[go: up one dir, main page]

JPS6345292A - Production of diacetone sorbose - Google Patents

Production of diacetone sorbose

Info

Publication number
JPS6345292A
JPS6345292A JP62094060A JP9406087A JPS6345292A JP S6345292 A JPS6345292 A JP S6345292A JP 62094060 A JP62094060 A JP 62094060A JP 9406087 A JP9406087 A JP 9406087A JP S6345292 A JPS6345292 A JP S6345292A
Authority
JP
Japan
Prior art keywords
acetone
sorbose
reaction
water
diacetone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62094060A
Other languages
Japanese (ja)
Other versions
JPH0830075B2 (en
Inventor
Yoichi Oka
岡 陽一
Hitoshi Sawada
沢田 等
Masao Yokoyama
正夫 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries Ltd filed Critical Takeda Chemical Industries Ltd
Publication of JPS6345292A publication Critical patent/JPS6345292A/en
Publication of JPH0830075B2 publication Critical patent/JPH0830075B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H9/00Compounds containing a hetero ring sharing at least two hetero atoms with a saccharide radical
    • C07H9/02Compounds containing a hetero ring sharing at least two hetero atoms with a saccharide radical the hetero ring containing only oxygen as ring hetero atoms
    • C07H9/04Cyclic acetals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Saccharide Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled compound useful as an intermediate for ascorbic acid, etc., on an industrial scale at a low cost, by reacting L-sorbose under the addition of acetone having low water-content in the presence of a ketalization catalyst while distilling out produced water together with acetone. CONSTITUTION:The objective compound is produced by reacting L-sorbose with acetone in the presence of a ketalization catalyst (e.g. concentrated sulfuric acid, etc.). The reaction is carried out by charging dehydrated acetone having a water-content of <=100ppm, L-sorbose and concentrated sulfuric acid into a reactor, reacting the components in a hot bath of 45 deg.C under reduced pressure while adding dehydrated acetone having a water-content of <=100ppm to the system and distilling out acetone containing water produced by the reaction. The reaction product is neutralized with an aqueous solution of sodium hydroxide, acetone is distilled out, the obtained aqueous solution is extracted with benzene and benzene is distilled out to obtain the objective compound.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はアスコルビン酸の製造における重要な中間体で
ある2・3.4・6−ジー〇−イソプロピリデン−L−
ソルボフラノース(本明細書ではジアセトン・ソルボー
スと略称)の工業的に有利な製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to 2,3,4,6-di-isopropylidene-L-, which is an important intermediate in the production of ascorbic acid.
This invention relates to an industrially advantageous method for producing sorbofuranose (herein abbreviated as diacetone sorbose).

従来の技術 ジアセトン・ソルボースはケタール化触媒の存在下にア
セトンとL−ソルボースを反応させることによって得ら
れる。この触媒として濃硫酸を用いる方法が従来からよ
く知られているが、このときの濃硫酸の使用量は脱水剤
も兼ねてL−ソルボース量に対して約0.8〜1重塁倍
も大量に必要である。このために、生成したジアセトン
・ソルボースを回収するには、硫酸を適当なアルカリで
中和する工程、さらにこの中和によって生じた大量の塩
の処理工程が必要である。
PRIOR ART Diacetone sorbose is obtained by reacting acetone with L-sorbose in the presence of a ketalization catalyst. The method of using concentrated sulfuric acid as a catalyst is well known, but the amount of concentrated sulfuric acid used in this case is approximately 0.8 to 1 times as large as the amount of L-sorbose as it also serves as a dehydrating agent. is necessary. Therefore, in order to recover the produced diacetone sorbose, it is necessary to neutralize the sulfuric acid with a suitable alkali and to treat a large amount of salt produced by this neutralization.

一方、ケタール化触媒として過塩素酸、塩化第2鉄ある
いは臭化第2鉄を用いて糖とケトンとを反応させ、この
反応の間に反応媒質から水を連続的に除去することから
なるケタール糖の製造法が知られている(特公昭49−
836号)。この場合その反応により生成した水を蒸留
除去する方法として、水不混和性有機溶媒を添加しての
除去即ちいわゆる共沸蒸留により除去する方法及びアセ
トンと水の混合物を蒸留によって除去する方法があげら
れている。反応生成水を共沸蒸留により除去する方法は
、反応媒質中に溶媒としてアセトン、水辺外の第3成分
としての溶媒を添加して反応さ仕るため、不活性溶媒と
いえども反応への悪影響は無視できない上に、アセトン
−水−第3溶媒の3成分系となり溶媒類(アセトン、第
3溶媒)の回収及び精製装置が必要となり、操作も煩雑
となる。
On the other hand, ketalization is achieved by reacting sugars with ketones using perchloric acid, ferric chloride or ferric bromide as a ketalization catalyst, and continuously removing water from the reaction medium during this reaction. A method for producing sugar is known (Special Publication No. 1973-
No. 836). In this case, methods for removing the water produced by the reaction by distillation include a method of removing by adding a water-immiscible organic solvent, that is, a so-called azeotropic distillation, and a method of removing a mixture of acetone and water by distillation. It is being The method of removing reaction product water by azeotropic distillation involves adding acetone as a solvent to the reaction medium and a third component outside of the water to stimulate the reaction, so even if the solvent is an inert solvent, it may have an adverse effect on the reaction. In addition, it is a three-component system of acetone, water, and a third solvent, which requires recovery and purification equipment for the solvents (acetone and third solvent), and the operation becomes complicated.

