MORTAR OR CONCRETE |
FR8005558A FR2457165B1 (en) | 1979-03-13 | 1980-03-12 | |
GB8008468A GB2048446B (en) | 1979-03-13 | 1980-03-13 | Drying fine granularmaterial particularly in the preparation of mortar or concrete |
CH199480A CH649225A5 (en) | 1979-03-13 | 1980-03-13 | METHOD AND DEVICE FOR ADJUSTING A QUANTITY OF LIQUID SEPARATED ON PARTICLES, AND USE OF THE METHOD. |
US06/134,210 US4384787A (en) | 1979-06-28 | 1980-03-26 | Method and apparatus for adjusting the quantity of liquid deposited on fine granular materials and method of preparing mortar or concrete |
CA000349232A CA1168523A (en) | 1979-06-28 | 1980-04-03 | Method and apparatus for adjusting the quantity of liquid deposited on fine granular materials and method of preparing mortar and concrete |
FR8017901A FR2457166B1 (en) | 1979-03-13 | 1980-08-13 | APPARATUS FOR ADJUSTING THE QUANTITY OF WATER DEPOSITED ON FINE PARTICLES, IN PARTICULAR ON SAND PARTICLES FOR THE PREPARATION OF CEMENT OR CONCRETE |
GB08230550A GB2111659B (en) | 1979-03-13 | 1982-10-26 | Adjusting the quantity of liquid deposited on fine granular material |
CA000449087A CA1185541A (en) | 1979-06-28 | 1984-03-07 | Method and apparatus for adjusting the quantity of liquid deposited on fine granular materials and method of preparing mortar or concrete |
US06/717,593 US4566799A (en) | 1979-06-28 | 1985-04-01 | Apparatus for adjusting the quantity of liquid deposited on fine granular materials and method of preparing mortar or concrete |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8080779A JPS567970A (en) | 1979-06-28 | 1979-06-28 | Method of controlling humidity of fine grains and method of utilizing humidity control substance for said grains |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS567970A JPS567970A (en) | 1981-01-27 |
JPS6345850B2 true JPS6345850B2 (en) | 1988-09-12 |
Family
ID=13728730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8080779A Granted JPS567970A (en) | 1979-03-13 | 1979-06-28 | Method of controlling humidity of fine grains and method of utilizing humidity control substance for said grains |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS567970A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57128508A (en) * | 1981-02-03 | 1982-08-10 | Ito Yasuro | Manufacture of hydraulic substance kneaded material into which foaming agent is mixed and reverse placing execution method by said kneaded material |
JPS6236501Y2 (en) * | 1981-03-20 | 1987-09-17 | ||
JPS6212643A (en) * | 1986-07-28 | 1987-01-21 | 伊東 靖郎 | Use of water content modifier on granulated material |
JP4727643B2 (en) * | 2007-11-08 | 2011-07-20 | 日本写真印刷株式会社 | Folding display stand |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5354358A (en) * | 1976-10-26 | 1978-05-17 | Yasunobu Fukuhiro | Dehydrating apparatus |
JPS5497880A (en) * | 1978-01-18 | 1979-08-02 | Hosokawa Micron Kk | Device for removing liquid |
-
1979
- 1979-06-28 JP JP8080779A patent/JPS567970A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS567970A (en) | 1981-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4384787A (en) | Method and apparatus for adjusting the quantity of liquid deposited on fine granular materials and method of preparing mortar or concrete | |
US9834476B2 (en) | Concrete composition and process | |
US4242142A (en) | Method for treating granulated blast furnace slag | |
CN108162163B (en) | High-efficient safe sieving stirring device of room tile clay raw materials | |
GB2048446A (en) | Drying fine granular material, particularly in the preparation of mortar or concrete | |
JPS6345850B2 (en) | ||
US4004782A (en) | Machine for mixing aggregate and resin | |
CN219399437U (en) | Dust collector for concrete processing | |
JPS6253466B2 (en) | ||
JPH0262366B2 (en) | ||
CN109912142A (en) | A kind of granular curing apparatus of sludge with low moisture content and prilling process | |
CN112604410B (en) | A dust collection device for cement manufacture | |
CN211913402U (en) | Cement stirring and mixing device | |
JPS6157050B2 (en) | ||
CN214359099U (en) | Material gathering prevention hopper | |
JP4126728B2 (en) | Method for producing granular improved soil | |
CA1168523A (en) | Method and apparatus for adjusting the quantity of liquid deposited on fine granular materials and method of preparing mortar and concrete | |
CA1185541A (en) | Method and apparatus for adjusting the quantity of liquid deposited on fine granular materials and method of preparing mortar or concrete | |
CN220702676U (en) | Commercial concrete production feeding mechanism | |
CN221772820U (en) | A vibrating screening device for waste gypsum treatment | |
JPS6340564B2 (en) | ||
CN118514208B (en) | Additive feeding equipment for concrete production | |
CN207793085U (en) | A kind of one-stop production system of cement | |
JPS6487B2 (en) | ||
NL8001500A (en) | METHOD AND APPARATUS FOR ADJUSTING THE QUANTITY OF LIQUID, SUBJECT TO FINE GRANULAR MATERIALS AND METHOD FOR PREPARING MORTAR AND CONCRETE. |