[go: up one dir, main page]

JPS6344719B2 - - Google Patents

Info

Publication number
JPS6344719B2
JPS6344719B2 JP58057044A JP5704483A JPS6344719B2 JP S6344719 B2 JPS6344719 B2 JP S6344719B2 JP 58057044 A JP58057044 A JP 58057044A JP 5704483 A JP5704483 A JP 5704483A JP S6344719 B2 JPS6344719 B2 JP S6344719B2
Authority
JP
Japan
Prior art keywords
diamond
temperature
filament
based alloy
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58057044A
Other languages
Japanese (ja)
Other versions
JPS59184792A (en
Inventor
Noribumi Kikuchi
Takayuki Shingyochi
Hiroaki Yamashita
Akio Nishama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP58057044A priority Critical patent/JPS59184792A/en
Publication of JPS59184792A publication Critical patent/JPS59184792A/en
Publication of JPS6344719B2 publication Critical patent/JPS6344719B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、気相合成法にてダイヤモンドを粒
状あるいは膜状に析出せしめる方法に関するもの
である。 ダイヤモンドは、現存する物質の中で最も硬
く、かつ熱伝導性および電気絶縁性にもすぐれた
材料であることから、工業的に有用な材料とし
て、その使用分野は広範囲にわたつている。 また、ダイヤモンドには、天然に産出するもの
のほかに、超高圧合成装置を用い、超高圧発生容
器内に黒鉛粉末を触媒と共に入れ、温度:1600℃
以上、圧力:60kb以上の高温高圧下で反応させ、
黒鉛をダイヤモンドに相変態させることによつて
製造された人工ダイヤモンドがある。この人工ダ
イヤモンドは、原料粉末の粒度や反応時間を制御
することにより種々の粒度のものが得られるが、
装置自体が大型となるばかりでなく、1回の生産
量にも限界があるため、生産性の点で問題があ
り、どうしてもコスト高となるのをまぬがれるこ
とができない。このほか、ダイヤモンドの合成法
には、火薬の爆発による衝撃力を利用して、黒鉛
をダイヤモンドに変換する方法があるが、この方
法によつて製造された人工ダイヤモンドは、前記
の超高圧合成法により製造されたものに比して多
少安価ではあるが、結晶性が完全なものを得るこ
とが困難であり、したがつて特性上問題があるも
のである。 そこで、本発明者等は、上述のような観点か
ら、大型のプレス装置などを用いることなく、か
つ結晶性の完全な人工ダイヤモンドを高い生産性
で、コスト安く製造すべく研究を行なつた結果、
ダイヤモンドが析出される基体として、鉄族金属
を主成分とする合金、すなわちFe基合金、Ni基
合金、およびCo基合金、さらにサーメツト、あ
るいはセラミツクからなる基体部材の表面に、
Nbからなる被覆層を形成してなる表面被覆部材
を用い、気相合成法にて、前記表面被覆部材の表
面から0.5〜3cm離れた位置に、W、Ta、Mo、
あるいは黒鉛からなるフイラメントを位置させた
状態で、CH4とH2との容量割合、すなわち
CH4/H2を0.001〜0.05に調整した混合反応ガス
を前記フイラメントを通過して前記表面被覆部材
の表面に当るように流しながら、表面被覆部材の
表面温度:500〜1200℃、およびフイラメントの
温度:1800〜2500℃の条件で反応を行なわしめる
と、前記表面被覆部材の表面に、結晶性が完全な
ダイヤモンドが粒状あるいは膜状に形成されるよ
うになるという知見を得たのである。 なお、この発明の方法において、上記の表面被
覆部材の表面とフイラメントとの距離が0.5〜3
cmの範囲内において比較的小さい場合に、ダイヤ
モンドの析出核の密度が高くなり、この析出核が
横に密に並ぶため膜状となり、一方前記の離間距
離が大きくなると粒状となるのである。また、上
記の被覆層は、ダイヤモンド核を多く析出させる
のに不可欠のものであり、したがつて、この被覆
層が存在しない場合には、ダイヤモンドの析出は
きわめて少なく、所望のダイヤモンド核の析出、
およびその成長をはかることはできないものであ
る。 つぎに、この発明の方法において、製造条件を
上記の通りに限定した理由を説明する。 (a) フイラメントの温度 フイラメントはメタン(CH4)を分解すると
同時に、この結果形成されたCとH2とを活性
化し、ダイヤモンド形成に寄与するものと考え
られるが、その温度が1800℃未満では反応ガス
の活性化が十分に行なわれず、一方その温度が
2500℃を越えると熱輻射が大きくなりすぎ、い
ずれの場合もダイヤモンドの形成が不十分とな
ることから、フイラメント温度を1800〜2500℃
と定めた。 (b) 表面被覆部材の表面温度 この表面温度は、フイラメントからの輻射熱
と部材自体の加熱温度により決まるが、この表
面温度が500℃未満ではダイヤモンドの析出速
度が遅く、一方1200℃を越えた表面温度ではダ
イヤモンドの析出が行なわれないことから、そ
の表面温度を500〜1200℃と定めた。 (c) 混合反応ガスにおけるCH4/H2の割合 この割合が0.001未満では、ダイヤモンドの
生成速度が著しく遅く、一方この割合が0.05を
越えると、ダイヤモンド中に黒鉛が混在するよ
うになることから、CH4/H2の割合を0.001〜
0.05と定めた。 (d) 表面被覆部材の表面とフイラメント間の距離 この距離が0.5cm未満になると、フイラメン
トの輻射熱により部材の表面温度が1200℃を越
えて高くなりすぎ、ダイヤモンドの析出が行な
われないようになり、一方この距離が3cmを越
えて大きくなると、ダイヤモンド核の形成密度
が急激に低下するようになることから、その距
離を0.5〜3cmと定めた。 また、この発明の方法を実施するに際して、反
応雰囲気は、ピラニー式真空計で5〜100torrの
範囲内の圧力(この圧力はダイヤフラム式真空計
で測定した場合の0.1〜10torrに相当、以下圧力
はピラニー式真空計で測定した圧力で示す)の真
空雰囲気とするのが好ましく、これは5torr未満
の圧力ではダイヤモンドの析出速度がきわめて遅
く、一方100torrを越えた圧力にすると黒鉛が混
在するようになるという理由によるものである。
さらに、上記の被覆層は、基体部材に応じて、通
常の化学蒸着法、物理蒸着法、および溶射法など
の方法を用いて形成することができる。 なお、この発明の方法によつて合成されたダイ
ヤモンドは、不可避不純物としてフイラメント構
成成分であるW、Mo、あるいはTaなどを1〜10
原子%の範囲で含有する場合があるが、この程度
の不純物含有量はダイヤモンド特性に何らの悪影
響も及ぼすものではない。 つぎに、この発明の方法を実施例により具体的
に説明する。 実施例 それぞれ第1表に示される成分組成を有し、か
つ10mm□×厚さ:2mmの寸法をもつた基体部材を
用意し、この基体部材の表面に、同じく第1表に
示される被覆層形成法、すなわち化学蒸着法
(CVDで示す)、物理蒸着法の1種であるマグネ
トロンスパツタリング法(PVD―MSで示す)、
およびプラズマ溶射法(PSで示す)のいずれか
を用い、通常の条件で同じく第1表に示される平
均層厚のNbからなる被覆層を形成し、ついで、
このようにして調製した表面被覆部材の表面に、
同じく第1表に示される条件で、ダイヤモンド形
成のための気相合成反応を施すことによつて、本
発明法1〜7および比較法1〜7をそれぞれ実施
し、実施後、その表面に形成された合成ダイヤモ
ンドの平均層厚を測定すると共に、その状態を観
察した。これらの結果を第1表に合せて示した。 なお、比較法1〜7は、いずれもダイヤモンド
形成のための気相合成条件がこの発明の範囲から
外れた条件(第1表に※印を付した条件がこの発
明の範囲から外れた条件である)で実施したもの
である。 第1表に示される結果から、本発明法1〜7に
おいては、いずれも良好な状態でダイヤモンドを
合成されるのに対して、比較法1〜7において
は、いずれの場合も満足するダイヤモンド合成は
行なわれないことが明らかである。 なお、本発明法1〜7によつて合成されたダイ
ヤモンドは、いずれも天然ダイヤモンドと同等の
硬さと電気抵抗を示すものであつた。