また、アセトンと水の混合物を蒸留により生成水を除去
する方法は大量のアセトン即ち対ソルボースmの少なく
とも250倍以上の量を蒸発させなければならない。従
って、この方法によってジアセトン・ソルボースを製造
するためには大きなそして高価な装置が必要であり、更
にアセトン・水混合物の蒸留のため大量の熱が必要であ
る。
Furthermore, in the method of removing produced water by distilling a mixture of acetone and water, it is necessary to evaporate a large amount of acetone, that is, at least 250 times the amount of sorbose m. Therefore, large and expensive equipment is required to produce diacetone sorbose by this method, and also a large amount of heat is required for the distillation of the acetone/water mixture.

また従来、ジアセトン・ソルボースの製造において使用
するアセトンの含水率については考慮がなされておらず
、市販のアセトンがそのまま使用されており、この場合
には一般に約1500ppm以上の水を含有している。
Furthermore, conventionally, no consideration has been given to the water content of acetone used in the production of diacetone/sorbose, and commercially available acetone is used as is, and in this case, it generally contains about 1500 ppm or more of water.

さらに、反応系から留去したアセトンを再循環させる場
合においても従来法では少なくとも300 ppm以上
のものが使用されている。
Furthermore, even when acetone distilled off from the reaction system is recycled, in the conventional method, at least 300 ppm or more is used.

発明が解決しようとする問題点 ジアセトン・ソルボースの製造においてa硫酸のように
脱水剤を兼ねて多量に使用する酸触媒の場合は、その大
fin’用にかかわる触媒費用並びに中和工程に要する
費用及び大量の無機塩の処理等の工業的実施上、大きな
問題点をもっている。
Problems to be Solved by the Invention In the case of acid catalysts such as sulfuric acid that are used in large quantities as a dehydrating agent in the production of diacetone/sorbose, the cost of the catalyst for its large fin' and the cost required for the neutralization process. However, there are major problems in industrial implementation such as processing of large amounts of inorganic salts.

また、過塩素酸、塩化第2鉄あるいは臭化第2鉄を触媒
とする従来法の場合、生成した水を蒸留除去するには、
上記のようにアセトンと水辺外に第3成分としての溶媒
を使用するか、または大量のアセトンの使用が不可避で
ありこの場合には収率的にも必ずしも十分でなく工業的
に改善すべき間罵点が残されている。
In addition, in the case of conventional methods using perchloric acid, ferric chloride or ferric bromide as catalysts, distillation of the water produced requires the following steps:
As mentioned above, it is unavoidable to use a solvent as a third component in addition to acetone and water, or to use a large amount of acetone, and in this case, the yield is not necessarily sufficient and there is a need for industrial improvement. A scolding mark is left behind.

上記のような問題点は、その他のケタール化触媒を用い
る場合にも多かれ少なかれみられ、アスコルビン酸の製
造コスト低減のために従来よりさらにジアセトン・ソル
ボースの収率を向上させる製造法の開発が望まれている
The above-mentioned problems also occur to a greater or lesser extent when other ketalization catalysts are used, and in order to reduce the production cost of ascorbic acid, it is desirable to develop a production method that further improves the yield of diacetone/sorbose compared to conventional methods. It is rare.

咀;点を解決するための手段 本発明者らは上記の問題点を解決するため種々検討をし
た結果、し−ソルボースとの反応に用いる原料アセトン
として高度に脱水されたものを使用すると触媒あるいは
アセトンの使用量が少なくてすみ、またジアセトン・ソ
ルボースの収率が向上するなどの知見を見出し、さらに
研究して本発明を完成した。
Means for Solving the Problems The present inventors have conducted various studies to solve the above problems, and have found that if highly dehydrated acetone is used as the raw material for the reaction with sorbose, the catalyst or They discovered that the amount of acetone used was small and the yield of diacetone/sorbose was improved, and after further research, they completed the present invention.

すなわち、本発明はL−ソルボースとアセトンとをケタ
ール化触媒の存在下に反応させてジアセトン・ソルボー
スを製造するに際し、該反応系に含水率約100 pp
m以下のアセトンを添加しつつ、生成する水をアセトン
と共に留去しながら反応させることを特徴とするジアセ
トン・ソルボースの製造法である。
That is, in the present invention, when producing diacetone sorbose by reacting L-sorbose and acetone in the presence of a ketalization catalyst, the water content of the reaction system is about 100 pp.
This is a method for producing diacetone sorbose, which is characterized in that the reaction is carried out while adding m or less acetone and distilling off the water produced together with the acetone.

本発明の実施に際しては、まずし−ソルボース、アセト
ン(初期仕込みアセトン)およびケタール化触媒を反応
懺に仕込んで反応を開始させる。この初期仕込アセトン
はその仕込量か後述のような範囲で使用される限りにお
いてはその含水率が必ずしも約100 ppm以下のも
のを用いる必要はなく、従来法と同程度の含水率のアセ
トンを用いてもよいが、一般には反応中に添加されるア
セトン(添加アセトン)と同様に含水率が約lo o 
ppm以下、好ましくは約50ppm以下のものを使用
する方が本発明の目的を達する上においてさらに有利で
ある。初期仕込アセトン量は一般にL−ソルボースの仕
込量の約6〜25倍重量、好ましくは約lO〜l =1
倍重量である。
In practicing the present invention, sorbose, acetone (initial charge of acetone), and ketalization catalyst are first charged to a reaction vessel to initiate the reaction. This initial charge of acetone does not necessarily have a water content of about 100 ppm or less, as long as it is used within the range described below. However, in general, the water content is about lo o like the acetone added during the reaction (added acetone).
It is more advantageous to use less than ppm, preferably less than about 50 ppm, in order to achieve the objectives of the present invention. The amount of acetone initially charged is generally about 6 to 25 times the weight of the amount of L-sorbose charged, preferably about 10 to 1 = 1
It's twice as heavy.

本発明方法に用いるケタール化触媒としては、ジアセト
ン・ソルボースの製造に使用されている各種の酸触媒を
本発明方法に支障のない限り使用してよい。例えば濃硫
酸、塩化水素、過塩素酸、塩化第二鉄、臭化第二鉄、特
開昭58−55494号記載の塩化第銅、臭化第二銅、
特開昭58−167583号記載の銅、鉄又はそれらの
酸化物らしくは塩、ハロゲン化水素、特開昭58−16
7582号記載のヨウ素、ヨウ化水素酸などヨウ素系触
媒、特開昭60−69092号記載の五フッ化アンチモ
ン、5塩化アンヂモンなどの各触媒が例示される。これ
らの中でら、濃硫酸、過塩素酸あるいはヨウ素系触媒が
好ましく使用できる。
As the ketalization catalyst used in the method of the present invention, various acid catalysts used in the production of diacetone sorbose may be used as long as they do not interfere with the method of the present invention. For example, concentrated sulfuric acid, hydrogen chloride, perchloric acid, ferric chloride, ferric bromide, cupric chloride, cupric bromide as described in JP-A-58-55494,
Copper, iron or their oxides as described in JP-A-58-167583, salts, hydrogen halides, JP-A-58-16
Examples include iodine-based catalysts such as iodine and hydroiodic acid described in No. 7582, and catalysts such as antimony pentafluoride and andimony pentachloride described in JP-A No. 60-69092. Among these, concentrated sulfuric acid, perchloric acid or iodine catalysts are preferably used.

触媒の使用mは、たとえば濃硫酸の場合はL−ソルボー
ス量に対して約3〜lO重量%程度でよく、従来の含水
率1500ppm程度のアセトンを用いる場合に比較し
て約1/10もしくはそれ以下でよい。過塩素酸あるい
はヨウ素系等の触媒の場合、従来と同程度の範囲から選
択されるが、他の反応条件が従来法と同様の条件下では
触媒量を約115程度まで減らしてもジアセトン・ソル
ボースは同程度の収率で得られる。
For example, in the case of concentrated sulfuric acid, the amount of catalyst used may be about 3 to 10% by weight based on the amount of L-sorbose, which is about 1/10 or more compared to the conventional case of using acetone with a water content of about 1500 ppm. The following is fine. In the case of perchloric acid or iodine-based catalysts, they are selected from the same range as conventional methods, but if other reaction conditions are similar to conventional methods, even if the catalyst amount is reduced to about 115%, diacetone/sorbose are obtained with similar yields.

次に、本発明において添加アセトンは、その含水率約1
00 ppm以下のものが使用され、とりわけ含水率が
約50ppm以下のものが好ましく用いられる。通常、
市販のアセトンには1500pp111以上の水が含ま
れており、本発明ではこれを約100 ppm以下、好
ましくは約50ppm以下に適宜の方法で脱水して用い
る。この脱水方法としては、たとえば高含水量のアセト
ンを平均孔径が約3人で含水率が約4%以下のゼオライ
トで処理する方法が好ましく採用できる。該ゼオライト
としては、加熱した空気あるいは不活性ガス(例、窒素
、二酸化炭素、アルゴン)と接触させ、約200〜3O
O℃で加熱処理したものが有利に利用できる。
Next, in the present invention, the added acetone has a water content of about 1
00 ppm or less is used, and in particular, one with a water content of about 50 ppm or less is preferably used. usually,
Commercially available acetone contains 1500 pp111 or more of water, and in the present invention, this is used after being dehydrated to about 100 ppm or less, preferably about 50 ppm or less, by an appropriate method. As this dehydration method, for example, a method of treating acetone with a high water content with a zeolite having an average pore size of about 3 and a water content of about 4% or less can be preferably employed. The zeolite can be brought into contact with heated air or an inert gas (e.g., nitrogen, carbon dioxide, argon) to produce a
Those heat-treated at 0° C. can be advantageously used.

含水率約100 ppm以下のアセトンを得るには、上
記のように処理したゼオライトをカラムあるいは塔に充
填し高含水量のアセトンを通液することによって得られ
る。この接触に際しては、アセトンとゼオライトの接触
効率をあげるために、たとえば水分吸着容量が10重量
%のゼオライトの場合は、その充填mが脱水負荷量の約
20重量倍以上となるようにカラム等に充填する。この
場合のカラムの形状は、通常、線速度(LV)=2〜4
m/時間で通液しうる断面積を有するように、その吸着
体の長さが余り大きくならず効率的に脱水処理できるも
のが選ばれる。アセトンの通液速度は、ゼオライトとの
接触効率が高くなるように選択されるが、通常は空間速
度(SV)2以下で行なわれる。
Acetone with a water content of about 100 ppm or less can be obtained by filling a column or tower with the zeolite treated as described above and passing acetone with a high water content through the column or tower. During this contact, in order to increase the contact efficiency between acetone and zeolite, for example, in the case of zeolite with a water adsorption capacity of 10% by weight, the column should be packed so that the packing m is about 20 times the dehydration load or more. Fill. In this case, the shape of the column is usually linear velocity (LV) = 2 to 4
An adsorbent whose length is not too large and can be efficiently dehydrated is selected so that it has a cross-sectional area that allows liquid to pass through at m/hour. The flow rate of acetone is selected so as to increase the efficiency of contact with the zeolite, and is usually carried out at a space velocity (SV) of 2 or less.