The present invention relates to a method of depositing diamond in the form of particles or films using a vapor phase synthesis method. Diamond is the hardest material in existence and has excellent thermal conductivity and electrical insulation, so it is used in a wide range of fields as an industrially useful material. In addition to naturally occurring diamonds, we also use an ultra-high-pressure synthesis device to produce diamonds by placing graphite powder together with a catalyst in an ultra-high-pressure generating container at a temperature of 1600°C.
Above, the reaction is carried out under high temperature and high pressure of pressure: 60 kb or above,
There are artificial diamonds produced by phase transformation of graphite into diamond. This artificial diamond can be obtained with various particle sizes by controlling the particle size of the raw material powder and the reaction time.
Not only is the device itself large-sized, but there is also a limit to the amount of production per batch, which poses a problem in terms of productivity, and it is impossible to avoid high costs. Another method for synthesizing diamonds is to convert graphite into diamond by using the impact force from the explosion of gunpowder, but the artificial diamonds produced by this method are different from the ultra-high pressure synthesis method described above. Although it is somewhat cheaper than those produced by the method, it is difficult to obtain one with perfect crystallinity, and therefore there are problems in terms of properties. Therefore, from the above-mentioned viewpoint, the present inventors have conducted research in order to manufacture perfectly crystalline artificial diamonds with high productivity and at low cost without using large press equipment etc. ,
The substrate on which diamond is deposited is an alloy whose main component is an iron group metal, that is, an Fe-based alloy, a Ni-based alloy, a Co-based alloy, and a cermet or ceramic.
Using a surface coating member formed with a coating layer made of Nb, W, Ta, Mo,
Alternatively, with a filament made of graphite positioned, the capacity ratio of CH 4 and H 2 , i.e.
While flowing a mixed reaction gas with CH 4 /H 2 adjusted to 0.001 to 0.05 so as to pass through the filament and hit the surface of the surface coating member, the surface temperature of the surface coating member: 500 to 1200°C, and the temperature of the filament were adjusted. It has been found that when the reaction is carried out at a temperature of 1800 to 2500°C, diamond with perfect crystallinity is formed in the form of particles or a film on the surface of the surface coating member. In addition, in the method of this invention, the distance between the surface of the surface coating member and the filament is 0.5 to 3.
When the diamond is relatively small within the cm range, the density of diamond precipitation nuclei becomes high, and the precipitation nuclei are arranged side by side densely, resulting in a film-like shape.On the other hand, as the separation distance increases, the diamond becomes granular. In addition, the above-mentioned coating layer is essential for precipitating a large number of diamond nuclei. Therefore, if this coating layer does not exist, the precipitation of diamond will be extremely small, and the desired precipitation of diamond nuclei will be prevented.
and its growth cannot be measured. Next, the reason why the manufacturing conditions are limited as described above in the method of the present invention will be explained. (a) Filament temperature It is thought that the filament decomposes methane (CH 4 ) and at the same time activates the C and H 2 formed as a result, contributing to diamond formation. However, if the temperature is below 1800°C, The reaction gas is not activated sufficiently, and its temperature is
If the temperature exceeds 2500℃, thermal radiation becomes too large, and in either case, diamond formation will be insufficient, so the filament temperature should be set at 1800 to 2500℃.