本発明方法において、生成する水をアセトンと共に留去
する速度は、その速度を大にする程反応速度は大となる
が、水の除去効率が低下するため適度な速度が必要であ
り、このためには一般に反応系中の含水アセトンは毎時
初期仕込みアセトン量の約0.5〜2倍に対応する速度
で留去するのが好ましく、約0.8〜1.2倍に対応す
る速度で留去するとさらに好ましい。この留去量に対応
して、含水率約100 ppm以下のアセトンが反応系
に添加される。また反応温度及び圧力条件は、反応で生
成した水が効率よく除去される条件が選択され、一般に
約30〜50℃の温度及び約300〜500Torrの
条件が好ましく、40〜45℃で400〜450 To
rrの条件がさらに好ましい。
In the method of the present invention, the reaction rate increases as the rate of distillation of the water produced together with acetone increases, but an appropriate rate is required because the water removal efficiency decreases. In general, it is preferable to distill off the water-containing acetone in the reaction system at a rate corresponding to about 0.5 to 2 times the amount of acetone initially charged per hour, and preferably at a rate corresponding to about 0.8 to 1.2 times the amount of acetone initially charged. It is even more preferable to remove it. Corresponding to this distilled amount, acetone with a water content of about 100 ppm or less is added to the reaction system. In addition, the reaction temperature and pressure conditions are selected such that the water produced in the reaction is efficiently removed, and generally a temperature of about 30 to 50°C and a condition of about 300 to 500 Torr are preferred, and a temperature of 40 to 450 Torr at 40 to 45°C is preferable. To
The conditions of rr are more preferred.

生成する水とアセトンの留去には、蒸気再圧縮方式を採
用すると水の除去効率がよく、工業的に有利である。こ
の方式自体は公知の方式、すなわち蒸発缶で発生させた
蒸気を再圧縮し、自からの熱源として再利用する方法が
採用される。蒸気再圧縮時における圧縮の温度は、反応
系の沸点上昇の程度や蒸気を圧縮する際の機械的効率の
良否などからそのつど決定されるが、圧縮比は通常約2
以下、たとえば約1.4〜1.6で実施できることが多
い。蒸気再圧縮方式を採用する場合の具体例を第1図に
工程図にそって以下に説明する。
For the distillation of the produced water and acetone, a vapor recompression method is employed, which has good water removal efficiency and is industrially advantageous. This method itself is a known method, that is, a method of recompressing the steam generated in the evaporator and reusing it as its own heat source. The compression temperature during vapor recompression is determined each time based on the degree of rise in the boiling point of the reaction system and the mechanical efficiency when compressing the vapor, but the compression ratio is usually approximately 2.
Below, for example, it can often be implemented at about 1.4 to 1.6. A specific example of the case where the vapor recompression method is adopted will be explained below along with the process diagram shown in FIG.

すなわち、アセトン、し−ソルボースおよびケタール化
触媒の各反応原料を反応機(1)に仕込み、循環ポンプ
(2)を用いて蒸発機(3)を経由して、反応液の循環
を行う。運転開始当初は、蒸発機(3)のシェル側に、
例えば水蒸気を供給することにより循環液の温度を次第
に上昇せしめろと、反応が進行し始めると共にアセトン
の一部および生成した水の一部が共に蒸発を開始する。
That is, each reaction raw material of acetone, sorbose, and ketalization catalyst is charged into a reactor (1), and the reaction liquid is circulated via an evaporator (3) using a circulation pump (2). At the beginning of operation, on the shell side of the evaporator (3),
If the temperature of the circulating fluid is gradually increased, for example by supplying water vapor, part of the acetone and part of the produced water will both start to evaporate as the reaction begins to proceed.

そして、次第に蒸発量は増加して、デミスタ−(4)お
よび圧縮機(5)は昇温される。そして圧縮機(5)の
運転が可能な程度まで昇温された時期に水蒸気の供給を
停止することにより、第1図に示す設備は、通常蒸気再
圧縮型の反応蒸発機として機能することとなり、反応は
継続される。この蒸気はアセトン中に水を含む混合蒸気
であり、反応条件あるいは反応の状態等によっても異な
るが、水の含有量は通常、約200〜5,000ppm
であり、共沸系を形成する場合にはこれ以上に多くする
ことができる。
Then, the amount of evaporation gradually increases, and the temperatures of the demister (4) and compressor (5) are raised. By stopping the supply of steam when the temperature of the compressor (5) has risen to a point where it can be operated, the equipment shown in Figure 1 will function as a normal vapor recompression type reaction evaporator. , the reaction continues. This steam is a mixed steam containing water in acetone, and the water content is usually about 200 to 5,000 ppm, although it varies depending on the reaction conditions and state of the reaction.
If an azeotropic system is formed, the amount can be increased further.

次いで、この蒸気はデミスタ−(4)にて気液分離され
たのち、例えばルーツ型、ターボ型の圧縮機(5)によ
り加圧され、エンタルピーの増加した状態で蒸発機(3
)のシェル部分へ供給され、反応液に熱を供給したのち
、通常ドレンとして脱水装置(6)に移行さる。
Next, this vapor is separated into gas and liquid in a demister (4), and then pressurized by a roots-type or turbo-type compressor (5), and is sent to an evaporator (3) with increased enthalpy.
), and after supplying heat to the reaction liquid, it is normally transferred to the dehydrator (6) as a drain.

この際、反応液の濃度を一定に保つために蒸発した量に
見合う含水率約100 ppm以下のアセトンmを液送
ポンプ(7)、余熱器(8)を経て反応機(1)に供給
することにより、反応は安定して継続される。反応条件
に含まれるイナートガスは真空ポンプ(9)により排出
する。ここで、添加するアセトンは、前記の脱水装置(
6)で処理したものを、繰返して用いることが反応工程
上有利であり、その脱水処理には前述のようにゼオライ
トを用いる方法が有利に適用でき、含水率が約100 
ppm以下、好ましくは約50ppm以下に脱水される
At this time, in order to keep the concentration of the reaction solution constant, acetone m with a water content of about 100 ppm or less corresponding to the evaporated amount is supplied to the reactor (1) via the liquid feed pump (7) and preheater (8). This allows the reaction to continue stably. Inert gas included in the reaction conditions is exhausted by a vacuum pump (9). Here, the acetone to be added is the dehydrator (
It is advantageous in the reaction process to repeatedly use the product treated in step 6), and the method using zeolite as described above can be advantageously applied to the dehydration treatment, and the water content is about 100.
It is dehydrated to less than ppm, preferably less than about 50 ppm.

本反応方法において使用される蒸気再圧縮型の蒸気機に
ついてはその種類、型式等により種々の組合せが可能で
ある。例えば蒸発機についてはプレート型、チューブ型
等各種の型式が、又、反応液の循環方法については、強
制又は自然流下等の方式が反応の特性や反応液の物性等
を考慮し、適宜に選択できる。また、添加するアセトン
量を増減させることにより反応液の濃度や反応の速度を
選択することも可能である。 この方法は、反応を継続
しながら反応液を系外へ抜出すことにより連続化も可能
であるし、又、回分的に反応することも可能であり、反
応系や設備の特性により選択することができる。
Regarding the vapor recompression type steam machines used in this reaction method, various combinations are possible depending on their types, models, etc. For example, various types of evaporators are available, such as plate type and tube type, and methods for circulating the reaction liquid, such as forced or gravity flow, are selected as appropriate, taking into consideration the characteristics of the reaction and the physical properties of the reaction liquid. can. It is also possible to select the concentration of the reaction solution and the reaction rate by increasing or decreasing the amount of acetone added. This method can be carried out continuously by drawing the reaction liquid out of the system while the reaction continues, or it can be carried out batchwise, and the method can be selected depending on the characteristics of the reaction system and equipment. Can be done.

本発明において、反応終了後のジアセトン・ソルボース
の回収、精製は公知方法によって実施できる。たとえば
反応終了液に、中和当量の1.1倍モル程度のアルカリ
(例、苛性ソーダ)を加えた後、含有アセトンを留去し
、水溶液とした後、ジアセトン・ソルボースをベンゼン
で抽出し、濃縮乾固することにより、ジアセトン・ソル
ボースの結晶が得られる。
In the present invention, recovery and purification of diacetone sorbose after completion of the reaction can be carried out by known methods. For example, after adding an alkali (e.g., caustic soda) of about 1.1 times the mole of the neutralization equivalent to the reaction completed solution, the acetone contained is distilled off to form an aqueous solution, and diacetone/sorbose is extracted with benzene and concentrated. By drying, diacetone sorbose crystals are obtained.

実施例 以下に比較例と共に実施例を挙げて本発明をさらに具体
的に説明する。
EXAMPLES The present invention will be explained in more detail by giving examples as well as comparative examples.

実施例1 ゼオライト(東洋曹達製、ゼオラム3 AG S)1.
5Qを金属製平皿に薄く広げ、1日風乾した後、定温電
気乾燥器内で230℃、7時間加熱して水分2%にした
。このゼオライトを常温に冷却後、ガラスカラム(30
mmφX2000mm)に1100gを充填し、市販の
アセトン(含水率2000 pH)IEIを空間速度(
SV)2で通液して含水率40ppmのアセトンを得た
Example 1 Zeolite (manufactured by Toyo Soda, Zeorum 3 AG S)1.
5Q was spread thinly on a metal flat plate, air-dried for one day, and then heated at 230° C. for 7 hours in a constant temperature electric dryer to reduce the moisture content to 2%. After cooling this zeolite to room temperature, a glass column (30
(mmφ
SV) 2 to obtain acetone with a water content of 40 ppm.

上記脱水アセトン1.400d、L−ソルボース100
gおよび濃硫酸4−を攪拌機および冷却管を取りつけた
3Qのフラスコ中に入れ、温浴中(内温45℃)で減圧
下(480Torr)で、生成する水を含有するアセト
ンを毎時的1.2512の速度で留去させつつ、他方毎
時的1.25f2の速度で前記の脱水アセトン(含水率
40 ppm)を添加しながら10時間保持した。
1.400 d of the above dehydrated acetone, 100 d of L-sorbose
g and concentrated sulfuric acid 4- were placed in a 3Q flask equipped with a stirrer and a condenser, and in a hot bath (inner temperature 45°C) under reduced pressure (480 Torr), acetone containing water was added every hour to 1.2512 kg. The mixture was distilled off at a rate of 1.25 f2 per hour, while the dehydrated acetone (water content 40 ppm) was added at a rate of 1.25 f2 per hour for 10 hours.

反応終了後、添加した硫酸の1.1倍モル相当の30%
苛性ソーダ水溶液で中和し、アセトンを留去し水溶液と
した後、これをベンゼンで抽出しジアセトン・ソルボー
スのベンゼン溶液を得た。これを蒸発乾固し、ジアセト
ン・ソルボース1271g(収率88.0%)を得た。
After the reaction, 30% equivalent to 1.1 times the mole of the added sulfuric acid.
After neutralizing with an aqueous caustic soda solution and distilling off acetone to obtain an aqueous solution, this was extracted with benzene to obtain a benzene solution of diacetone/sorbose. This was evaporated to dryness to obtain 1271 g (yield: 88.0%) of diacetone sorbose.

実施例2 反応温度を30℃、35℃、40℃に変え、反応時間を
12時間にしたことを除いて実施例1と同様の方法で反
応さ仕た結果ジアセトン・ソルボースの収率は第1表の
通りであった。
Example 2 The reaction was carried out in the same manner as in Example 1, except that the reaction temperature was changed to 30°C, 35°C, and 40°C and the reaction time was 12 hours. As a result, the yield of diacetone/sorbose was the first. It was as shown in the table.

第1表 比較例1 添加アセトンとして脱水アセトンの代りに市販品(含水
率t、sooppm、和光純薬工業製)を用いたことを
除いて実施例1と同様の方法で反応させたとき、ジアセ
トン・ソルボースの収率は!13゜5g(収率78.6
%)であった。
Table 1 Comparative Example 1 When reacted in the same manner as in Example 1 except that a commercially available product (water content t, soopm, manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of dehydrated acetone as added acetone, diacetone・What is the yield of sorbose? 13゜5g (yield 78.6
%)Met.