It was determined that (b) Surface temperature of the surface-coated member This surface temperature is determined by the radiant heat from the filament and the heating temperature of the member itself. If the surface temperature is less than 500°C, the precipitation rate of diamond will be slow, while if the surface temperature exceeds 1200°C Since diamond does not precipitate at this temperature, the surface temperature was set at 500 to 1200°C. (c) Ratio of CH 4 /H 2 in the mixed reaction gas If this ratio is less than 0.001, the rate of diamond formation is extremely slow, while if this ratio exceeds 0.05, graphite will be mixed in the diamond. , CH 4 /H 2 ratio from 0.001 to
It was set at 0.05. (d) Distance between the surface of the surface-coated member and the filament If this distance is less than 0.5 cm, the surface temperature of the member will exceed 1200℃ due to the radiant heat of the filament, and diamond precipitation will not occur. On the other hand, when this distance becomes larger than 3 cm, the density of diamond nucleus formation decreases rapidly, so the distance was set at 0.5 to 3 cm. Furthermore, when carrying out the method of the present invention, the reaction atmosphere should be at a pressure within the range of 5 to 100 torr using a Pirani vacuum gauge (this pressure corresponds to 0.1 to 10 torr when measured using a diaphragm vacuum gauge; It is preferable to use a vacuum atmosphere (as indicated by the pressure measured with a Pirani vacuum gauge), because at pressures below 5 torr, the rate of diamond precipitation is extremely slow, while at pressures above 100 torr, graphite will be present. This is for the reason.
Further, the above-mentioned coating layer can be formed using a conventional chemical vapor deposition method, physical vapor deposition method, thermal spraying method, or the like, depending on the base member. The diamond synthesized by the method of this invention contains 1 to 10% of filament constituents such as W, Mo, or Ta as unavoidable impurities.
Although the impurity content may be in the range of atomic %, this level of impurity content does not have any adverse effect on the properties of diamond. Next, the method of the present invention will be specifically explained using examples. Example A base member having the component composition shown in Table 1 and having dimensions of 10 mm x thickness: 2 mm is prepared, and a coating layer also shown in Table 1 is coated on the surface of this base member. Formation methods, namely chemical vapor deposition method (denoted by CVD), magnetron sputtering method (denoted by PVD-MS), which is a type of physical vapor deposition method,
or plasma spraying method (indicated by PS) under normal conditions to form a coating layer made of Nb with an average layer thickness also shown in Table 1, and then,
On the surface of the surface coating member prepared in this way,
Similarly, under the conditions shown in Table 1, methods 1 to 7 of the present invention and comparative methods 1 to 7 were carried out by performing a gas phase synthesis reaction for diamond formation, and after the implementation, no formation was observed on the surface. The average layer thickness of the synthesized diamond was measured and its condition was observed. These results are also shown in Table 1. In addition, Comparative Methods 1 to 7 are all conducted under conditions where the vapor phase synthesis conditions for diamond formation are outside the scope of this invention (the conditions marked with * in Table 1 are outside the scope of this invention). This was carried out at From the results shown in Table 1, it can be seen that in all methods 1 to 7 of the present invention, diamonds were synthesized in good condition, whereas in comparative methods 1 to 7, diamonds were synthesized in a satisfactory manner in all cases. It is clear that this will not be done. The diamonds synthesized by Methods 1 to 7 of the present invention all exhibited hardness and electrical resistance equivalent to those of natural diamond.