比較例2 L−ソルボース100g、アセトン(含水率t、5oo
pp儂)l 400dおよび濃硫酸30威を3Qのフラ
スコ中に入れ、攪拌しながら30℃で1.5時間反応さ
せた。以下、実施例1と同様の分離・精製法によりアセ
トン・ソルボ−スを得たところ、その収量は94.6g
(収率65,5%)であった。上記において、濃硫酸5
3−を用いて同様な方法で反応させたとき、ジアセトン
・ソルボースの収量は115.5g(収率80.0%)
であった。
Comparative Example 2 100 g of L-sorbose, acetone (water content t, 5oo
400 d of pp 儂) l and 30 ml of concentrated sulfuric acid were placed in a 3Q flask and reacted for 1.5 hours at 30° C. with stirring. Hereinafter, acetone sorbose was obtained by the same separation and purification method as in Example 1, and the yield was 94.6 g.
(yield 65.5%). In the above, concentrated sulfuric acid 5
When reacting in the same manner using 3-, the yield of diacetone sorbose was 115.5 g (yield 80.0%)
Met.

実施例3 実施例1の方法に準じて脱水したアセトン(含水率35
pI)+m)l 400J、L−ソルボースlQQgお
よび過塩素酸61%含有水溶液0.44y4(過塩素酸
として0.4g)を攪拌機および冷却管を取りつけた3
Qのフラスコ中に入れ、温浴中で減圧下に生成する含水
アセトンを毎時的1.2Flの速度で留去しながら、他
方毎時的1.25Rの速度で脱水アセトン(含水率35
ppm)を添加しつつ9時間・15℃に保持した。反応
終了後、30%苛性ソーダ水溶液4Mlを加え過塩素酸
を中和し、アセトンを留去し水溶液とした後、これをベ
ンゼンで抽出し、ジアセトン・ソルボースのベンゼン溶
液を得た。これを蒸発乾固し、ジアセトン・ソルボース
+31.0g(収率907%)を得た。
Example 3 Acetone dehydrated according to the method of Example 1 (water content 35
pI)+m)l 400J, L-sorbose 1QQg and 0.44y4 (0.4g as perchloric acid) of an aqueous solution containing 61% perchloric acid were added to a container equipped with a stirrer and a cooling tube.
The hydrous acetone produced under reduced pressure in a warm bath is distilled off at a rate of 1.2 Fl per hour, while the dehydrated acetone (water content 35
The mixture was maintained at 15° C. for 9 hours while adding ppm). After the reaction was completed, 4 ml of a 30% aqueous sodium hydroxide solution was added to neutralize perchloric acid, and acetone was distilled off to obtain an aqueous solution, which was then extracted with benzene to obtain a benzene solution of diacetone/sorbose. This was evaporated to dryness to obtain 31.0 g (yield: 907%) of diacetone sorbose.

実施例4 過塩素酸の代りにヨウ素!、2gを使用したことおよび
脱水アセトンの含水率50ppmであったことを除いて
実施例3の方法で反応させてジアセトン・ソルボース1
28.1g(収率887%)を得た。
Example 4 Iodine instead of perchloric acid! , 2g was used and the water content of dehydrated acetone was 50 ppm.
28.1 g (yield 887%) was obtained.

比較例3 200rniの市販アセトン(含水率15 Q Opp
m)にI O,OgのL−ソルボースと127mgのヨ
ウ素を加え60℃の温溶中で6時間攪拌を続けた。この
間、反応器と冷却管との間にモレキュラー・シーブス・
3A(和光純薬工業製)を30g組込み(直径2CII
lカラム、充填長さ13cm)、還流溶媒の乾燥を行っ
た。
Comparative Example 3 200 rni of commercially available acetone (moisture content 15 Q Opp
IO, Og of L-sorbose and 127 mg of iodine were added to m), and stirring was continued for 6 hours in a warm solution at 60°C. During this time, there is a molecular sieve between the reactor and the cooling tube.
Incorporating 30g of 3A (manufactured by Wako Pure Chemical Industries) (diameter 2CII)
1 column, packing length 13 cm), and the refluxing solvent was dried.

反応終了後、30%苛性ソーダ水溶液0.5dを加え、
アセトンを留去し水溶液とした後、これをベンゼンで抽
出しジアセトン・ソルボースのベンゼン溶液を得た。こ
れを蒸発乾固しジアセトン・ソルボース12.10g(
収率83.8%)を得た。
After the reaction is complete, add 0.5 d of 30% caustic soda aqueous solution,
After distilling off the acetone to obtain an aqueous solution, this was extracted with benzene to obtain a benzene solution of diacetone/sorbose. This was evaporated to dryness and 12.10 g of diacetone sorbose (
A yield of 83.8%) was obtained.

又、この実験において反応機へ還流するアセトン中の含
水率は、第2表の通りであった。
Further, in this experiment, the water content in the acetone refluxed to the reactor was as shown in Table 2.

第2表 実施例5 ゼオライト(ゼオラム3ASG、東洋曹達)740kg
を脱水吸着塔(1000+l+mφx1700IIII
11)に充填し、予じめ230℃に加熱した窒素ガスを
50ONi’で4.5時間通風させて処理した。
Table 2 Example 5 Zeolite (Zeolum 3ASG, Toyo Soda) 740 kg
Dehydration adsorption tower (1000+l+mφx1700III
11) and treated by blowing nitrogen gas heated to 230°C in advance with 50ONi' for 4.5 hours.

このゼオライト充填塔にアセトン(水分200〜300
0ppm)を1500Q/時間(SV=1.5゜L V
 = 2 m/時間)で通液し脱水アセトン(含水率5
0ppm以下)を632512を得た。
Acetone (water content 200-300
0ppm) to 1500Q/hour (SV=1.5゜L V
= 2 m/hour) and dehydrated acetone (water content 5
0 ppm or less) was obtained.

上記の脱水アセトン700QにL−ソルボース50kg
とヨウ素0 、6 kgを加えて46℃で9時間反応を
行った。この反応には第1図に示されるように、反応機
、プレート型の蒸発機、圧縮機と連結して蒸気再圧縮型
の蒸発設備を構成させた装置を用いて、反応当初は蒸発
機への外部スチームを1 、9 kg/ cw” Gで
供給し加熱した。その結果、約60分後にはプレート内
温は約55.5℃となり、正常の稼動状態になった。こ
の後、約500 kg/11rで含水アセトン(水分2
00〜3000ppm)を留去して、他方予め前記のよ
うにして得られた乾燥アセトンを・16℃に保ちなから
留去分のアセトンと同ユとなるように供給しつつ、反応
を続けた。
50kg of L-sorbose in the above dehydrated acetone 700Q
and 0.6 kg of iodine were added, and the reaction was carried out at 46°C for 9 hours. As shown in Figure 1, this reaction uses an apparatus that is connected to a reactor, a plate-type evaporator, and a compressor to form a vapor recompression type evaporation equipment. External steam of 1.9 kg/cw"G was supplied to heat the plate. As a result, after about 60 minutes, the internal temperature of the plate reached about 55.5°C, and normal operation was achieved. After this, about 500 kg/11r of hydrated acetone (moisture 2
00 to 3000 ppm) was distilled off, and the reaction was continued while dry acetone obtained in advance as described above was kept at 16°C and supplied in an amount equal to the amount of acetone distilled off. .

反応終了後、反応液を冷却、中和し、次いでアセトンを
留去し、ベンゼンで抽出した。この抽出からベンゼンを
留去し、残留物としてジアセトン・ソルボース63.5
kg(収率88%)を得た。
After the reaction was completed, the reaction solution was cooled and neutralized, then acetone was distilled off and extracted with benzene. Benzene was distilled off from this extraction, and the residue was diacetone sorbose 63.5
kg (yield 88%).

発明の効果 本発明によると、アスコルビン酸を製造するため中間体
として有用なジアセトン・ソルボースを工業的に有利に
製造できる。すなわち、本発明装造法は、ジアセトン・
ソルボースを製造するに際し含水率が約100 ppm
以下のアセトンを使用することに特徴があり、従来法に
比較してケタール化触媒あるいはアセトンの使用量が少
なくてすみ、また目的物の収率も高くなるなどの効果が
得られる。
Effects of the Invention According to the present invention, diacetone sorbose useful as an intermediate for producing ascorbic acid can be industrially advantageously produced. That is, the manufacturing method of the present invention uses diacetone.
When producing sorbose, the water content is approximately 100 ppm.
The method is characterized by using the following acetone, and compared to conventional methods, the amount of ketalization catalyst or acetone used can be reduced, and the yield of the target product can also be increased.

たとえば、濃硫酸のように従来、脱水剤を兼ねて使用さ
れていた触媒の場合、その使用量は従来法の約1/10
以下ですみ、また生成した水を留去により容易に除去し
得る。このために、反応後の中和に要するアルカリか極
めて少なくてよく、生成する塩も少量となるので目的物
の回収・精製が容易になる。また、生成した水をアセト
ンと共に容易に留去できるので、たとえば触媒として過
塩素酸を用いた場合、従来法よりもアセトンの使用総量
が少なくてすみ、また共沸蒸留による除去方法を特に要
しないという点も有利である。さらに、その他のケター
ル触媒を使用する場合し、従来法に比しジアセトン・ソ
ルボースの収率をより向上させることができる。
For example, in the case of a catalyst such as concentrated sulfuric acid, which has traditionally been used as a dehydrating agent, the amount used is about 1/10 of the conventional method.
The water produced can be easily removed by distillation. Therefore, very little alkali is required for neutralization after the reaction, and a small amount of salt is produced, making it easy to recover and purify the target product. In addition, since the generated water can be easily distilled off together with acetone, for example, when perchloric acid is used as a catalyst, the total amount of acetone used can be smaller than in conventional methods, and there is no need for a special removal method by azeotropic distillation. This point is also advantageous. Furthermore, when using other ketal catalysts, the yield of diacetone sorbose can be further improved compared to the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法を実施するための工程図の一例で
あり、図中、(1)は反応槽、(A)は原料投入口、(
2)は循環ポンプ、(3)は蒸発機、(4)はデミスタ
−1(5)は圧縮機、(6)は脱水装置、(7)は液送
ポンプ、(8)は予熱器、(9)は真空ポンプおよび(
St)は水蒸気供給口を示す。
FIG. 1 is an example of a process diagram for carrying out the method of the present invention, in which (1) is a reaction tank, (A) is a raw material inlet, (
2) is a circulation pump, (3) is an evaporator, (4) is a demister, (5) is a compressor, (6) is a dehydrator, (7) is a liquid feed pump, (8) is a preheater, ( 9) is a vacuum pump and (
St) indicates a water vapor supply port.