【表】【table】

【表】 上述のように、この発明の方法によれば、大型
の装置を用いることなく、かつ生産性の高い状態
で、結晶性の完全な人工ダイヤモンドを、表面被
覆部材の表面に粒状あるいは膜状の形で合成する
ことができ、したがつて、ダイヤモンドを粒状に
合成した場合には、これを部材表面から機械的に
かき落して粉末状とし、砥石や研摩材、あるいは
粉末冶金用原料粉末などとして用いることがで
き、また、膜状に形成する場合には、基体部材
を、耐摩耗性や耐候性が要求される各種の工具部
材、あるいは熱伝導性や電気絶縁性が要求される
ICやLSIなどとしてもよく、さらに絶縁膜や、
B、P、およびAlなどの成分とのドープと合せ
て半導体膜などとしての用途にも適用することが
できるなど工業上有用な効果がもたらされるので
ある。
[Table] As described above, according to the method of the present invention, perfectly crystalline artificial diamond can be applied to the surface of a surface-coated member in the form of granules or a film without using large-scale equipment and with high productivity. Therefore, when diamond is synthesized in the form of granules, it can be mechanically scraped off the surface of the component to form a powder, and used as a grinding wheel, abrasive, or raw material powder for powder metallurgy. When forming a film, the base member can be used for various tool parts that require wear resistance and weather resistance, or those that require thermal conductivity and electrical insulation.
It can be used as an IC, LSI, etc., and can also be used as an insulating film,
In combination with doping with components such as B, P, and Al, it brings about industrially useful effects such as being able to be applied to applications such as semiconductor films.