Claims (1)

【特許請求の範囲】[Claims] L−ソルボースとアセトンとをケタール化触媒の存在下
に反応させてジアセトン・ソルボースを製造するに際し
、該反応系に含水率約100ppm以下のアセトンを添
加しつつ、生成する水をアセトンと共に留去しながら反
応させることを特徴とするジアセトン・ソルボースの製
造法。
When producing diacetone sorbose by reacting L-sorbose and acetone in the presence of a ketalization catalyst, acetone with a water content of about 100 ppm or less is added to the reaction system, and the water produced is distilled off together with the acetone. A method for producing diacetone sorbose, which is characterized by reacting the diacetone and sorbose.
JP62094060A 1986-04-17 1987-04-15 Method for producing diacetone sorbose Expired - Lifetime JPH0830075B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-89296 1986-04-17
JP8929686 1986-04-17

Publications (2)

Publication Number Publication Date
JPS6345292A true JPS6345292A (en) 1988-02-26
JPH0830075B2 JPH0830075B2 (en) 1996-03-27

Family

ID=13966711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62094060A Expired - Lifetime JPH0830075B2 (en) 1986-04-17 1987-04-15 Method for producing diacetone sorbose

Country Status (6)

Country Link
US (1) USH708H (en)
JP (1) JPH0830075B2 (en)
CN (1) CN1018645B (en)
DE (1) DE3712821C2 (en)
DK (1) DK184687A (en)
GB (1) GB2189246B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5344303A (en) * 1991-10-21 1994-09-06 Fanuc Ltd. Screw linkage structure for use in an injection molding machine
US5792812A (en) * 1994-12-26 1998-08-11 Shin-Etsu Chemical Co., Ltd. Thermoplastic resin compoistions for use in integral molding with silicone rubber and integrally molded parts
US5989704A (en) * 1995-12-15 1999-11-23 Yazaki Corporation Integrally molded automotive waterproof connector comprising thermoplastic resin and oil-bleeding silicone rubber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6072895A (en) * 1983-09-28 1985-04-24 Takeda Chem Ind Ltd Production of ketal of 2-ketogulonic acid and its ester
JPH0629198A (en) * 1993-04-05 1994-02-04 Toshiba Corp Charged particle beam lithography

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3723412A (en) 1967-02-13 1973-03-27 Cpc International Inc Preparation of acetone glucose
DE2003067A1 (en) * 1969-02-04 1970-08-06 Hoffmann La Roche Process for the production of ketal sugars
GB1286143A (en) 1969-02-04 1972-08-23 Roche Products Ltd The manufacture of ketal sugars
US3607862A (en) 1969-02-04 1971-09-21 Hoffmann La Roche Process for preparing carbohydrate ketals
KR840001591A (en) 1981-09-29 1984-05-07 구라바야시 이꾸시로 Production method of sugar ketals
JPS58167582A (en) 1982-03-29 1983-10-03 Takeda Chem Ind Ltd Production of saccharide ketal
JPS6069092A (en) 1983-09-27 1985-04-19 Takeda Chem Ind Ltd Production of sugar ketal
JPH0629198B2 (en) * 1984-10-19 1994-04-20 武田薬品工業株式会社 Chemical dehydration method
DE3505150A1 (en) 1985-02-15 1986-08-21 Basf Ag, 6700 Ludwigshafen METHOD FOR PRODUCING SUGAR KETALES

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6072895A (en) * 1983-09-28 1985-04-24 Takeda Chem Ind Ltd Production of ketal of 2-ketogulonic acid and its ester
JPH0629198A (en) * 1993-04-05 1994-02-04 Toshiba Corp Charged particle beam lithography

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5344303A (en) * 1991-10-21 1994-09-06 Fanuc Ltd. Screw linkage structure for use in an injection molding machine
US5792812A (en) * 1994-12-26 1998-08-11 Shin-Etsu Chemical Co., Ltd. Thermoplastic resin compoistions for use in integral molding with silicone rubber and integrally molded parts
US5989704A (en) * 1995-12-15 1999-11-23 Yazaki Corporation Integrally molded automotive waterproof connector comprising thermoplastic resin and oil-bleeding silicone rubber

Also Published As

Publication number Publication date
DE3712821C2 (en) 1998-04-09
DK184687D0 (en) 1987-04-10
DE3712821A1 (en) 1987-10-22
GB2189246B (en) 1989-11-29
GB8709089D0 (en) 1987-05-20
GB2189246A (en) 1987-10-21
DK184687A (en) 1987-10-18
USH708H (en) 1989-11-07
CN87103553A (en) 1988-03-09
JPH0830075B2 (en) 1996-03-27
CN1018645B (en) 1992-10-14

Similar Documents

Publication Publication Date Title
JP2001509470A5 (en)
US4021531A (en) Process for the separation of zirconium and hafnium tetrachlorides from mixtures thereof
JPS61100529A (en) Process for chemical dehydration reaction
US2409441A (en) Production of glycols
JPS5821621B2 (en) How to use percarbon
JPS6345292A (en) Production of diacetone sorbose
US3201201A (en) Process for treating the effluent gas obtained by the oxidation of a hydrogen halide gas
US3544633A (en) Neutralization of perhaloacetones
US2357095A (en) Process for the manufacture of anhydrous hydrogen halide
US3985529A (en) Method for the production of liquid sulphur dioxide
JPH053405B2 (en)
JPH09506362A (en) Method and apparatus for purifying vinyl chloride
US5484511A (en) Process for the removal of impurities from hydrazine hydrate
US4003984A (en) Production of sulfuryl fluoride
US3351426A (en) Method of preparation of dipersulphates
HU195469B (en) Process for production of l-malic acid
US5723702A (en) Method for removing moisture from chlorodifluoro-methane
US1510790A (en) Manufacture of chlorhydrins
JPH04300842A (en) Purification of hydrochlorofluorocarbon and hydrofluorocarbon
JP3193627B2 (en) Method for producing higher chlorinated methane
CN109422396B (en) Method for treating wastewater from catalyst production
JPH04362005A (en) Industrial production of chlorine
JP2002521349A (en) Ammonia distillation method
JP2815071B2 (en) Method for producing dichlorodiphenyl sulfone
US2806070A (en) Process of producing polychloro benzenes from hexachloro cyclohexanes