Claims (1)

【特許請求の範囲】[Claims] 1 Fe基合金、Ni基合金、Co基合金、サーメツ
ト、あるいはセラミツクからなる基体部材の表面
に、Nbからなる被覆層を形成してなる表面被覆
部材を反応炉に装入し、前記表面被覆部材の表面
と、W、Ta、Mo、あるいは黒鉛からなるフイラ
メントとの間隔を0.5〜3cmに保持した状態で、
CH4/H2の割合を0.001〜0.05の範囲内に調整し
た混合反応ガスを反応炉内に流しながら、表面被
覆部材の表面温度:500〜1200℃、およびフイラ
メント温度:1800〜2500℃の条件で気相合成反応
を行なわしめることにより前記表面被覆部材の表
面にダイヤモンドを粒状あるいは膜状に析出せし
めることを特徴とするダイヤモンドの気相合成
法。
1. A surface-coated member made of a base member made of Fe-based alloy, Ni-based alloy, Co-based alloy, cermet, or ceramic, with a coating layer made of Nb formed on the surface thereof, is charged into a reactor, and the surface-coated member is While maintaining the distance between the surface and the filament made of W, Ta, Mo, or graphite at 0.5 to 3 cm,
While flowing a mixed reaction gas with a CH 4 /H 2 ratio adjusted within the range of 0.001 to 0.05 into the reactor, the surface temperature of the surface coating member: 500 to 1200 °C, and the filament temperature: 1800 to 2500 °C. A method for vapor phase synthesis of diamond, characterized in that diamond is deposited in the form of particles or a film on the surface of the surface coating member by carrying out a vapor phase synthesis reaction.
JP58057044A 1983-04-01 1983-04-01 Diamond vapor phase synthesis method Granted JPS59184792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58057044A JPS59184792A (en) 1983-04-01 1983-04-01 Diamond vapor phase synthesis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58057044A JPS59184792A (en) 1983-04-01 1983-04-01 Diamond vapor phase synthesis method

Publications (2)

Publication Number Publication Date
JPS59184792A JPS59184792A (en) 1984-10-20
JPS6344719B2 true JPS6344719B2 (en) 1988-09-06

Family

ID=13044443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58057044A Granted JPS59184792A (en) 1983-04-01 1983-04-01 Diamond vapor phase synthesis method

Country Status (1)

Country Link
JP (1) JPS59184792A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725637B2 (en) * 1986-05-31 1995-03-22 富士通株式会社 Method for producing diamond fine particles
EP0264674B1 (en) * 1986-10-20 1995-09-06 Baker Hughes Incorporated Low pressure bonding of PCD bodies and method
JPS63237870A (en) * 1987-03-26 1988-10-04 Goei Seisakusho:Kk Diamond coated grinding wheel

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURMAL OF MATERIALS SCIENCE *
JOURNAL OF CRYSTAL GROWTH *

Also Published As

Publication number Publication date
JPS59184792A (en) 1984-10-20

Similar Documents

Publication Publication Date Title
EP0161829B1 (en) Process for preparing diamond thin film
TWI299364B (en) Fabrication of b/c/n/o doped sputtering targets
US20060185771A1 (en) Sputtering target and method for production thereof
JPS6196016A (en) Amorphous metal alloy powder, bulky object and synthesis thereof by solid phase decomposition reaction
CN111206283B (en) Preparation and application of a two-dimensional chromium diselenide material
TW574377B (en) Sintered tungsten target for sputtering and method for preparation thereof
CA1330398C (en) Process for preparing spherical copper fine powder
EP0463266B1 (en) Method of forming refractory metal free standing shapes
WO2004024626A1 (en) Iron silicide powder and method for production thereof
JPS62119B2 (en)
JPS6344719B2 (en)
JPS61151095A (en) Synthesis of diamond
JPH05214521A (en) Titanium sputtering target
JPS631280B2 (en)
EP0496655A1 (en) A method of forming high purity metal silicides targets for sputtering
US4254093A (en) Solar energy grade cadmium sulfide
JP7394781B2 (en) Target and target manufacturing method
KR20220013887A (en) Semiconductor interconnect, electrode for semiconductor device, and method of preparing multielement compound thin film
Shi et al. Preparation and characterization of Ni-C composite films
JPH0711433A (en) Target for sputtering and its production
JPS62100403A (en) Production of fine powder of hexagonal boron nitride having high purity
JPH01255630A (en) Production of cutting tool made of diamond-coated tungsten carbide-based sintered hard alloy
JPH0310562B2 (en)
JP2000064032A (en) Titanium silicide target and method of manufacturing the same
Xiang et al. Current status, challenges, and development trends in the synthesis of high-quality titanium nitride powders